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Abstract

Generation of post-game highlights is essential for en-
gaging sports fans and enhancing the viewer experience.
This project aims to develop an automated system for de-
tecting highlight-worthy moments in soccer game videos.
We collected a dataset comprising 25 full 90-minute soc-
cer match videos, which we segmented into 5-second clips.
Each clip was then classified as either containing a high-
light (1) or not (0) using a combination of Convolutional
Neural Networks and Transformer models. We employed
data augmentation, undersampling, and hyperparameter
tuning to enhance model performance. The best model
achieved a recall of 0.56. Despite these efforts, achiev-
ing high performance proved challenging due to the inher-
ent complexity of soccer gameplay. Subtle actions, such as
counterattacks, dangerous passes, and high pressing, were
difficult for the models to identify as significant events, lead-
ing to suboptimal results. Nevertheless, this project under-
scores the potential of computer vision techniques in au-
tomating sports highlight generation, offering a scalable
solution for efficient video analysis and content creation.

1. Introduction

Post-game highlights are essential for engaging sports
fans. In soccer, highlight production varies by broadcaster
and tournament. For example, CBS Sports uploads 15-
minute UEFA Champions League highlights immediately
after the matches conclude, while Italian Serie A releases
3-minute highlights only hours later. Notably, for most
sports leagues, the majority of highlight production still
relies heavily on manual editing processes. Our project
aims to automate the highlight selection process, improv-
ing efficiency and accessibility for tournaments operating
with limited resources. By automating this process, we can
ensure quicker turnaround times for highlight production
and provide consistent, high-quality content across differ-
ent leagues and tournaments.
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In this project, we aim to identify highlight-worthy clips
from a full soccer game replay. Our dataset comprises
25 full-length soccer game videos, each spanning 90 min-
utes. To facilitate our analysis, we segment these videos
into 5-second clips and carefully label each clip as either
“highlight-worthy” (assigned a label of 1) or "not highlight-
worthy” (assigned a label of 0). The detailed procedure for
data labeling is elucidated in the Dataset section. Formally,
we frame the task as a binary video classification problem:
given a 5-second clip extracted from a soccer game, our
objective is to predict whether it qualifies as a highlight-
worthy moment. To achieve this, we employ state-of-the-
art Convolutional Neural Network (CNN) and Transformer
models, leveraging their respective strengths in capturing
spatial features and long-range dependencies within video
data.

2. Related Work

[1] is the most relevant study to our topic of highlight
generation. It employs models including Faster R-CNN and
Yolo to identify important events in soccer matches. Then
based on the key events, the models extract highlights by
capturing a few seconds before and after the key events.
While the final highlights catch mostly the key moments of
the games, a major limitation of the paper is relying solely
on object detection on individual frames, rather than incor-
porating sequences of images (i.e. video clips) to identify
the actual dynamics in a soccer match.

[7] analyzes 5-second video clips of soccer games to de-
tect whether the action leads to a goal. The study uses trans-
fer learning to fine-tune an Inflated 3D Networks model.
The approach of using video clips instead of images in-
spires our methodology. However, [7]’s data only allows
for goal detection. A soccer game highlight should capture
not only goals, but important moments such as close misses,
red cards, and penalties. In our study, we aim to incorporate
such key moments as well in the highlights.

[5] generates highlights for e-sports, specifically, League
of Legends. It uses real-time in-game statistics to calculate
the win-loss probability at any given time, and defines high-



lights as moments when the change rate of win-loss prob-
ability is large. This innovative approach is not suitable
for soccer due to the distinct nature of in-game statistics.
League of Legends has a large amount of quantitative data
such as kills, coins, and dies that directly relate to the win-
loss probability. This is not the case for a soccer game. For
instance, a team with higher possession would not neces-
sarily win. However, we draw inspirations from the archi-
tecture of this study, in particular, the CNN models used for
feature extractions.

