
Automatic Prediction of Affordance-Preserving 3D Meshes to Improve
Interactive Robotics Simulation

Emily Broadhurst
ebroad23@stanford.edu

Tommy Bruzzese
tbru@stanford.edu

Sean Bai
seanbai@stanford.edu

Cem Gokmen
cgokmen@stanford.edu

Stanford University

Abstract

Realistic robotic and virtual interactions require high-
fidelity meshes that preserve object affordances like knobs
and handles. However, high fidelity meshes require more
computation. Our project evaluates how to predict mesh
type such that affordances are preserved for complex ob-
jects without overshooting the fidelity needed for sim-
pler objects. We evaluate three approaches trained on
the BEHAVIOR-1K dataset [6]: using a non-finetuned
ResNet18 with cosine similarity predictions, integrating an
MLP classifier with frozen ResNet18 weights, and end-
to-end training of the ResNet18 and MLP. We also ex-
plore weighted sampling to reduce overfitting. In a 1639
object test set from the BEHAVIOR-1K dataset, our best
model — a End-to-End ResNet with a MLP Classifier and
Weighted Sampling — predicts the expert-labeled correct
mesh type with 47.3%. We also introduce a new metric of
“affordance-preservation” where different mesh techniques
with the same level of detail (e.g., “V-HACD-32” and “Co-
ACD-32”) both count as correct, and achieve 83.5% preser-
vation. Our results indicate that end-to-end training, com-
bined with techniques such as weighted sampling, can sub-
stantially improve the generalizability and scalability of au-
tomatic mesh prediction for real-world scenes, advancing
the capabilities of virtual and robotic systems for more dy-
namic and responsive interactions.

1. Introduction
In virtual environments and robotic interactions, the ge-

ometric representation of objects is crucial for realistic and
functional interactions. A key challenge in this domain
is the efficient development of affordance-preserving col-
lision meshes from generic meshes. For example, meshes
of drawers need high-fidelity handles and stove-tops mesh
need high-fidelity knobs in order for robots or video game

users to realistically interact with them. Objects represented
in too low of fidelity cannot be readily interacted in a scene,
heavily limiting their usefulness.

The creation of realistic interactive scenes is a signif-
icant challenge in robotic simulation environments like
BEHAVIOR-1K [6]. Traditionally, these scenes are crafted
by 3D artists and manually annotated by robotics re-
searchers, a process that is both expensive and time-
consuming. Procedural generation methods such as Proc-
THOR have attempted to address these issues but typically
produce unrealistic and repetitive scenes that do not ac-
curately represent the diversity of real-world environments
[3]. This affects the performance of robotic policies trained
in such settings, limiting their applicability to real-world
conditions.

The generation of specialized affordance-preserving
meshes often relies on Approximate Convex Decomposi-
tion (ACD) techniques, with tools like V-HACD [9] and
Co-ACD being predominant [12]. However, these tools
require specific settings and extensive parameter tuning to
achieve the best result for each object, presenting a barrier
as no single ACD method is universally applicable to all
objects. Furthermore, while complex objects may require
more complex mesh representations (e.g., with more hulls),
it is a waste to use too many hulls on an object that would
have all its affordances preserved with only a few hulls.
Especially in scenes with hundreds or objects, prioritizing
complex meshes for only complex objects becomes critical
for efficiency.

In response, our project seeks to develop a scalable
and adaptable system that can automatically determine the
most effective ACD technique and parameters for creating
optimal affordance-preserving meshes across thousands of
objects, without needlessly overshooting the hull fidelity
needed.

We train on a dataset of 6543 objects from BEHAVIOR-
1K. In our pre-processing, we generate 14 differently-

1



angled renders of each object across various mesh can-
didates and pass them through various algorithms with
ResNet’s and MLP’s to predict the ACD technique candi-
date that human experts rated as best for each object.

Our project aims to automate the ACD mesh generation
process and ensure the quality and functionality of interac-
tions in both digital and physical environments. By address-
ing these challenges, our work intends to advance the capa-
bilities of virtual and robotic systems, making them more
dynamic and responsive.

