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Abstract

Powerlifting is an international strength sport with hun-
dreds of thousands of competing athletes around the globe.
As the sport continues to grow in recent years, it has become
increasingly clear that powerlifting could benefit greatly
from the incorporation of Artificial Intelligence techniques.
While past work has demonstrated the power of CNN-based
architectures in extracting keypoints from human move-
ment, little to none has been done to apply these techniques
to powerlifting meets.

We utilize human movement detection to determine the
validity of an athlete’s three lifts during a meet: squat,
bench, and deadlift. Through the construction of a novel
dataset and utilization of both hard-coded feature predic-
tions and neural networks, we validate our results on the
human-determined lifting labels. This work is a promising
first step in automating the judging process and advancing
powerlifting technologically.

1. Introduction & Related Work

Powerlifting is a strength-based sport that focuses on
three compound lifts: the squat, bench, and deadlift. Cur-
rently, a powerlifting competition, or “meet”, is where ath-
letes come together to perform their maximum squat, bench,
and deadlift, for just one repetition. Each individual has
three attempts for each lift, by which only the maximum
valid attempt for each lift is counted. The validity of a lift,
in a meet setting, is determined by three human judges posi-
tioned at different view angles of the lifter. Each resultingly
assigns a white or red light, according to their opinion of
whether or not the lift satisfied all definitions of a valid lift
[4]. The ranking is then done by summing a lifter’s maxi-
mum valid attempts.

Currently, powerlifting meets are entirely human-driven,
and the sport more generally has a massive lack of artificial
intelligence presence. There have been, however, promis-
ing studies in computer vision applications to the broad lift-
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ing space. Rosenhaim, in his graduate thesis, assessed the
quality of several different lifts using Human Action Recog-
nition (HAR), Human Action Prediction (HAP), and Hu-
man Action Evaluation (HAE) [[10]. Lin and Jian devel-
oped the Weight-Training Pose (WTPose) algorithm to de-
termine in real-time if a lift is being done with poor tech-
nique. They pioneered a real-time detection and correc-
tion system using OpenPose and algorithmic techniques [6].
Chariar and co-authors used MediaPipe to similarly estab-
lish key landmarks on a lifter during squat, in an effort to
correct form and prevent injury [7]. These studies provide a
great technical framework to transfer to professional power-
lifting meets. However, they each have their own individu-
alistic data preprocessing, which often comes with special-
ized cameras and setups.

As competing powerlifters ourselves, we and several
other athletes find that the judging in meets can often be
highly subjective. So, we propose basing judging off heuris-
tics based on joint tracking. This would eliminate some
level of subjectivity that often leads to complaints from ath-
letes, but also can give judges a basis to defend their own
decisions. However, every reliable sport automation task
begins with a good dataset. The NFL, for example, has sev-
eral of these datasets [[1]], but also more niche sports such as
badminton have been thoroughly explored with vision [9].
An extensive search revealed none exist for powerlifting, es-
pecially ones that can be translated into a real-time judging
system.

We begin with the construction of a novel powerlifting
dataset - a pipeline from a Youtube live stream to segmented



attempts with labeled joint keypoints. This was generated
using several vision-manipulation techniques to segment to
the best of our ability. Using this unique dataset (termed PL-
Vision), we test accuracy based on comparing our generated
labels to the judge decisions. The input to our model is
then the normalized keypoint coordinates for wrist, elbow,
shoulder, etc., across all frames of a lifter’s squat, bench, or
deadlift attempt. We pass this through a hard-coded heuris-
tic model for an unsupervised approach. We also consider
a supervised approach that makes use of data augmentation
and a convolutional classifier acting on 4D keypoint data.
We then closely analyze the scenarios in which there are
discrepancies between our labels and judge decisions, to de-
termine if there is sufficient reasoning for a lifter to contest.
Our work provides a great first step to incorporating Com-
puter Vision into the sport of powerlifting. We hope to make
PL-Vision public to give Al enthusiasts the opportunity to
improve upon our current results.