[[L1]] proposes alternative approach to understand game
dynamics based on the live text captions. This methodology
demonstrates success for learning micro-events. However,
the proposed model trains on Chinese text caption data that
cannot easily adapt for game captions in other languages.
This limitation is especially a concern if we want to gen-
erate highlights for lower-tier regional tournaments. Given
we do not have access to high-quality text caption data in
multiple other languages, we decided to focus on directly
analyzing video data.

[6] uses a probabilistic Bayesian belief network based
on observed events to assign semantic concept-labels to the
exciting clips, such as goals, saves, yellow-cards, red-cards,
and kicks in soccer video sequences. The labeled clips are
then selected according to their degree of importance to in-
clude in the highlights. While this approach was capable of
capturing the aforementioned key events, it fails to capture
other important actions, including dangerous passes, coun-
terattacks, etc. Additionally, it uses audio features for clip
selection, while our work relies solely on video/image data.

[13] proposes an approach of unsupervised learning based
on the analysis of spatio-temporal local features of video
frames. It explores the local visual content of video frames
by focusing on spatial and temporal learned features in a
low-dimensional transformed sparse space. While the study
results have shown promising findings, we deem this study
to be less suitable for our project since our main focus is to
use computer vision approaches to perform our task.

[[13] begins with an improved Shot Boundary Detection
technique to accurately identify shot changes. They clas-
sify the detected shots into two distinct view types and im-
plement a template-based approach to detect replays within
each shot. The system then generates play-break sequences
through a rule-based method. The extracted features from
these play-break sequences are subsequently input into a
multi-kernel Support Vector Machine classifier, which ef-
fectively discerns various events. A major limitation of this
approach is that the reliance on rule-based methods might
limit adaptability to different types of soccer matches or
other sports. Additionally, this study does not explicitly
incorporate temporal dynamics, which are crucial for un-
derstanding the sequence of events in a video.

The authors of [9] conducted a thorough search of

diverse action-spotting models to determine the optimal
backbone for their highlight classifier. They selected
NetVLAD++ as the backbone model. By combining
NetVLAD++ with their highlight classifier, they developed
a system capable of producing natural and coherent high-
light reels. While the authors claimed their approach gen-
erated high-quality highlights, they did not compare their
highlights with the ground truth highlight videos, which
makes it hard to compare their model performance in terms
of numerical metrics.

[8] used a multimodal approach by combining video and
audio models through both early and late fusion techniques.
Results indicated that combining multiple modalities gener-
ally improved event detection performance, with significant
gains for goal detection due to the distinctive audio cues as-
sociated with goals. However, the benefits of multimodal
approaches were less pronounced for detecting cards and
substitutions, suggesting that different event types might
benefit differently from multimodal data. Nevertheless, this
study sheds light on our future work, where we could ex-
plore directions such as event-specific multimodal strategies
and exploration of additional event categories.

The paper [4]] introduces a method to temporally locate
highlights in sports events by analyzing audience behavior,
utilizing a deep 3D CNN on cuboid video samples. The
model discerns different levels of spectator excitement and
employs a spatial accumulator to generate a score indicating
the likelihood of an interesting highlight at a given time.
The study uses audience behavior as a proxy for detecting
highlights, which is an innovative and less explored method.
On the other hand, this approach only showed good result
on a hockey dataset, and therefore its performance remains
unclear on longer and more dynamic soccer game data.

3. Methods
3.1. Models

We use the Single-Frame 2D CNN model as our baseline.
We note that 2D CNNs are highly effective for tasks that in-
volve spatial data such as images. They are capable of auto-
matically learning and extracting hierarchical features from
raw pixel data, which makes them suitable for a wide range
of image-related tasks, including classification, detection,
and segmentation. However, 2D CNNs process each frame
(image) independently, which makes them less suitable for
tasks where temporal dynamics are crucial, such as video
analysis. They do not capture dependencies across time,
which is essential for understanding sequences of frames.
To adapt a Single-Frame 2D CNN to the video classifica-
tion task, we first classify the data at the frame level. Then
at test time, for a clip that consists of multiple frames, if any
one of the frames has a predicted label of 1, we assign all
frames in this clip labels of 1. Our reasoning is that if any



moment is significant and highlight-worthy, then the imme-
diate leading and trailing actions should also be included in
the highlights for context. Figure [I]is a diagram that rep-
resents our approach. Table T]lays out our 2D CNN model
architecture.
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Figure 1. Aggregate frame-level classification to clip level