2. Related Work
Prior work has explored various traditional ACD and ma-

chine learning approaches to improve the scalability and ef-
ficiency of mesh generation in simulation. Lien et al. in-
troduced the idea of Approximate Convex Decomposition
(ACD) technqiues by providing a robust framework for de-
composing polyhedra into approximately convex parts [7].
However, their method can be highly sensitive to initial con-
ditions. Mamou et. al, provided another early approach
with V-HACD, providing a relatively less expensive ap-
proach that struggled to handle highly concave shapes ef-
fectively [8, 9]. Wei et al. explored a Co-ACD method
of collision-aware concavity that improved decomposition
quality [12]. However, their method requires extensive pa-
rameter tuning to best preserve affordances, and is more
computationally expensive.

ACD techniques are fundamentally able to create high-
fidelity, affordance-preserving meshes, but they do so at the
cost of high computational complexity and extensive pa-
rameter tuning — which is an issue for scalability in real-
world simulation. No single ACD method is universally ap-
plicable to all objects in a way that will preserve meshes
with overshooting computation.

Li et al. introduce the BEHAVIOR-1K dataset, which
includes a large number of manually-created and annotated
meshes that highlight the challenge of creating realistic in-
teractive scenes for robotic simulation [6]. Manual mesh
creation and selection for objects is time-consuming and
not scaleable; however this dataset of highly-curated objects
and corresponding affordance-preserving ACD meshes has
proven incredibly useful for machine learning training. This
is in tandem with the Objaverse dataset from Deitke et al
that offers hundreds of thousands of 3D models that can
be used to train machine learning models; however at such
scale, these objects are notably less curated, making them
useful especially for testing robustness [2].

Outside of ACD techniques, there has been research in
machine learning approaches to mesh generation. Chen et
al. uses a neural network-based approach to automate mesh
generation, reducing the need for manual intervention [1].
However, the accuracy of the model is dependent on high
quality training data for each object class, making this ap-

proach un-scalable in real-world simulations. While Wu et
al. leverages 2D images to generate 3D shapes to reducing
the need for large 3D datasets across object classes, their
overall accuracy remains relatively lower [13].

Furthermore, Kalogerakis et al. present a data-driven ap-
proach to 3D mesh segmentation that significantly reduces
manual effort by learning from annotated examples [5]. Al-
though effective, again, reliance on high-quality labeled
data poses across each object class presents scalability chal-
lenges. Huang et al. propose a novel method for 3D shape
analysis using deep learning, which improves the precision
of mesh generation but still struggles with generalization
across diverse object categories [4]. Rusu et al. introduce
a method that integrates point cloud processing with ma-
chine learning to create detailed 3D representations, provid-
ing high accuracy but at the expense of significant compu-
tational resources [11]. Building on point cloud processing,
Qi et al. develop PointNet, a neural network that directly
processes 3D point clouds for object recognition and seg-
mentation, demonstrating robust performance but requiring
extensive computational power [10].

While traditional methods like manual annotation and
ACD techniques have laid the foundation for generating
affordance-preserving meshes, there is no one ACD tech-
nique that works across objects. Similarly recent advance-
ments in machine learning offer promise to automatic mesh
creation, but they also face challenges related to data re-
quirements and model accuracy that prevent object general-
ization.

In comparison, our work aims to build a scalable ACD
technique classifier for each object, combining the tradi-
tional ACD techniques with a machine learning classifier
of which technique to use. Unlike the other machine learn-
ing methods listed, our approach does not seek a new mesh
representation and instead automates the selection of ACD
techniques and parameters, reducing the need for extensive
manual tuning across each new object class.

3. Data
Stanford’s Vision and Learning Lab has worked with

human experts in robotics to select, for 8,207 objects in
the BEHAVIOR 1K dataset, which mesh was the most
affordance-preserving without being unnecessarily com-
plex.

They relied on expert human users to select these
meshes, because creating an automatic metric to verify af-
fordances proved too difficult: With the incredible amount
of affordances that exist, it is hard to automatically detect if
handles, knobs, latches, buttons, and more are preserved.

