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Abstract

The rapid growth of e-commerce has necessitated busi-
ness owners to provide comprehensive and engaging de-
scriptions for their products to facilitate smooth user shop-
ping experience. However, manually crafting these product
descriptions is labor-intensive and time-consuming. Recent
advances in deep learning-based generative models offer a
promising solution to automate this process. In this paper,
we leverage state-of-the-art vision-language models, in-
cluding CLIP, BLIP, BLIP-2, and OFA, to generate detailed
and compelling product descriptions from images and meta-
data using the Amazon Berkeley Objects dataset. Our eval-
uation demonstrates significant improvements in the perfor-
mance of the fine-tuned models over their pretrained ver-
sions across numerous metrics, with our best model achiev-
ing a two-order-of-magnitude increase in CIDEr score com-
pared to the baseline approach.

1. Introduction

In recent years, the e-commerce sector has experienced
substantial growth in scale. To facilitate smooth shopping
experience, business owners are required to provide com-
prehensive information, including both visual displays and
textual descriptions, for their products. Writing informa-
tive and appealing product descriptions is crucial as they
help customers quickly understand product features and
differentiate between various options. Traditionally, these
product descriptions are crafted manually. Although this
method ensures high-quality content, it is labor-intensive,
time-consuming, and struggles to keep pace with the ex-
panding variety of products.

Recent advances in deep learning-based generative mod-
els present a promising solution for generating new content
from images and textual prompts. State-of-the-art vision-
language models [7, 18] have demonstrated astonishing ca-

pabilities across a wide spectrum of multimodal tasks, in-
cluding image captioning, which involves generating de-
scriptions for images. However, applying existing image
captioning models directly to product description genera-
tion faces two significant challenges. First, standard im-
age captioning aims to generate sentences that factually de-
scribes the elements of a scene in an objective and neutral
tone [15]. In contrast, effective product descriptions require
an engaging and persuasive tone to captivate potential buy-
ers. Second, while image captioning models focus solely on
visual characteristics, it is essential to include product meta-
data in product descriptions, such as manufacturing details
and material composition. This requirement further under-
scores the inadequacy of existing image captioning models
for generating effective product descriptions.

In this work, we explore the adaptation of deep learn-
ing models for the task of generating product descriptions
for e-commerce platforms. Our goal is to build models
that take product images and metadata of products as input
and output informative and engaging descriptions for them.
To accomplish this task, we select four widely used vision-
language models as our base models, CLIP [12], BLIP [8],
BLIP-2 [7], and OFA [18]. These models are fine-tuned us-
ing the Amazon Berkeley Objects (ABO) dataset [2], which
includes information on more than 100k products listed on
the Amazon platform. We provide a detailed overview of
our fine-tuning implementation for each base model in sec-
tion 4. In addition, we highlight our training strategies
to mitigate the substantial resource requirements for large-
scale model fine-tuning in section 5, including the compar-
ison between Parameter Freezing and Low-Rank Adapta-
tion (LoRA) [6]. In section 6, we evaluate the effectiveness
of our fine-tuned models using a range of metrics, includ-
ing BLEU [11], CIDEr [17], METEOR [1], and ROUGE-L
[9]. Notably, our best-performing model, fine-tuned from
the OFA base model, achieves a remarkable two-order-of-
magnitude increase in CIDEr score compared to the base-
line approach. This significant improvement underscores
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the potential of our approach in enhancing the performance
of pretrained vision-language models for the task of product
description generation.

2. Related Work
Vision Pretraining & Language Pretraining. In natu-
ral language processing (NLP), learning universal language
representations through pretraining has significantly en-
hanced performance across numerous tasks, including natu-
ral language inference, named entity recognition, and ques-
tion answering [3]. Pretrained language models, such as
BERT [3] and GPT [14], leverage vast corpora of text to
train large Transformer-based models [16] to learn sophisti-
cated linguistic structures and nuanced sentence semantics
in an unsupervised manner. Pretrained models can subse-
quently be fine-tuned using relatively small, task-specific
datasets to render robust performance in a variety of down-
stream tasks. This pretrain-finetune paradigm not only im-
proves the efficiency of training models for specific tasks
by utilizing shared pretrained models, but also enhances
performance with the transfer of knowledge learned from
large-scale dataset.