Layer
Conv2D (3x3,3 — 16)
BatchNorm2D
Conv2D (3x 3,16 — 32)
BatchNorm2D
Conv2D (3x 3,32 — 64)
BatchNorm2D
GlobalAvgPool2D
Linear
Table 1. 2D-CNN Model Architecture

Configuration
stride = 2, padding = 1

stride = 2, padding = 1

stride = 2, padding = 1

Another model we employ is 3D CNN. The 3D CNNs are
more advanced than 2D CNNs in handling video data pri-
marily because they can capture both spatial and temporal
features simultaneously. This joint processing enables the
model to extract features that are not only spatially relevant
but also temporally coherent, enhancing its ability to recog-
nize complex patterns and movements in video data such as
soccer matches. The lower layers capture low-level visual
patterns such as edges or textures and short-term temporal
dynamics, while higher layers learn more abstract and com-
plex concepts such as object parts or player actions along
with long-term temporal dependencies. Table2]lays out our
3D CNN model architecture.

We train the two aforementioned models from scratch.
To evaluate the performances of self-trained models versus
finetuned models, we also analyzed two pretrained models.

One pretrained model we utilized is the Vision Trans-
former (ViT) . Instead of using convolutions like traditional
neural networks, ViT [2] splits an image into small patches
and treats each patch as a token. These tokens are then pro-
cessed through transformer layers, which effectively cap-

Layer Configuration
Conv3D 3x3x3,3 —32) | stride =2, padding =1
BatchNorm3D
Conv3D (3x3x3,32 = 64) | stride =2, padding = 1
BatchNorm3D
Conv3D (3 x 3 x 3,64 — 128) | stride =2, padding =1
BatchNorm3D
GlobalAvgPool3D
Linear

Table 2. 3D-CNN Model Architecture

ture the relationships between different parts of the image.
By doing so, ViT can learn complex patterns and depen-
dencies in visual data. In this project, we use the ViT
model pretrained on ImageNet-21k at resolution 224x224
from HuggingFace [12]. We then finetune the last layer of
the ViT on our data. Similar to Single-Frame 2D CNN,
since ViT classifies data at the frame level, if any of the five
frames has a predicted label of 1 at test time, we assign all
frames in the clip labels of 1.

The last model we use is 3D Residual Network CNN
(R3D-CNN or ResNet3D) [10]]. The architecture of R3D-
CNN is based on stacking multiple layers of 3D convolu-
tions interspersed with pooling layers and activation func-
tions. Residual blocks are used throughout the network to
maintain performance in deeper networks by adding the in-
put of a layer to the output of a subsequent layer. The ability
to process both spatial and temporal dimensions simultane-
ously makes R3D-CNNs highly effective for video data. In
our project, we leverage PyTorch’s pretrained 18-layer R3D
modelﬂ finetuning the final layer to adapt to our highlight
detection task.

3.2. Loss Function

We use Binary Cross-Entropy Loss in all models. BCE
is a loss function commonly used for binary classification
tasks. It measures the performance of a classification model
whose output is a probability value between 0 and 1.

BCE(y, ) = —(ylog(9) + (1 — y)log(1 — 7))

Additionally, due to the imbalanced data issue, we
also use a weighted Binary Cross-Entropy loss. WBCE
introduces weights to penalize the errors of one class more

than the other, thereby giving the minority class more
importance during training.

WBCE(y, ) = —(wiylog(§) +wo(1—y)log(1—))[

Ihttps://pytorch.org/vision/main/models/generated/torchvision.
models.video.r3d_18.html

Zhttps://orchardbirds.github.io/bokbokbok/reference/eval _metrics_binary.html



where w; is the weight for the positive class, wy is the
weight for the negative class, y is the true label, and g is the
predicted probability of the sample being a positive class.