Each object in the dataset has multiple tech-
nique/parameter options that the experts chose between,
including Convex Hull, Bounding Box, three variations of
V-HACD with distinct parameters (4, 8, 32-hull versions),

2



two configurations of CoACD (8- and 32-hull versions), or
a manual human-made mesh.

Mesh Type # of Hulls % of Dataset Affordance Preserving for

CHull 1 26.72% CHull, Bbox
Bbox 1 6.95% CHull, Bbox
V-HACD-4 4 11.22% CHull, Bbox, V-HACD-4
Co-ACD-8 8 18.36% CHull, Co-ACD-8, V-HACD-4, V-HACD-8
V-HACD-8 8 7.06% CHull, Co-ACD-C8, V-HACD-4, V-HACD-8
Co-ACD-32 32 22.97% CHull, Co-ACD-C8, V-HACD-4, V-HACD-8, Co-ACD-32, V-HACD-H32
VHACD-32 32 4.31% CHull, Co-ACD-8, V-HACD-4, V-HACD-8, Co-ACD-32, VHACD-32
Manual 32+ 2.41% CHull, Co-ACD-C8, V-HACD-4, V-HACD-8, Co-ACD-32, V-HACD-32, Manual

Table 1. The distribution of meshes in the training and test set
(which were created with the same distribution), as well as the
mesh hull complexity and list of mesh types it preserves affor-
dances for. Given that ”manual” was selected by expert users only
when none of the other meshes were satisfactory, we represent it as
”32+” meshes. We note however that while we train on Bbox and
CHull separately (and find that sampling from them independently
is especially useful for weighted sampling), our evaluation for ac-
curacy and affordance-preservation computes CHull/Bbox as the
same class given their high similarity, with a total distribution of
33.67%.

We divided this dataset into training,and test sets with
6, 543 objects (80%)in the training set, and 1, 639 objects
(20%) in the test set (we threw out 25 objects that failed in
our render pipeline due to material file issues).

For additional testing, we also selected 50 objects from
the Objaverse dataset to use as an additional metric for the
robustness of our approach (however 17 of these also failed
in our rendering pipeline, leaving a total of 33 objects).
Given that we used the Objaverse dataset to test generaliza-
tion, we assigned a difficulty score predictability of meshing
on a scale of 1 to 4, where 1 represented an object that was
easy to mesh and preserve affordances (e.g., a book) and 4
represented more difficult objects to notice all affordances
(e.g., a candelabra). Overall though, the meshes in Obja-
verse are less highly-curated by expert roboticists, meaning
they inherently represent a more difficult challenge across
all difficulty scroes.

Our dataset included .obj files for the original ”visual
render” mesh, as well as each of the 7 candidate meshes
(e.g., CHULL, V-HACD, etc.). We did not have the ”man-
ual” mesh when that was selected by experts. Our first pre-
processing step was to generate consistent renders of each
object, for each mesh, from various angles. Image capture
involved generating 14 images per object, including 6 or-
thographic views (top, bottom, left, right, back, front) and 8
isometric views at the corners, using pyrender and trimesh.
To view an example of this refer to ??. Each image was
normalized using the mean and standard deviation of the
ImageNet dataset, and all objects were centered and scaled
to fit within a 400x400 pixel frame to maintain uniformity.

Generating usable renders was our first challenge. The
source of truth .obj file contained materials and textures
that made it easy to see the many faces and hulls of the
object. The candidate meshes, however, did not come with
textures, and initial renders had difficulty seeing the finer

details. Given that the experts selecting the meshes viewed
each hull in a different color, our solution was to similarly
color individual hulls with a distinct color using the trimesh
library. We generated randomized color values, and colored
all the faces of the same hull with the same color, which en-
sured that each hull easily differentiable. This step is criti-
cal for the model to understand the number of hulls used in
generating the approximation. An example output after this
process is illustrated in 1.

Given that we generate 14 renders for each of the 8
mesh types in the dataset for each of the 8182 usable
BEHAVIOR-1K objects, we have generated a dataset of
916,384 images — which oftentimes proved difficult to
work with for efficient training.