2. Methods
2.1. Building Novel PL-Vision Dataset
2.1.1 Source of Data

The data used to build the dataset is publicly available
YouTube videos of official powerlifting competitions and
meets. So far, we have been using the 2024 Powerlifting
America Classic Open Nationals videos [11]. Each video
contains competitors doing three attempts of squat, bench,
and deadlift. The validity of each lift is indicated by at least
two out of three white lights received from the three respec-
tive judges. Furthermore, on failed lifts, a flag appears un-
der the lights indicating the reason for lift failure. The sum-
mary of the flags for each lift is in Table [T} shortened to
relevant factors.

Table 1: Summary of flags for each lift

Red Card Blue Card Yellow Card
Squat Insufficient Depth Downward Movement | Incomplete Lift
Bench Insufficient EIbow Depth Downward Movement | Incomplete Lift
Deadlift | Unlocked Knees, Elbows Not Back | Downward Movement | Incomplete Lift

This is by no means an exhaustive list of rules that lay
grounds for red lights: for a full list, see the IPF technical
rules [4].

2.1.2 Data Preprocessing

The first step is to downsample the original YouTube videos
from the original 25 frames per second to 12 frames per
second to reduce computational work for additional down-
stream preprocessing steps. From here, the next step of our
pipeline was to split the full YouTube video frames into in-
dividuals’ lift attempts. In each professional meet video,
the convention is to put the lifter’s name in a textbox at the

bottom of the screen, including information such as their
weight class, current weight attempt, and previous weight
attempts which can be seen in Figure(l| As a result, we use
PyTesseract, an optical character recognition (OCR) Python
wrapper[2]. PyTesseract utilizes Google’s Tesseract OCR
engine, which employs a deep LSTM neural network archi-
tecture to recognize diverse fonts, styles, and layouts. The
LSTM model processes the input image sequentially, lever-
aging its recurrent connections and gating mechanisms to
accurately transcribe the text content.

JIAGI CHEN

Figure 1: Example of a textbox containing the lifter’s name,
weight class, and weight attempt information extracted us-
ing PyTesseract.

For the next step, each lift needed to be further trimmed
down to precise start and end points so that each video only
includes the entirety of the lifting motion. When a lift is
about to start, the camera angle cuts to the front angle. We
created a distance metric leveraging a masked target frame
and Mean Squared Error (MSE) calculation on unmasked
regions to robustly identify the start frame of weightlifting
attempts in video data by finding the frame with the lowest
distance from the static background elements of the target
frame while ignoring dynamic components like the lifter’s
body. The end of each lift is marked by the display of the
judges scoring lights. Using the same method as described
below, when the lights are detected, the endpoint is marked
and the video is successfully trimmed.

2.1.3 Lift Validity (L.abel) Extraction

After each lift, three circular lights appear on the screen,
which are white if the corresponding judge deems the lift
valid and red otherwise. The lift is valid if it receives at least
two white lights. Below each red light, there is also a flag
from the colors {red, blue, yellow}, which indicates the rea-
son for lift failure (e.g. downward motion, improper depth,
etc.). To extract the number of white lights, we convolve
a square filter over each frame in the video, and mark the
locations where the average color across the filter is close
to white (under a certain threshold). This approach is meant
to account for differing sizes and positions of white lights
on the screen across meets and lifts. A visualization of the
filter hits on a cropped portion of the video is in Figure[2]
We can further extract flags as follows. We follow the
same approach as above, but now mark the locations where
the average filter color is nearly red. For each such light
location, crop the video to a surrounding region, and then
compute the maximum blue and yellow pixel counts (b, y)
over all frames in the video. By clustering these pairs across
all videos (through a simple KNN with & = 3, the number



Figure 2: Visualization of the filter hits on a cropped portion
of the video for detecting white lights.

of possible failure flags), alongside our computed number of
white lights above, we can deduce the number and location
of red, blue, and yellow cards.