Inspired by NLP’s success through langugae pretraining,
numerous efforts have sought to adapt the unsupervised
pretraining techniques of transformers to the domain of
computer vision. Vision Transformer (ViT) [4] adapts the
Transformer architecture for visual data by segmenting
an image into patches and then providing the sequence
of linear embeddings of these patches as inputs to a
Transformer model, treating each image patch as a word
token in language models. Pretrained on large image
datasets, these models excel in tasks like image recognition
and classification, often surpassing the performance of
traditional convolutional neural networks (CNNs) like
ResNet [5].

Vision-language Pretraining. Vision-language pretrain-
ing aims to learn joint representations for both vision and
language, enabling models to perform multi-modal tasks
such as image captioning, visual question answering, and
text-to-image generation. CLIP [13] employs contrastive
learning to predict correct image-caption pairs, leverag-
ing large-scale internet data. Florence [20] adapts con-
trastively pre-trained models to more downstream tasks
with task-specific adaptations. BLIP [12] unifies the han-
dling of vision-language understanding and text-generation
tasks with the Multimodal mixture of Encoder-Decoder ar-
chitecture (MED). OFA [18] extends the generation capa-
bility to include text-to-image generation with a task and
modality-agnostic sequence-to-sequence framework. Fur-
thermore, BLIP-2 [7] was proposed to address the soaring
cost of vision-language pretraining by leveraging off-the-
shelf frozen pre-trained image encoders and frozen large

language models. It bridges the gap between the two modal-
ities gap with a lightweight module known as Querying
Transformer (Q-Former). This method demonstrated com-
petitive performance in vision-language tasks while requir-
ing significantly fewer trainable parameters.

3. Dataset
The dataset utilized in this study is the Amazon Berke-

ley Objects (ABO) Dataset [2], a comprehensive collection
encompassing 147,702 Amazon product entries. Each entry
includes a set of catalogue images and associated metadata
as illustrated in Figure 1. A typical entry within the ABO
Dataset comprises a sequence of images that showcase the
product from various perspectives, providing a detailed vi-
sual representation of its appearance and features. Along-
side these images, the dataset includes product metadata
presented in a structured JSON format, which encapsulates
essential attributes such as dimensions, materials, and man-
ufacturer information. This metadata offers valuable textual
information that complements the visual content and aids in
the comprehensive understanding of each product. The cor-
responding product descriptions are provided on the right
side of the figure, formatted as a series of bullet points.
These descriptions emphasize the key features and speci-
fications of the product. Notably, the generation of these
descriptions relies on synthesizing information from both
the visual attributes observable in the images and the tex-
tual details contained within the metadata. This observation
underscores the importance of leveraging both visual and
textual data modalities to accurately reconstruct the origi-
nal product descriptions.

4. Methods
We investigate the adaptation of pretrained vision-

language models for the task of generating product descrip-
tions from images and structured metadata. Specifically,
we explore four widely used models: CLIP [12], BLIP [8],
BLIP-2 [7], and OFA [18]. In this section, we begin with
a high-level overview of the design and architectures of
these base models, along with the mechanism of the LoRA
method. Then, we delve into the implementation details.
This includes the preprocessing of input data and the fine-
tuning procedures applied to each individual model.

4.1. Base Models and Techniques

CLIP. CLIP leverages contrastive learning to jointly
pretrain both a vision encoder and a text encoder. The
vision encoder can be constructed using either CNNs
such as ResNet or Transformer-based architectures like
Vision Transformer (ViT). The text encoder is built upon
a GPT-style Transformer architecture. During the training
phase, CLIP trains the image and text encoders to predict
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Product Image:
Product Description:

• This rug is fringed for added style.

• This handcrafted rug is made by 
Craftmark certified artisans, preserving th
e global craft tradition.

• The hand-tied fringe gives this reversible 
rug a classic look

• Charcoal lines form delicate diamond 
shapes on an ivory background, and hints 
of yellow provide unique accents.

• This elegant Moroccan-inspired rug will be 
the perfect accent for your modern-
style interior design.