Figure 1. Colored Hull Render vs. Uncolored

4. Methods
For each of our methods, we utilized a pre-trained

ResNet18 model and removed its classification layer to use
it as a feature extractor. We ran each of the 14 angles
through the ResNet model and then concatenated them to
form a comprehensive feature vector for a candidate mesh.

The core of our approach then involved training a classi-
fier to identify the mesh technique and parameter combina-
tion that best preserves an object’s affordances according to
experts.

4.1. Non-finetuned ResNet

We first use the ResNet18 model to extract features from
the candidate meshes and then, instead of training a classi-
fier, we evaluate model performance based on cosine simi-
larity. This established a reference point without finetuning
or additional training, and was instrumental in developing a
way to load the nearly 1 million image renders in our dataset
efficiently.

The cosine similarity between candidate embeddings
and the object’s actually embeddings is computed to find
the most similar embeddings for evaluation, where between
two vectors A and B the similarity is defined as:

cosine similarity(A,B) =
A ·B

∥A∥∥B∥

3



where

A·B =

n∑
i=1

AiBi and ∥A∥ =

√√√√ n∑
i=1

A2
i , ∥B∥ =

√√√√ n∑
i=1

B2
i

4.2. Frozen ResNet Weights with Trained MLP
Classifier

For the next approach, we will add an MLP classifier on
top of a pre-trained ResNet18, but keep the weights of the
ResNet frozen during training. The baseline MLP will have
a simple architecture of a linear layer, followed by an acti-
vation layer using ReLU, and then a final linear layer. This
architecture is very simple to create an easy-to-implement
baseline for us to enhance later. The ReLU layer is incredi-
bly important to add non-linearity to help mitigate the van-
ishing gradient problem, and improve computational effi-
ciency.

We will use binary cross-entropy (BCE) loss for training
the MLP and classification selection. BCE loss is given by:

L = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (1)

where:

• N is the number of samples,

• yi is the true label of the i-th sample,

• pi is the predicted probability of the i-th sample.

For most multi-category classification tasks, categorical
cross-entropy loss is usually the standard over BCE. How-
ever, we found during experimentation that BCE consis-
tently outperformed categorical cross-entropy loss in ensur-
ing the selection of affordance preserving meshes. We hy-
pothesize this might be due to: 1) Our dataset was quite
imbalanced. The largest mesh category (CHull) out of 8
comprised over 30% of the dataset, while the smallest (man-
ual) only around 2%. BCE may be equipped to handle such
imbalances better than, as it evaluates each class indepen-
dently, 2) Our classes are not meant to only be evaluate in a
mutually-exclusive way. The aim of our model is to maxi-
mize affordance preservance by predicting the right fidelity
of hulls needed, even if it may predict the exact ACD tech-
nique wrong. Further, many objects in our dataset are given
the label ’CHull’, meaning the the simplest mesh possible
was sufficient, so in our ”affordance-preservation” metric
any other mesh predicted over CHull would still offer the
same level of affordance preservation.

By freezing the ResNet weights, we ensure that only the
MLP classifier learns during training, resulting in 4̃ million

parameters trained. Again, the pre-trained ResNet18 is used
as a feature extractor. The MLP classifier is added on top for
prediction of mesh technique and parameter combination.

This approach is more complex than the first, but we pre-
dict it will be ultimately worse than fully end-to-end train-
ing of also the ResNet feature extractor.

4.3. End-to-End Training with ResNet and MLP

For the final approach, we will train both the ResNet18
and MLP end-to-end with binary cross-entropy loss. This
method is very similar to the prior one, except we now addi-
tionally train the 1̃1 million parameters of the ResNet, lead-
ing to a total of around 1̃5 million parameters trained.

The goal of this architecture is to understand the bene-
fits of specifically fine-tuning the feature extractor for our
task. The pre-trained ResNet on ImageNet is a substantially
different task than selection of the best ACD technique for
objects, and so we predicted that our additional fine-tuning
to the task would significantly improve our performance.

This is our most computationally intensive and time-
consuming approach, as it optimizes both feature extraction
and the classification layer.