2.1.4 Feature Extraction: Pose Tracking Keypoints

Body position tracking is crucial to determine the validity of
lifts, as it captures relative movements between joints that
may violate powerlifting conventions. We use MoveNet, a
pre-trained deep network for real-time human pose estima-
tion, to track joints for the duration of the lift[3]. MoveNet
utilizes several convolutional layers to extract spatial pat-
terns and time dependency of joints from frame-by-frame
human poses, and thereby output relevant pose coordinates
for each frame. These coordinates represent specific body
parts or joints, as overlayed in Figure[3] Formally, MoveNet
outputs a set of 12 keypoints, each represented by a labeled
3D point (z,y,s) corresponding to each joint’s position
(z,y) and confidence score s. Example plots of keypoint
positions (x,y) over time for individual joints are shown
in Figures fi(a) A(D)] We also visualize all plotted
(x,y,s) € R3 over 12 example videos in our dataset in Fig-
ure 5] where colors represent joints (left hip, left shoulder,
etc.). Here, we see pronounced clustering of both keypoint
positions and scores across joint classes.
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Figure 3: We overlay MoveNet keypoints on a lifter.

2.1.5 Feature Extraction: Barbell Detection Keypoints

One of the key aspects of lift disqualification is any down-
ward motion of the barbell during the movement. In other

((b)) Tracked knee keypoints

((¢)) Tracked shoulder keypoints

Figure 4: We plot tracked keypoints x and y coordinates
over time for different joints.

Figure 5: We sample all frames from 12 dataset videos and
plot the keypoint coordinates and scores (x, ¥, ).

words, we need one continuous motion to complete the lift.
So, we feel it necessary to extract the coordinates of the bar-
bell during the lift. Currently, we are using a barbell tracker
established by Github user Marticles [8]. Here, a bound-

Keypoint Confidence



ing box is created around the moving object, and the center
point is tracked. We currently estimate the center point as
a midpoint of joints, and resultingly create a bounding box
around this, as in Figure @

Figure 6: Visualization of the barbell tracking.

2.2. Lift Validity Prediction
2.2.1 Hard-Coded Heuristic

We formed heuristics for the squat, bench, and deadlift that
aligned well with the IPF Technical Rulebook [4]. Here, we
define the joint keypoint measurements as each a function
of f, the frame number.

Table 2: Names and Variables

Name Variable
left/right_hip In/rh
left/right_knee Ik /7
left/right_ankle lo/Ta
left/right_shoulder | I /7
left/right_elbow le/re

L [T

left/right_wrist

Each joint keypoint time series was smoothed with a
Savitzky-Golay smoothing filter, which finds convolution
coefficients C;. Each smoothed point in a time series Y
is defined as a linear combination of the convolution coeffi-
cients and a sliding window of the observed keypoint values
y across frames:

Yi=Cixy1i +Coxya+ ... +Cixy; + ... + Cy * Y,

where w is the size of our sliding window.

Then we encode the following rules for Squat, Bench,
and Deadlift as described in the IPF Technical Rules. Squat
depth was encoded as

W (f) =" (f) >0

and

i’ (f) —re?(f) >0

having a solution a < f < b, where a,b are two other
frames from the attempt. Put simply, we require the hips
to cross the knee y coordinate at two points, where the hips
remain below the knees for b — a frames. Similarly, the
bench elbow depth is encoded as

LY(f) — 1Y (f) > 0.006

and
rs?(f) —rY(f) > 0.006

having a solution a < f < b.

Here, we use 0.006 to represent the fact that a parallel
elbow-shoulder line is still a valid lift, while a parallel hip-
knee line is considered invalid. Visuals of depth on the squat
and bench are shown in Figure[7}
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Figure 7: Visualizations of depth on squat and bench