4. Dataset
4.1. Data Source

We downloaded, preprocessed, and labeled 25 full soc-
cer match replays ourselves from YouTube. These game re-
plays are public videos from the official YouTube accounts
of the English Football Association Challenge CupEl Ital-
ian Supercoppa and Italian Serie AEl For labeling, we also
relied on the highlight videos uploaded by these official ac-
counts. To enable the preprocessing and labeling steps later,
we used the following selection criteria: (a) The game must
consistently display timer on the top left corner. (b) The
game has an official extended highlight longer than 10 min-
utes. We used extended highlights rather than short high-
lights that are generally around 3 minutes so that we could
identify a larger set of highlight-worthy clips. (3) The re-
play video must have a resolution of at least 360p. Events
that were being labeled as highlights included goals, shots,
fouls, yellow/red cards, free kicks, dangerous passes, coun-
terattacks, impressive personal skills or team tactics, etc.

We randomly assigned each game to the training, valida-
tion, and test datasets using a 15-5-5 split ratio.

4.2. Preprocessing

We preprocessed each of the 25 games as follows. First,
we manually edited the game replay to split every replay
into two 45-minute videos, each corresponds to one half of
the soccer match. To streamline labeling, we ignored injury
timeﬂ and extra time after 90 minutes. We then splitted each
45-minute video into 5-second clips that we later would
label as highlight-worthy or not. We chose the 5-second
length because we have observed the typical clip length in
a professional soccer highlight video is 5-15 seconds. We
use the lower end to allow for more training examples. This
step resulted in 1,080 video clips per game, or 27,000 clips
in total across training, validation, and test datasets.

To process the clips into formats compatible with our
models, we extracted image frames at 1 frame per second,
so each video clip corresponds to 5 image frames. The ex-
traction resulted in 5,400 images per game, or 135,000 im-
ages in total across training, validation, and test datasets.

4.3. Labeling

We labeled each clip 1 as highlight-worthy and 0 as not.
To do this, we played through the extended highlight video

3https://www.youtube.com/@thefacup

“https://www.youtube.com/@seriea

5 A short period of time added to the end of each half to compensate for
time lost when play was stopped to handle player injury. It typically ranges
from 1 to 10 minutes per half.

for each game and manually documented all timestamps of
the highlight clips. Based on these timestamps, we then
mapped the highlights to the clips we have processed and
labeled the corresponding clips as highlight-worthy. All
5-second clips that were either fully or partially included
in the documented timestamps were considered highlight-
worthy. All other clips were assigned with a label of 0.
Figures [2]and 3| present examples of frames labeled as class
Oand 1.
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Figure 3. Class 1: A scoring moment included in highlight

4.4. Augmentation

We apply the following data augmentation steps. First,
with a probability of 0.5, we randomly apply color jitter
with a brightness of 0.4, contrast of 0.4, saturation of 0.4,
and hue of 0.1. Second, we randomly apply grayscale with
a probability of 0.2. For each game in the training set, teams
have different colors of jerseys. We perform these two steps
to improve our models’ robustness to color variation such
that they would generalize better for unseen data.

To standardize all data, we also resized the image frames.
To finetune Vision Transformer, we resized the frames to
224x224. For all other models, we resized the shorter edge
to 112. Finally, we normalized the frames by subtracting the
mean RGB values and dividing by the standard deviation of
each RGB value.



4.5. Undersampling

After labeling, the ratio between number of clips in class
0 and class 1 is 21:1. The nature of our task, selecting only
a small portion of clips to include in the highlights, resulted
in an imbalanced dataset. To reduce the bias towards the
majority class O in this binary classification task, we used
random undersampling technique to resample from class 0
such that the ratio between class 0 and 1 becomes 5:1.