Product Metadata:
{

"brand": "Rivet",

"item_name": "Amazon Brand, Rivet Modern Mo
roccan Inspired Area Rug, 
4x 6 Foot, Multicolor Yellow Accent",

"item_shape": "Rectangular",

"material": "Polyester",

"model_number": "ROA-18-62-A RUG style 
Moroccan",

"item_keywords":"small foundry no wool deal",

"slip country": "US"

}                        

Figure 1: Example of product image, metadata, and descriptions from the ABO dataset. Descriptions such as ’hand-tied
fringe’ are inferred from the image, while others like ’Moroccan style’ are inferred from the metadata.

the correct pairings within a batch of (image, text) training
examples. In the testing phase, the model synthesizes a
zero-shot linear classifier by embedding the class names or
descriptions of the target dataset, enabling it to generalize
to new tasks without additional training.

BLIP. BLIP employs a multimodal mixture of encoder-
decoder (MED) pre-training scheme, which comprises
three key components: an image-grounded text encoder,
an image encoder, and a multimodal decoder. The image-
grounded text encoder is responsible for learning textual
descriptions in the context of their corresponding images,
effectively capturing the semantic relationships between
the two modalities. Meanwhile, the image encoder focuses
on learning rich visual representations that encapsulate the
salient features and attributes of the input images. Lastly,
the multimodal decoder generates textual outputs based
on the combined visual and textual inputs provided by the
image and text encoders.

BLIP-2. Unlike prior works which jointly trains vision
and language components, BLIP-2 leverages frozen pre-
trained vision encoders and language models to reduce
training cost. This is achieved with the introduction of
the query-based transformer (Q-Former), which acts as a
bridge between the visual and textual modalities. Q-Former
transforms the visual features into query embeddings
through a series of attention mechanisms. These query
embeddings then serve as the input to the language model,
enabling it to generate contextual text outputs, such as
captions for the images.

OFA. OFA is a transformer-based sequence-to-sequence
model designed to tackle a wide range of crossmodal and
unimodal tasks within a single framework. OFA represents

data of various modalities, such as texts, images, and
objects (in images), as tokens in a unified vocabulary. This
is accomplished by utilizing CNNs to transform images
into patch features and byte-pair encoding (BPE) to encode
text sequences as subword sequences. The architecture
of OFA follows the encoder-decoder paradigm, where
both the encoder and the decoder are composed of stacks
of Transformer layers. Each encoder layer consists of a
self-attention module and a feed-forward network (FFN),
while each decoder layer includes a self-attention block,
an FFN, and a cross-attention mechanism to establish the
connection between the decoder and the encoder output
representations.

LoRA. LoRA is a fine-tuning technique which significantly
reduces the computational and memory requirement associ-
ated with fine-tuning by injecting trainable rank decompo-
sition matrices into specific layers of a pre-trained model.
Specifically, for each selected layer of the model, LoRA in-
jects low-rank matrices that decompose the original weight
matrix. During the fine-tuning phase, the original weight
matrices of the model remain unchanged. Instead, the out-
puts from the low-rank matrices are used to adjust the ac-
tivations of the layers in the model. The dimensions of the
low-rank matrices can be tuned to balance between expres-
siveness and computational efficiency.

4.2. Implementation Details

Data Preprocessing. Given the objective of the study
to generate product descriptions from image and textual
metadata, we first apply a filtering step to eliminate data
points that either do not contain an image or do not have
at least one product description written in English. After
this refinement, the resulting dataset comprises 113,203
samples, with an average of 4.8 images per product. We
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Figure 2: Overview of CLIP-GPT2 architecture

parse the originally JSON-formatted metadata into a textual
format to allow the model for easier generalization and
adaptability to data that may not be presented in JSON
format. Furthermore, we remove certain keywords from the
metadata, such as language tag, which is used to indicate
the language of the corresponding value. This removal
streamlines the metadata and focuses on the essential
information required for generating product descriptions.
Lastly, to ensure compatibility with the English vocabulary
used in the tokenization process, we apply an additional
filtering step to remove all information that is not written in
English.