For testing of downward motion across all lifts, we ex-
periment with using barbell tracking and joint tracking.
Barbell tracking proved to be far too noisy to differenti-
ate between slight downward motion and simple kinks in
our data, so we used the joint keypoint data. On each lift,
we use the joint closest to the barbell to track this: squat
is shoulder, bench is wrist, deadlift is wrist. One challenge
across all three lifts was to distinguish between downward
motion and a lift that failed on strength. In the former, the
bar will sink down slightly and then continue to move up
at a similar speed for squat and bench. Meanwhile, in a lift
failed on strength, the bar sinks down and proceeds up at a
considerably faster speed, as the spotters make contact with
the bar and apply force to move it up to its starting point. So,
after the bar reaches hip/elbow depth, we record the average
rate of change of the relevant joint until downward motion
is found. If the average rate of change of the barbell y po-
sition after the downward motion is more than 1.5 times the



rate before, this is recorded as a failed lift, or yellow card.
Otherwise, this is a blue card for downward motion

Squat Downward Motion Bench Downward Motion
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Figure 8: Visualizations of downward motion on squat and
bench

In the case of the deadlift, a lift that fails on strength will
mean the bar is dropped back to the ground. We hypothe-
sized that this should be much simpler to catch.

Finally, we faced an important design consideration with
the center judge. We had left and right joint keypoints, but
no succinct way to make a decision on the center judge.
As a result, we decided to err on the side of caution and
make our center prediction red if at least one of the left or
right predictions was red. In the case that one of the left or
right predictions was white and the other was red, the center
prediction matches the red light, as well as the associated
card color.

2.2.2 Addressing Class Imbalances

Hard coding heuristic features is an unsupervised classifica-
tion approach, so it does not require label data. However, to
implement a supervised approach, there are key issues we
must address with class imbalance in our dataset.

Of the squats, deadlifts, and benches captured in our
dataset, over 80% receive 3 white lights, and over 90% are
valid. Furthermore, some combinations of flags (e.g. one
red card and two yellow cards) never show up, and many
more only occur once or twice for a particular lift. This
imbalance makes it difficult to train a model that does not
simply output valid lifts at test-time.

Unfortunately, due to the infrequency of flags like the
blue card (downward motion is rare compared to strength
failures) and combinations of differing cards (e.g. it is un-
common for one judge to deem insufficient depth and an-
other to call incomplete lift), there is no easy fix on the data
collection side. Thus, we upsample minority classes to mit-
igate the effects of class imbalance. We repeat data points
such that each combination of three flags appears around
the same number of times across our dataset (after the train-
test split, as we only upsample the training set). This does
not introduce variation in the minority class, but when com-
bined with another technique, it does: data augmentation.

Augmention increases the variability of the upsampled

minority classes, and can later improve generalization and
robustness of the model. We augment by sequentially ap-
plying four transformations: scaling keypoint x values,
scaling keypoint y values, translating keypoint « values, and
translating keypoint y values. When performing a trans-
formation I" on an existing dataset D, the new dataset is
concat([D,T'(D)]). The scales are absolute values of
i.i.d. NV(0,1) samples; the translations are too but are also
scaled by the mean of keypoint z and y values. Note the lift
flags are invariant to these transformations. They are not in-
variant to scales or translations in the keypoint confidence.

It is worth noting that we can also optionally smooth the
keypoint data using the Savitzky-Golay filter. Although this
does not address class imbalance, it allows us to better clus-
ter data points. We can see this from forming t-SNE em-
beddings in Figure 0] on a subset of the training data after
using PCA to reduce feature dimensionality to 40, for the
data classes {naive, upsample} and both smoothed and un-
smoothed keypoints. Qualitatively, the improved cluster-
ing from upsampling becomes clearer after smoothing key-
points.

tSNE Embedding of Naive Smoothed Keypoint Data tSNE Embedding of Naive Keypoint Data
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Figure 9: t-SNE embeddings on 4 keypoint data variations.

2.2.3 Deep Learning Keypoint CNN

Our network takes in a 4D input of keypoints K €
RN*3xfxk where N is the number of videos (after up-
sampling and augmentation, as in the previous section),
f is the number of sampled frames, k is the number of
keypoints, and 3 is included as each keypoint contains an
x-coordinate, y-coordinate, and a confidence score (see
Section 2.1.4). The goal is to predict three lift flags for
each video, which requires an output F € S3*V where
S = {0,1,2,3} denotes labels corresponding to white
(valid lift), red card, blue card, and yellow card, respec-
tively. To achieve this, we independently train 3 deep neural
networks ®; : RV*3xSxk _, GN 5 — 1 92 3, to minimize



cross-entropy loss between ®;(K) and F; for each i.