4.4. Training on Just Visual Renders

Given all of our pre-processing in producing the 14 an-
gled renders for each of the 8 candidates meshes, we wanted
to also evaluate the effects of this intensive dataset augmen-
tation on our performance. Thus, while the majority of our
trained models utilize the full dataset across all angles and
all candidate meshes, we also trained a model using just 1
standard angle from the true visual render of the obj

4.5. Weighted Sampling

Given the unequal distribution of mesh classes (seen in
Table 1, which is especially imbalanced towards a very low-
fidelity mesh type, we perform weighted sampling during
training over 7 class labels (because visual render is not a
predicted class and manual is not an available class in train-
ing). This is done in an effort for the model to better learn
to predict higher-fidelity meshes, an important goal of our
work.

While we later describe how we combine CHull and
BBox as the same class for evaluation, we continue to con-
duct our weighted sampling with CHull and Bbox as sep-
arate classes to pull from. We found that combining them
in our sampling significantly reduced our accuracy as it too
heavily redistributed the classes away from the low-fidelity
objects.

5. Experiments and Discussion
Before we delve into the specifics of each experiment,

we want to lead a brief discussion on our hyperparameter
choices and primary metrics.

4



We decided to focus most of our time on configuring our
architecture, which took longer than anticipated to due to
the pre-process of all our 1 million images, leaving less time
for hyperparameter search. We chose Adam as our opti-
mizer due to its adaptive learning rates and its popularity
in many deep-learning projects. We typically used a batch
size of 4 objects in our training, as our computing power
was not able to handle larger object batches: A batch size
of 4 is actually 4 objects x 8 meshes x 14 rendered angles =
448 rendered images.

We have two primary metrics: the overall accuracy of
predicting the exact expert-labelled mesh, as well as per-
centage of predicted meshes that preserved affordance fi-
delity. This metric is calculated by comparing the number
of hulls in the predicted mesh compared to the true label.
We choose to do Top-1 accuracy as only one mesh was se-
lected by the expert evaluators.

We note as well that while we trained on Bbox and CHull
as separate classes (particularly as described for weighted
sampling to not too heavily reduce the distribution of this
class by overlumping it together), our evaluation metrics
treat CHull and Bbox as the same class for expert predic-
tion and affordance preservation. We refer to this combined
class just as ”CHull” for simplicity.

If the predicted mesh has a hull number greater than or
equal to the true mesh then it is affordance preserving (e.g.,
Co-ACD-32 preserves Co-ACD-8). The list of which pre-
dicted meshes preserve which true labels is provided in Ta-
ble 1.

We note that it may seem overly generous to correctly
label any mesh with equal or more hulls as correctly
”affordance-preserving” as always predicting a model like
Co-ACD-32 would offer near perfect preservation. How-
ever, it is a significant issue if an object’s mesh has too
low of fidelity to render its affordances: Drawers cannot
be opened, stoves cannot be utilized, etc. A fundamental
goal of our project is to ensure that as many objects are
rendered with meshes that preserve their affordances. How-
ever, to also highlight the need for not universally picking
such high-fidelity meshes like Co-ACD-32, we also com-
bine our analysis with overall accuracy in an effort to show
that our approach is able to better balance avoiding both
under-fidelity and over-fidelity.

Other metrics such as precision and recall averaged
across of the classes were evaluated as well.

5.1. Baselines

Before conducting any experiments, we calculated two
baselines: (1) always predicting CHull, which maximizes
accuracy, and (2) always predicting Co-ACD-32 which
highly maximizes ”affordance-preservation” without being
unfair to accuracy. That is, while V-HACD-32 and Man-
ual also are very high on ”affordance-preservation” (with

Manual being 100% affordances preserved), they are much
worse on accuracy given their low-class distribution and are
therefore less robust baselines to compare against.

We end up treating Frozen Resnet with Cosine Similarity
as a baseline because it is not a trained model. It ended up
performing so poorly, which makes sense given that cosine
similarity between ResNet-extracted features is an improper
loss metric, especially given that the ResNet is used for a
very different task of ImageNet classification.