5. Experiments and Results
5.1. Hyperparameters

To optimize the performance of our models, we con-
ducted a comprehensive hyperparameter search. Specifi-
cally, we explored a wide range of learning rates, includ-
ing values of le-3, 2e-3, le-4, 2e-4, le-5, 2e-5, and Se-
5. Additionally, we experimented with two popular op-
timizers: Adam and Stochastic Gradient Descent (SGD).
Given the imbalance in our dataset, we addressed this is-
sue by undersampling non-highlight frames, retaining only
5/21 of the original frames. Furthermore, we investigated
two loss functions: binary cross-entropy and weighted
cross-entropy, the latter assigning higher weights to high-
light frames to mitigate class imbalance. Our parameter
search revealed that employing the Adam optimizer, utiliz-
ing weighted cross-entropy loss, and undersampling non-
highlight frames at a rate of 5/21 consistently yielded opti-
mal performance across all models.

Model | Learning Rate | Batch Size
2D-CNN le-4 32
3D-CNN le-4 32

R3D 2e-5 16
ViT 2e-5 16

Table 3. Best Hyperparameter Combinations

5.2. Evaluation Metrics

We evaluate the performance of our models using several
metrics: accuracy, precision, recall, and Fl-score. These
metrics provide a comprehensive view of model perfor-
mance. Accuracy measures the proportion of correctly clas-
sified clips out of the total number of clips. It is a general
measure of how well the model performs overall. Preci-
sion measures the proportion of true positive predictions out
of all positive predictions made by the model. It indicates
how many of the clips identified as highlights are actually
highlights. Recall measures the proportion of true positive
predictions out of all actual positive instances. F1-Score
is the harmonic mean of precision and recall. It is espe-
cially useful when the class distribution is imbalanced, as
it provides a more comprehensive evaluation of the model’s
performance.

In particular, we note that recall is important in our anal-
ysis. Recall measures the ability of the model to find all
relevant instances in the dataset, i.e., the true positive rate.
For highlight detection, this means capturing all the signif-
icant moments in the game. Missing key highlights would
be a significant drawback since the primary goal is to en-
sure that all exciting and important moments are captured.
Finally, we conduct a manual review of the generated high-
lights for qualitative evaluation, assessing the relevance and
coherence of the detected events.

The equations for the quantitative metrics are as follows:

* Accuracy = TP+TN

TPYTN+FPYFN
* Precision = %
* Recall = TPE—%

_ 2xPrecisionxRecall
* Fl-Score = Precision+Recall

5.3. Results

Metrics | 2D-CNN | ViT | 3D-CNN | R3D
Accuracy 0.740 0.664 0.552 0.635
Recall 0.149 0.272 0.555 0.506
Precision 0.174 0.174 0.198 0.230

F1-score 0.161 0.212 0.292 0.312
Table 4. Evaluation Results
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Figure 4. Confusion matrix for 2D-CNN

Table [ presents the evaluation results. Figures F] to
display the confusion matrices for all four models. We note
that our model performances are lower than those in our
milestone report. We investigated this issue and conclude
that our models significantly overfitted the smaller train-
ing dataset we relied upon in the milestone. Using the full
dataset, we report the following results.

Result 1: Both 3D models outperform 2D models in
terms of recall, precision, and fl-score. We expect this re-
sult because 3D models are more capable of capturing the
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Figure 7. Confusion matrix for R3D

dynamics in the clips. Instead of analyzing features at the
frame level, 3D models could also identify features at the
five-frame continuous clip level. Thus, they are better suited
to detect whether the live action is fast-pacing enough to
be included in the highlight. This task is challenging for
2D models, even using a finetuned state-of-the-art Vision
Transformer model. It is reasonable because even for hu-
man evaluation, it would be difficult to determine whether

a particular frame should be included in the highlight or not
without seeing the relevant clip.

Result 2: Both pretrained models outperform models we
trained from scratch in terms of fl-score, but not by much.
We expect the finetuned models to perform better because
they are larger models that have been previously trained on
more data. However, it was surprising to see that the im-
provements were marginal. This result could be due to the
small size of our dataset, especially the relatively small set
of class 1.