The architecture of each ®; is motivated by CNNs: each
video has keypoint data of the shape (3, f, k), which re-
sembles the shape of image data, so we infer convolutional
layers may perform better than a fully-connected network.
This may seem surprising because in practice, f = 63 and
k = 12 are much smaller than width and height of im-
ages. Nevertheless, convolutional layers still allow us to
capture 2D spatial relationships along the (f, k) axes. In-
tuitively, convolutional kernels learn relations between key-
point data at neighboring and symmetric joints (given the
labeling of joints) as well as relations between keypoint data
over frames. Furthermore, applying many convolutional
filters allow us to capture different relationships between
z-coordinates, y-coordinates, and confidence scores (corre-
sponding to the first shape dimension 3) of keypoints, which
can all be relevant in predicting lift validity.

The full architecture is shown below in We pass
through a convolutional layer with padding 1 and kernel 3, a
max pool with kernel 3, a ReLU, and another convolutional
layer with the same padding and kernel. Finally, we pass
through two linear and ReLU layers of hidden dimensions
1024 and 256, and then project into an output dimension of
4, the number of classes for flags.

20@21x4

20@21x4

10@63x12  {p@21x4
3@63x12

A

Conv2D MaxPool2D RelLU Conv2D  RelLU/Linear(s)

Figure 10: Visualization of the keypoint CNN architecture.
Figure produced using Alex Lenail’s NN-SVG tool [5].

3. Results & Discussion

Through our data preprocessing pipeline, we obtained
videos from 4 different sessions of lifters competing in the
Powerlifting America Nationals. The metrics we use are
based on the judge-given lights from the left, center, and
right. This resulted in ~ 150 videos for each lift, each with
an associated label.

3.1. Hard-Coded Heuristic Results

We calculate 2 metrics: the proportion of total lights cor-
rect (PTL), and the proportion of valid/invalid decisions cor-
rect (PV). Note for a red light to be correct, we require that
our prediction generate the red class, and also the card at-
tached to the red light reliably.

The results from the Squat, Bench, and Deadlift hard-
coded heuristics are in Table [3] All results were quite

promising. Diving deeper into the lifts our heuristics were
not able to reliably predict revealing 3 categories of classi-
fication error.

Table 3: Accuracy for each lift

PTL PV

Squat 83% 86%
Bench 74% | 79 %
Deadlift | 81% | 82%

First, there were several lifts where our joint key points
were convincing enough to display meeting of depth re-
quirements, but the human judges saw otherwise. The op-
posite was also true in some cases- where the human judges
passed the lift but we were not convinced the hip joints
crossed below the knees or the elbows below shoulders.

Secondly, the downward motion hyperparameter faced
some difficult tradeoff choices. Here, we let n represent the
minimum number of frames the lifter was in downward mo-
tion for it to be flagged by our model. Making n too small
meant we would predict simple keypoint tracking noise as
downward motion. However, making it too large would lead
to missing out on several lifts that had less obvious down-
ward motion than others.

Finally, there are several cases we missed in which the
lifter did not properly follow the audible commands. When
performing the attempt, the lifter must listen to the judge
exclaim ”Start”, ”Press”, ”Rack”, etc... in order for their lift
to be valid. As we did not factor in the audio in this project,
these were often wrongly counted as good lifts.

On a lift-wise basis, the misclassifications squat and
bench were split between these three categories. For dead-
lift, on the other hand, almost all of our misclassifications
were when we predicted a successful lift, but the lifter failed
on strength with a red light with a yellow card. From just the
keypoints, we were unable to determine when the lifter suc-
cessfully locked his or her knees, or if the lack of strength
forced them to drop the barbell early. We furthermore at-
tempted to track when a lifter locked their knees by search-
ing for a point where the slope between the ankle and knee
became less in magnitude than the slope between knee and
hip. While this physiologically makes sense, the noise in
the data made this very unreliable.