CLIP-GPT2. Inspired by ClipCap [10], we introduce
a new streamlined model called CLIP-GPT2, which
integrates CLIP’s image encoder with the GPT2 language
model. An overview of the CLIP-GPT2 model in presented
figure 2. As shown, metadata is prepended to GPT-2’s
prompt as a prefix. In addition, the model maps the visual
embeddings of CLIP’s image encoder to the language
model’s latent space, creating a learnable visual prefix.
This prefix serves as a guide for the language model to
generate relevant descriptions of the image content. For
implementation, we use pretrained weights for GPT2
from ”openai-community/gpt2” and image encoder from
”clip-vit-base-patch32”. In total, CLIP-GPT2 comprises
approximately 275 million parameters. Unlike the original
ClipCap framework, which freezes the image encoder to
facilitate efficient parameter tuning, we choose to fine-tune
both the image encoder and the language model. This
decision is driven by the difference between the ABO
dataset, which consists of commercial product images,
and the datasets on which these models were originally
pretrained.

BLIP Fine-tuning. Since BLIP employs different models
tailored to specific tasks, for our use case, we utilize the
BLIPForQuestionAnswering model, which is used for
the task of visual question answering (VQA). The model

takes an image and a prompt as input and generates an
answer accordingly. We initialize the model with pretrained
weights from the ”Salesforce/blip-vqa-base” checkpoint.
To prepare the input data for the model, we tokenize the
parsed metadata and the target output separately. These
tokenized inputs are then passed to the model, which
processes the image and the prompt using its integrated
visual and textual encoders.

BLIP-2 Fine-tuning. For BLIP-2, we employ the smallest
variation of the model, namely ”Salesforce/blip2-opt-2.7b”,
which comprises a Vision Transformer (ViT) for visual
encoding and an OPT-2.7b language model for text gen-
eration. The challenge associated with this model is its
substantial model size of 3.1 billion parameters, occupying
14.43 GB of memory for the weights alone. A naive
approach to training the model using the Adam optimizer
would demand 57.72 GB of memory. To reduce memory
usage, we explored parameter freezing and Low-Rank
Adaptation (LoRA). Parameter freezing, as used in the
original BLIP-2 paper, involves freezing the vision encoder
and language model weights during fine-tuning. Alterna-
tively, LoRA reduces trainable parameters by introducing
low-rank decomposition matrices. We offer a detailed
comparison of these two approaches in section 5. Given
the decoder-only architecture of the OPT language model,
we concatenate the input metadata with the corresponding
output descriptions. The tokenized representation of this
concatenated string is used as both the input and the labels.

OFA Fine-tuning. For fine-tuning the OFA model, we ini-
tialize the model and the tokenizer with pretrained weights
from the ”OFA-Sys/ofa-large” checkpoint. Given the
encoder-decoder architecture of OFA, we utilize the image
and metadata as inputs to the encoder, while the ground
truth descriptions serve as targets for the decoder. For im-
age processing, we preprocess the images by resizing and
cropping them to a resolution of 256 × 256 pixels, which
are then transformed into 16 × 16 patches by the OFA to-
kenizer. One notable aspect of the OFA model is its task-
agnostic design, meaning that there is no task-specific pro-
jection layer at the end of the model. We use the instruction
fine-tuning technique by appending the question ’What is
the description of the product?’ to the prompt, guiding the
model to generate product descriptions. To accelerate the
training process, we freeze the encoder module and adopt
fp16 training functionality provided by the Trainer interface
from the Huggingface Transformers library [19].

5. Training Details
We split the dataset into train, validation, and test sets

with a ratio of 7:2:1. Before starting the full training
process, we use a small subset of the training dataset
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(a) Loss with different learning rates (b) Loss with different optimizers (c) Loss with different batch sizes

Figure 3: Hyperparameter Tuning for OFA

Figure 4: BLIP-2 loss curve for 10 epochs using LoRA and
Parameter Freezing

with 1,000 examples to verify the correctness of our
implementation and estimate the training cost by observing
the loss curve. Once the models exhibit clear signs of
learning, we proceed to a small-scale hyperparameter
tuning phase. The goal of this phase is to identify the
optimal hyperparameters for the fastest convergence rate
for each model. We illustrate our approach by presenting
the hyperparameter tuning process for the OFA model as a
representative example. Additionally, we highlight a com-
parative experiment evaluating the effectiveness of LoRA
and parameter freezing in the context of fine-tuning BLIP-2.