Our Frozen Resnet with Cosine Similarity achieved a
final Top-1 accuracy of 24.16% and 46.97% affordance-
preservation. We note that our preservation is better than
CHull baseline, but is worse on accuracy, highlighting the
limited effectiveness of the ResNet without fine-tuning in
transfer learning. Notably, we can also see the trade-off
between a worse accuracy score actually often being able
to improve affordance preservation as incorrectly predicting
the low-fidelity classes with higher-fidelity meshes still pre-
serves them, even if it is inefficent. We also that without a
separate classification layer, this Frozen Resnet with Cosine
Similarity baseline could never have predicted ”manual.”

5.2. Frozen ResNet with MLP Classifier

Adding an MLP classifier led to significant improve-
ments in accuracy over all the baselines with a Top-1 accu-
racy of 49.7%, and a significant improvement over the af-
fordance preservation of CHull and Cosine Similarity base-
lines with a result of 62.48%. We trained this model for
1.8 hours over 10 epochs to reach this. The results of the
experiment are pictured in Figures 2 and 4.

Figure 2. Frozen ResNet w/ MLP predicted counts across Classes

The largest failure case as illustrated in Figure 4 where
the true label was Co-ACD-32 and the model predicted
CHull. This is a common failure case with more complex
objects where Co-ACD-32 is required to properly retain all

5



the affordances. This theory was confirmed by digging into
the specific cases the model failed on, illustrated in 3. As we
can see urinal-pfxmpd-base link is classified as being best
generated through CHull when it actually was Co-ACD-32.

The model is over-picking Chull which gives us im-
proved accuracy but we fail in our task of generating
affordance-preserving meshes. This is occurring because
the CHull option is over-represented in the dataset. Next,
we will try training end-to-end to see if that will boost
preservation and solve our imbalanced class problem.

Before moving onto more complex models, we will an-
alyze our training loss as shown in 8. The training loss is
generally decreasing which indicates our model is learning
and improving performance over time. There are, however,
noticeable fluctations due to the stochastic nature of gradi-
ent descent. Towards the end of training, we see the loss is
generally stablizing. The fluctuations suggests there is more
room for hyperparameter tuning for smoother convergence.

5.3. End-to-End Training with Just Visual Renders

As we moved into our End-to-End training, which sig-
nificantly adds to the amount of trained parameters, we first
wanted to run our model with a reduced dataset to see how
necessary all of our augmentation of rendered angles was.
This approach reduced our accuracy and preservation rate
from the Frozen ResNet w/ Cosine Similarity, which shows
the large impact that our dataset augmentation has. This
result verifies that our intesenve pre-processing was worth
the trade-off of reducing time to do hyperparameter training
and search.

5.4. End-to-End Training with ResNet18 and MLP

When we first trained this approach we got a Top-1 accu-
racy of 46.6% accuracy. This is extremely close to our pre-
vious Frozen ResNet model with the full dataset (slightly
lower), which suggests that ResNet18 is not significantly
boosting accuracy. This model took 2.2 hours to run over
10 epochs, however, the additional training time is not nec-
essarily worth it. This can be further illustrated in Figure 5,
which show the confusion matrix and predicted counts.

Again, we have our problem where we have the over-
reliance on predicting CHull, illustrative of overfitting, as
mentioned in the previous experiment, and observed again
in Figure ??. Our next approach to boost affordance preser-
vation is to integrate weighted sampling during training
to handle our imbalanced class problem that over-learns
CHull.

5.5. End-to-End Training with ResNet and
Weighted Sampling

Weighted sampling helped reduce the overfitting ob-
served previously to the low-fidelity CHull mesh. We can
see that this change was significant, leading to an increase

of affordance preservation to 83.5%. We also saw an in-
crease in our precision and recall scores to 0.435 and 0.373,
respectively. The results can be analyzed more closely by
looking at Figure 6 and 7. Plus this can be substantiated
by digging into the specific cases the model failed on, il-
lustrated in 3. As we can see urinal-pfxmpd-base link was
previously predicted with the Frozen ResNet as CHull when
it actually was Co-ACD-32.

By adding weighted sampling it came at the cost of
underpredicting CHull, as illustrated in 3 where object
cupcake-pfwrlw-base base link was previously predicted
correctly during our Frozen ResNet experiment and now is
predicted as Co-ACD-8 when is it best generated through
CHull. However, this trend was a cost that is outweighed
by the benefit it added.