Ultimately, the hard-coded heuristic performs well over-
all, but we must take note of the class imbalance mentioned
in Section 2.2.2. Most lifts at National Level Meets, which
composes our dataset, will receive three white lights. These
lifts often have pristine execution, which means the key-
point tracking will easily display a successful lift. Ulti-
mately, it is the rare cases when the lifter fails which the
heuristic tends to perform worse, giving us a misleadingly
high accuracy. Nevertheless, there were of course many
cases where we did predict red lights and the cards attached
to them.



3.2. Keypoint CNN Results

We only train our keypoint-based CNN on squat data.
The reason is that we observed keypoint contributions
across all joints are more impactful for squats than, say,
bench or deadlift, where not all joints need to be observed
to judge lift validity; and so the relevant features are not of
high-enough dimensionality to necessitate a deep network.
We trained each of our three networks with a learning rate of
0.01 with Adam and a weight decay of 0.01 for 400 epochs.
The training and test accuracy are shown in Tables [ and [3]
We report accuracy for each of the 3 lights individually, as
well as accuracy for lift validity, and accuracy based on how
many videos had all three lights predicted correctly (called
full light accuracy). Note that the full light accuracy was not
considered as a metric for hard-coded heuristic features, but
lift validity was as the PV metric.

Table 4: Training accuracy for squat videos.

Keypoint Smoothing | Light 1 Light2 | Light3 | Lift Validity (PV) | Full Lights
No 0.667 0.594 0.580 0.580 0.551
Yes 0.662 0.647 0.632 0.6324 0.544

Table 5: Test accuracy for squat videos.

Keypoint Smoothing | Light 1 | Light2 | Light3 | Lift Validity (PV) | Full Lights
No 0.750 0.833 0.750 0.833 0.583
Yes 0.833 0.750 0.667 0.750 0.667

We observe smoothing keypoint data gives an increase
in training accuracy for most individual lights, lift valid-
ity, and all lights. However, the effect is less pronounced
on test accuracy, with no smoothing achieving better lift
validity accuracy and smoothing achieving better full light
accuracy. This suggests keypoint smoothing suffers from
overfitting to some degree. In any case, the PV metrics for
both smoothing and non-smoothing fall below the 86% ac-
curacy reached for hard-coded squat features (see Table [3).
Generally, the unsupervised heuristic features seem to per-
form better than the deep learning approach here. One pos-
sible reason is the utilization of barbell tracking in the hard-
coded features: integrating this into the deep architecture is
a promising area of future work.

4. Conclusion & Future Work

The construction of the PL-Vision dataset is a promising
milestone in the process of automating powerlifting judging
with computer vision. Both the hard-coded heuristic and
our Keypoint CNN revealed the capabilities of joint track-
ing and are strong baseline models for this task.

There are several steps in our dataset construction pro-
cess that could use advancements. We faced the limitation
of not being able to reliably predict where exactly the start

and stop of the lift were. This meant a lot of the data con-
tained noisy estimates of the lifter’s joint keypoints before
and after they completed their lift. This included their walk
up to the platform as well as any movement they may have
had after. These extra frames are hurting our modeling po-
tential, so we hope to focus our efforts on extracting lift
start and lift stop as reliably as we can. If we are able to do
this, we will have the ability to grow PL-Vision seamlessly,
as there are a plethora of live-streamed powerlifting meets
on YouTube. As we continue developing our pipeline, we
furthermore need the ability to detect the actions of the spot-
ters adjacent to the lifter. If we are able to extract the point
where spotters touch the barbell, or the plates on the barbell,
we will undeniably know if the lifter failed on strength, ver-
sus a case of downward motion.

With a larger dataset and more trustworthy keypoint fea-
tures, we are optimistic that our current hard-coded heuris-
tic and deep learning model will prove to be successful in
transforming the way judging is done at powerlifting meets.
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