Hyperparameter Tuning. Figure 3 presents the results
of our comprehensive hyperparameter tuning process for
the OFA model. In 3a, we evaluate the impact of different
learning rates on the model’s performance. We explore
three learning rate values: 1e-03, 1e-04, and 1e-05. Our
findings reveal that while a learning rate of 1e-03 achieves
rapid convergence, it results in high fluctuations in the loss
curve. In contrast, a learning rate of 1e-04 exhibits a more
stable convergence pattern with fewer fluctuations, while
consistently maintaining a lower overall loss compared to
the 1e-05 setting. Based on these observations, we select
1e-04 as our final learning rate, as it strikes a balance
between convergence rate and stability. Furthermore,

figure 3b presents a comparative analysis of the loss
curves obtained using the Adam and SGD optimizers. The
results clearly demonstrate the superiority of the Adam
optimizer, as it achieves a significantly lower and more
stable loss throughout the 200 iterations compared to
SGD. Consequently, we opt for the Adam optimizer in
our training configuration. Furthermore, we investigate
the effects of different batch sizes on training stability
and convergence. We evaluate batch sizes of 1, 2, and
4, as shown in Figure 3c. All three batch sizes exhibit
a similar trend, characterized by a rapid decrease in loss
during the initial iterations, followed by a more gradual
decline as training progresses. Based on these findings, we
choose a batch size of 4 as it maximizes training throughput.

LoRA vs. Parameter Freezing for BLIP-2. Given the
substantial computational resources required to train the
BLIP-2 model, we begin with a small-scale experiment
using 1000 randomly selected samples from the training
dataset to estimate the rate of convergence and training
time. For the LoRA approach, we set the rank to 256, mak-
ing 2.19% of the total parameters trainable. For the Param-
eter Freezing technique, we freeze all layers in both the vi-
sion encoder and the language model, leaving 2.86% of the
total parameters trainable. This approach ensures a compa-
rable scale of trainable parameters for both techniques, al-
lowing us to evaluate their relative efficiency and effective-
ness under similar conditions. Figure 4 illustrates the train-
ing curves over 10 epochs using the LoRA and Parameter
Freezing approaches. Both techniques exhibit similar rates
of loss reduction, with LoRA demonstrating a slightly faster
convergence. However, at the 10th epoch, the loss continues
to decrease noticeably, indicating that the model is still far
from reaching convergence. Using the full training dataset,
the time per epoch for LoRA and Parameter Freezing is ap-
proximately 10 and 9 hours, respectively. Based on these
observations, we estimate that the training cost for both ap-
proaches would exceed the available resources allocated for
this study. Consequently, we decide not to proceed with the
BLIP-2 model in further investigations.
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# Trainable Params↑ CIDEr↑ BLEU-1↑ BLEU-4↑ ROUGE-L↑ METEOR↑
Metadata-Only 0.85 5.84 1.48 7.63 10.7

CLIP-GPT2-Baseline 276M 2.02e-2 5.79 0.15 4.76 10.50
CLIP-GPT2-Fine-tuned 276M 1.01 13.89 5.78 30.89 20.45

Blip-Baseline 384M 2.10 2.06e-3 6.34e-4 6.42 3.40
Blip-Fine-tuned 384M 7.73 48.11 36.32 57.56 59.90

OFA-Baseline 472M 7.93e-03 1.98e-03 9.14e-4 1.85 1.31
OFA-Fine-tuned 472M 473.38 74.37 68.71 74.61 74.46

Table 1: Performance Evaluation on ABO dataset

6. Evaluation

6.1. Methodology

Baselines. We establish two fundamental baselines to
evaluate the effectiveness of the fine-tuned models for the
task of product description generation. The first baseline
involves directly utilizing the parsed metadata as the
product description. Although this approach may lack the
cohesiveness of natural language, it is selected as a baseline
due to its comprehensive coverage of product informa-
tion. The second baseline leverages the aforementioned
pretrained vision-language models CLIP-GPT2, BLIP,
and OFA) to generate textual descriptions based on both
the visual content of the product image and the parsed
metadata.