6. Limitations
After developing our best model as constructed during

Experiment 5.5 we ran on our aforementioned Objaverse
dataset. When picking out the dataset we found many of
the objects in the dataset were pretty complex which we
predicted could potentially fail as the average object in the
Objaverse dataset seemed to be more difficult to preserve af-
fordances due to geometric complexity. Thus, we ended up
picking 6 objects rated 4 in difficulty, and 11 objects rated 3
in difficulty (medium-to-hard complexity) predicted due to
the complexity of the geometry needed to be afforded. The
remaining objects were rated 2 or 1 in difficulty.

Before we could even run, we found that 17 of those
images, corresponding to the 17 objects that we initially
picked as the nice-to-have more complex geometries failed,
showing the limited technological capability of current tools
to be able to create an affordance-preserving mesh.

We had some trouble generating these results, and hope
to do so in our future work.

7. Conclusion
Our results demonstrate that we have developed a classi-

fier capable of better balancing prediction of expert-selected
meshes, while also significantly increasing affordance-
preservation close to universally selecting 32-hull meshes.
This is of major significance as it shows we can preserve
affordances well, without necessarily sacrificing on compu-
tation efficiency and needlessly over-predicting the meshes
needed.

We have also demonstrated the effectiveness of our in-
tensive pre-processing of the renders, as well as the trade-
offs of weighted sampling in largely improving affordance
preservation with doing slightly worse on accuracy than
other trained models without weighted samples.

Future work can include further hyperparameter tuning
to enhance accuracy without significantly altering the ar-

6



Figure 3. Examples of when End-to-End W/ MLP and Weighted Sampling can outperform Frozen ResNet on Affordance Preservation by
correctly predicting a higher hull count in the urinal (top row), but how this can sometimes lead to overpredicting the number hulls for the
affordance of the cupcake (bottom row)

Model Architecture Accuracy Precision Recall Affordance Preserved Balanced

Baselines
Always CHull 33.67% 0.337 0.337 33.67%
Always Co-ACD-32 22.97% 0.223 0.223 97.59%
Frozen ResNet + Cosine Sim 24.16% 0.219 0.208 46.97%

Trained Models
Frozen ResNet w/ MLP 49.7% - - 62.48%
End-to-End ResNet w/ MLP (Just Visual Render) 40.0% 0.385 0.245 65.47%
End-to-End ResNet w/ MLP 46.6% 0.373 0.343 76.80%
End-to-End ResNet w/ MLP + Weighted Sampling 47.3% 0.435 0.373 83.5% ✓

Table 2. The consolidated metrics of each of our trained models, as compared to the baselines. Note that while the baseline of affordance
preservation surpasses our model, overly predicting such a high-fidelity mesh always results in significant computational costs. Our models,
especially the End-to-End ResNet w/ MLP and Weighted Sampling, are better able to balance between the two goals.

chitecture, as well as testing with more powerful baselines,
such as ResNet50, as our experiments indicated that train-
ing ResNet18 did not substantially contribute to accuracy
over keeping its weights frozen.

We consider our work a significant step towards devel-
oping an end-to-end system capable of automatically gener-
ating ACD affordance-preserving meshes across many do-
mains in a way that surpasses manual ACD selection by

experts and is more generalizable and scaleable than other
machine learning techniques that do not utilize ACD.

8. Contributions & Acknowledgements
Cem Gokmen provided invaluable guidance on design-

ing the system architecture and offered feedback on the im-
plementation and helped troubleshoot technical challenges.

Emily constructed the entire first draft of the paper, con-

7



Figure 4. Frozen ResNet w/ MLP classifier. We note the 62 mis-
predictions of Co-ACD-32 to be Chull

Figure 5. End-to-End ResNet w/ MLP predicted counts across the
class distributions

ducted qualitative analysis based on the objects’ outputs,
selected the objects for the Objaverse dataset, and evaluated
them.