Result 3: Our best models are decent at identifying high-
lights (higher recall) but poor at filtering out non-highlights
(lower precision). While 3D-CNN and R3D achieved
greater than 0.5 recall, their precision was only around 0.2.
This result implies that our model could label at least half of
the highlight-worthy clips correctly, but it generally would
also include many non-highlight-worthy clips in the high-
light pool. Upon qualitative evaluation, we found this result
explainable for our task. Solely relying on video clips with-
out commentary or in-game statistics, it is often inherently
ambiguous to classify a clip. For example, Figure[§|belongs
to a clip whose true label is O but predicted label is 1 by
R3D. A player in red is dangerously in the box and could
have scored a goal here. This frame appears quite similar
to Figure 3] and without any context, it is not unreasonable
to label it as highlight-worthy. To address this issue, fu-
ture work could explore multi-modal models to incorporate
additional information such as commentary transcription to
better detect events and live stadium sound to better capture
fan reactions.

Figure 8. A frame falsely classified as highlight-worthy

On the other hand, we also qualitatively evaluated cases
where a clip was misclassified as 0. Figure 9] provides an
example. This frame belongs to a clip that marked the start
of a counter attack which led to a goal. This clip is included
in the official match highlight, but the exciting action of
the goal does not happen until 10 seconds later. While the
following two clips were indeed classified as 1 by R3D, it
is difficult for the model to recognize that this clip could
be included too. Future work could conduct additional tests



using different clip lengths such as 10 or 15 seconds. Given
that the clip splitting and frame extraction processes alone
took approximately 10 hours for each clip length, we did
not conduct the experiment for this study.

Figure 9. A frame falsely classified as not highlight-worthy

Given these qualitative evaluations and our emphasis on
recall more than precision, our models decently achieved
the goal of our task.

6. Conclusion and Future Work

Throughout this project, we collected our own dataset
by preprocessing 25 soccer match videos. We splitted each
soccer frame into small clips of 5 seconds each, where each
splitting of a 45-minute video took 10 minutes to com-
plete. Subsequently, we splitted each clip into 5 frames, and
employed CNN and Transformer models to classify these
frames as containing a highlight or not. To achieve better
results, we performed data augmentation, data undersam-
pling, and hyperparameter tuning. We found that the 3D-
CNN-based models outperformed the 2D-CNN-based mod-
els, and achieved a recall of over 0.5. However, despite our
efforts, it was difficult to get any model to achieve the de-
sired level of performance in terms of both a high recall
and a high precision. The inherent complexity of soccer
gameplay, with its myriad of subtle nuances and dynamic
interactions, posed significant obstacles to our classification
efforts.

There are several things we would like to explore for fu-
ture work. First, we observed that we performed careful
data labeling and extensive fine-tuning of the different mod-
els, the results were still not satisfactory in terms of captur-
ing highlights from a game. We believe this is due to the
inherent nature of the data itself. For example, some ac-
tions or events such as counterattacks or dangerous passes
are included in official highlights, but it is extremely diffi-
cult for the models to discern these as important events. On
the other hand, the model may classify events such as many
players being close to each other as an important event,
while in reality this should not be classified as a highlight.

Hence, one thing we would like to explore is the use of
multi-modals to achieve our task. In our project, mainly
due to time limits, we only used computer vision mod-
els that were designed for classification tasks. For future
work, given a much longer timeframe and more compute
resources, we could use the reporter commentaries or match
summaries from the videos, feed these text into a language
model, and therefore achieve a better result by selecting
more accurate frames. Audio data that capture live fan reac-
tions could also provide useful features for our tasks. Fur-
thermore, with additional time we envision a more com-
prehensive exploration of model architectures and training
methodologies. Experimenting with state-of-the-art tech-
niques, such as self-supervised learning or attention mech-
anisms tailored specifically for sports video analysis, could
potentially unlock new avenues for improving highlight de-
tection accuracy.
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