Metrics. We compare the performance of the fine-
tuned models against the baseline approaches on the
ABO datasets using several evaluation metrics, including
BLEU [11], CIDEr [17], METEOR [1], ROUGE-L [9].
Given the similarity between the task of product description
generation and image captioning, we prioritize CIDEr as the
primary evaluation metric. CIDEr measures how well the
generated descriptions match human-annotated references,
emphasizing the importance of relevance and specificity.
BLEU, METEOR, and ROUGE-L are also used to provide
a comprehensive evaluation of the generated descriptions’
fluency, precision, and recall.

6.2. End-to-end Results

Quantitative Evaluation. We conducted a comprehensive
comparative analysis of various baseline and fine-tuned
models, as summarized in Table 1. The results demonstrate
that fine-tuning significantly improves performance of
the models compared to their baseline versions, which
exhibited suboptimal performance compared to the
metadata-only baseline. Notably, the OFA model, despite
requiring a larger number of trainable parameters (472M)
compared to the other models (384M and 276M for BLIP
and CLIP-GPT2 respectively), delivers superior results

across all five evaluation metrics. In particular, the OFA
model achieves a CIDEr score of 473.38 in the test dataset,
which is two orders of magnitude higher than the best
baseline approach (2.10). This substantial improvement in
the CIDEr score highlights the OFA model’s ability to gen-
erate product descriptions that closely mimic the targeted
outputs. While the BLIP model maintains comparable
scores to the OFA model in terms of BLEU-1, BLEU-4,
ROUGE-L, and METEOR, its CIDEr score is notably lower
at 7.73. This disparity arises because CIDEr emphasizes
the use of unique and less common n-grams, which are
more informative about the specific characteristics of the
product. The BLIP model tends to generate more generic
descriptions that lack the distinctiveness required to achieve
a high CIDEr score, whereas the OFA model excels at
producing detailed and unique descriptions that capture the
essence of each product.

Qualitative Evaluation. To elucidate the efficacy of vari-
ous models in crafting appealing product descriptions, we
present a qualitative demonstration in Table 2. This table
showcases detailed product input data and the correspond-
ing output descriptions generated by the OFA, BLIP, and
CLIP-GPT2 models. According to the table, CLIP-GPT2
produces the poorest quality captions. The model identi-
fies keywords but fails to construct coherent and meaning-
ful sentences, often resorting to placeholder text or generic
phrases. This suboptimal performance could be attributed
to the integration of CLIP and GPT-2, which requires map-
ping visual features from CLIP to a format compatible with
GPT-2. Unlike OFA and BLIP, which are specifically de-
signed and trained for vision-language tasks, this mapping
may result in a loss of critical information and less effec-
tive integration between the visual and linguistic compo-
nents, leading to incoherent sentence outputs. In contrast,
OFA generates high-quality descriptions similar to ground
truth labels. Notably, OFA demonstrates the ability to cap-
ture numerical information directly from images. For in-
stance, it accurately identifies the volume of the syrup as
15.25 ounces in the first image, even though this informa-
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Images

Metadata

{ ”brand”: ”LoVesome”,
”product type” : ”grocery”,
”country”: ”US”, ”marketplace”:
”AmazonFresh”, ”domain name”:
”fresh.amazon.com” }

{”height”: 3.54, ”length”: 25,
”width”: 12.32, ”unit”: ”inches”,
”color”: ”silver”, ”item name”:
”Amazon Commercial 30 cm
Stainless Steel Aluminium-Clad
Frying Pan with Helper Handle”}

{”brand”: ”Amazon Brand -
Solimo”, ”color”: ”multi-colored”,
”item name”: ”Amazon Brand -
Solimo Designer Bicycle Pattern
Design 3D Printed Hard Back Case
Mobile Cover for Nokia 6 (2018)”}

Ground Truth
- Brought to you by Whole Foods
Market

- Measures 63 x 32 x 9 cm
- 30 cm frying pan with a wide, flat
shape and stainless-steel cooking
surface, perfect for searing,
sautéing, browning and more
- designed for residential and
commercial use

- 31.5”W x 16.54”D x 31.5”H
- Pine, MDF and glass, Metal
- The white finish and metal pulls
add a modern element to the design.
Geometric door trim gives it a
graceful style that will go with most
any decor.