Tommy helped lead the weekly meetings, implemented
the efficient Dataloader used across all models, co-
implemented the initial baseline frozen ResNet cosine sim-
ilarity model, and implemented the frozen ResNet w/ MLP
model. He also wrote and edited significantly to the paper
across all sections including Abstract, Introduction, Related
Work, Data, Methods, Experiments, and Conclusion.

Sean generated the renders used for training and testing,
co-implemented the initial baseline frozen ResNet cosine

Figure 6. End-to-End ResNet w/ MLP and Weighted Sampling
predicted counts across the class distributions. We note the large
increase in predicting Co-ACD-32

Figure 7. End-to-End ResNet w/ MLP and Weighted Sampling
confusion matrix. Note the reduction of misprediction of Co-
ACD-32 as CHull down to 18.

similarity model, End-to-End Training with Visual Renders
Model, and weighted sampling model. He also created the
graphs and tables in the Experiments and Discussion sec-
tion, as well as contributed to the Data, Methods, and Ex-
periments portions of the report.

Additionally, we made use of the Stanford Vision Lab’s
GPU resources. This allowed us to efficiently manage com-
putational tasks and expedite the training and evaluation
processes.

References
[1] W. Chen, J. Gao, H. Ling, E. J. Smith, J. Lehtinen, A. Ja-

cobson, and S. Fidler. Learning to predict 3d objects with an

8



interpolation-based differentiable renderer, 2019.
[2] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel,

E. VanderBilt, L. Schmidt, K. Ehsani, A. Kembhavi, and
A. Farhadi. Objaverse: A universe of annotated 3d objects.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13142–13153, 2023.

[3] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, J. Salvador,
K. Ehsani, W. Han, E. Kolve, A. Farhadi, A. Kembhavi, and
R. Mottaghi. Procthor: Large-scale embodied ai using pro-
cedural generation, 2022.

[4] J. Huang, H. Zhang, L. Yi, T. Funkhouser, M. Nießner, and
L. Guibas. Texturenet: Consistent local parametrizations for
learning from high-resolution signals on meshes, 2019.

[5] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3d
mesh segmentation and labeling. In ACM SIGGRAPH 2010
Papers, SIGGRAPH ’10, New York, NY, USA, 2010. Asso-
ciation for Computing Machinery.

[6] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava,
R. Martı́n-Martı́n, C. Wang, G. Levine, W. Ai, B. Martinez,
H. Yin, M. Lingelbach, M. Hwang, A. Hiranaka, S. Gar-
lanka, A. Aydin, S. Lee, J. Sun, M. Anvari, M. Sharma,
D. Bansal, S. Hunter, K.-Y. Kim, A. Lou, C. R. Matthews,
I. Villa-Renteria, J. H. Tang, C. Tang, F. Xia, Y. Li,
S. Savarese, H. Gweon, C. K. Liu, J. Wu, and L. Fei-Fei.
Behavior-1k: A human-centered, embodied ai benchmark
with 1,000 everyday activities and realistic simulation, 2024.

[7] J.-M. Lien and N. M. Amato. Approximate convex decom-
position of polyhedra and its applications. Computer Aided
Geometric Design, 25(7):503–522, 2008. Solid and Physical
Modeling.

[8] K. Mamou and F. Ghorbel. A simple and efficient approach
for 3d mesh approximate convex decomposition. Interna-
tional Journal of Virtual Reality, 8(1):35–41, 2009.

[9] K. Mamou, E. Lengyel, and A. Peters. Volumetric hierarchi-
cal approximate convex decomposition. Game engine gems,
3:141–158, 2016.

[10] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation,
2017.

[11] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (fpfh) for 3d registration. In 2009 IEEE Interna-
tional Conference on Robotics and Automation, pages 3212–
3217, 2009.

[12] X. Wei, M. Liu, Z. Ling, and H. Su. Approximate convex
decomposition for 3d meshes with collision-aware concavity
and tree search. ACM Transactions on Graphics, 41(4):1–18,
July 2022.

[13] R. Wu and C. Zheng. Learning to generate 3d shapes from a
single example. ACM Transactions on Graphics, 41(6):1–19,
Nov. 2022.

9. Appendix

Figure 8. Training loss for Frozen ResNet w/ MLP

9