OFA

- Brought to you by Whole Foods
Market
- One 15.25-Ounce can of
Looseome Fruit Cocktail Heavy
Syrup
- Satisfaction Guarantee

- 7-inch stainless steel saute pan for
cooking and baking
- Made of heavy-gauge 18/8
stainless steel
- reinforced edges for rugged
impact-resistant strength and to
maintain shape of pan

- 31.5”W x 16.54”D x 31.5”H
- Pine, MDF and glass, Metal
- The white finish and metal pulls
add a modern element to the design.
Geometric door trim gives it a
graceful style that will go with most
any decor.

BLIP

- brought to you by whole foods
market.
- our organic low sodium chicken
broth is made from slow, simmered
organic chicken, as well as the
classic flavor combination of
organic carrots and onions.

- sterling silver necklace featuring
polished round disk initial k
pendant
- 18’ cable chain with spring - ring
clasp
- great for everyday wear
- these silver pieces are built for
longevity.

- snug fit for mobile, with perfect
cut - outs for volume buttons, audio
and charging ports
- easy to put & take off with perfect
cutouts for volume buttons, audio
& charging ports.
- stylish design and appearance,
express your unique personality.

CLIP-GPT2

- for a products in Whole Foods
Certified
- no.1 ingredients.;
- grab every meal the day for what
is exceptional
- products of in compromises has at
least are chickenKitchen joy

- with: (.) from the use stainless
steel in easy on corrosion coating;
- Bakelite Dish washerable

- soft rubber snug interior feel
smooth
- surfaces lightweight without
scratching
- comfortable” inches scratches
surfaceable phone Case fit in
corners

Table 2: Selected product information and generated captions for different models.

tion is not present in the textual metadata. For the phone
case example, OFA produces a description identical to the
target description. This can be attributed to the large num-
ber of phone case products in the training dataset, which
have similar descriptions that only vary in specific details
such as dimensions. The consistency in the quality of gen-
erated descriptions across different product types highlights
the robustness and reliability of the fine-tuned OFA model.
The results produced by BLIP are also commendable. How-

ever, for the second image, it incorrectly identifies the object
as a necklace when it is, in fact, a frying pan. This suggests
that while BLIP can generate high-quality descriptions, it
struggles with distinguishing between visually similar ob-
jects.

Despite OFA’s effective generation of descriptions that
closely resemble the target labels, there are known limita-
tions in the current approach. Table 3 illustrates some fail-
ure examples of the OFA model, where it generates mean-
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Images

Generated

- AmazonBasics No
expanded, Black
- An Amazon Brand
- Content coming soon

- This is a
placeholder

Table 3: Failure Examples of OFA

ingless descriptions such as ”content coming soon” and
”This is a placeholder” for the two selected products. These
failures are primarily due to the presence of noisy samples
in the training dataset, which use placeholder sentences as
descriptions. Ideally, the model should be able to identify
and disregard these noisy examples, allowing it to generate
meaningful descriptions despite their presence.

7. Conclusion

In this work, we explore fine-tuning state-of-the-art
vision-language models to automate the generation of prod-
uct descriptions for e-commerce platforms. Our results
demonstrate significant improvements in the fine-tuned
models over their pretrained versions. Notably, the fine-
tuned OFA achieves the highest scores across all evaluation
metrics. Despite the model’s success in producing similar
outputs as the target descriptions, we have also identified its
deficiency when certain queries are corrupted by noisy ex-
amples in the training dataset. Future work could focus on
mitigating the impact of noisy data, scaling the approach to
a broader range of products and categories, and integrating
additional contextual information to enhance the quality and
relevance of descriptions. These improvements can further
improve the quality of the generated product descriptions
and reduce the labor of manually crafting descriptions by
business owners of e-commerce platforms.
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