
Basketball Detection: From Images to Videos

Justin Chang
Stanford University

jchang13@stanford.edu

Pin-Hsuan Tseng
Stanford University

tseng98@stanford.edu

Abstract

This project focuses on detecting basketballs in a wide
range of images using deep learning models. We tuned and
trained with three object detection models: Faster R-CNN,
RetinaNet, and YOLO, and evaluated their performance us-
ing Intersection over Union (IoU) and mean Average Pre-
cision (mAP) metrics. Our findings show that RetinaNet
outperforms the other models, achieving a mean Average
Precision (mAP) of 0.977. The model detected really well
in diverse settings with some false positive exceptions mis-
classifying shoulders and faces. We further utilized the Reti-
naNet model to analyze frames of video footage featuring
3-point shot attempts, aiming to track the basketball’s po-
sition. We noticed a trend in the model facing detecting
difficulties in scenarios with motion blur, crowded scenes,
and low-resolution images.

1. Introduction
Sports is a universal hobby and activity that unites people

across different countries, background, and age. Especially
in the digital television era, fans across the world can tune
in and watch games live across a screen. With the rapid
expansion of recorded sports data and footage on the in-
ternet, data-driven approaches have become popular in the
recent years to help analyze game statistics. One such pop-
ular techniques is to use computer vision with deep learn-
ing to help detect balls in a fast-paced game like basketball.
With an accurate model of ball detection, it further unlocks
other capabilities like trajectory estimation and basketball
shot success prediction. One immediate benefit of apply-
ing ball detection techniques is an automated method for
determining legal vs. foul play in dubious and fast game
scenarios. Moreover, these computer vision approaches can
also help demonstrate trends in players’ sports performance
that typical images or videos cannot show. Therefore, play-
ers hugely benefit by correcting their play styles and pose
from understanding the outputs of vision-based models.

However, directly using feed from live games to detect
ball locations can be a tricky task. Different camera angles

with noisy audience background can make the training pro-
cess very difficult. Therefore, this project focuses on using
a highly diverse image dataset to train a basketball detection
model and seeing it’s effectiveness on game video footage.
Hopefully by first having an accurate representation of what
a basketball is, the trained model is capable of detecting the
target in sequential frames. The input of our algorithm is
basketball images in various settings, typically snippets of
game footage, household settings, solo ball pictures, and
player head shots. We then trained a FasterR-CNN, Reti-
naNet, and Yolo to detect for ball positions. The output is a
bounding box around the ball location with a probabilistic
confidence score of the object’s presence. An evaluation of
the success and failure cases of the best model was further
conducted to examine the effectiveness of our approach.

2. Related Work
For ball detection tasks, common approaches fall into

three categories: physics-based, computational imaging,
and learning-based. For example in physics-based ap-
proaches, authors propose to first record blue-painted bas-
ketball videos with a black background and apply a global
fixed color threshold for image filtering [9]. Then, they ap-
ply kinematics to calculate the ball velocity, throw angle,
and ultimately position. This attempt demonstrates an ad-
vantage for modeling ball kinematics, but is restricted to
controlled environments where noise is kept limited. Since
this project aims to detect balls with a variety of background
noise, the assumption of ball color and low noise back-
ground does not hold.

Another attempt for ball detection is with color informa-
tion and Hough transform [16]. Since balls are round in
shape, the Hough transform is applicable for detecting reg-
ular curves and lines while relatively unaffected by noise.
This method is excellent in generic circle detections, but
it doesn’t have the flexibility for differentiating details be-
tween circular shapes, such as faces versus balls. Other
authors at [3] have addressed this issue by first applying a
circle Hough transform to see where the ball is and uses a
neural classifier to detect for false positives. This approach
makes it much more viable in sports settings where the color

1



and shape of the targets are more distinct and easier to train
with. Others have also decided to focus on the countour and
centroid method for ball tracking [1].

Lastly, learning based methods such as the Region-based
Fully Convolutional Networks (R-FCN) have gain popular-
ity for object detection. For example, authors at [4] combine
Online Hard Example Mining and Soft-NMS with R-FCN
results to yield better detection accuracy. Cascading net-
work input/outputs with other networks demonstrates to be
effective in detecting and tracking basketballs from public
live datasets. Other authors have also gravitated towards
specializing in detection with fast inference times. Authors
in [12] use a coarse regional proposal for the bounding box
of a soccerball, then feed into a light-weight convolutional
neural network to finalize on the ball location details. This
method allows for near real-time detection, which is well
equipped on robotic systems that allows for rapid decision-
making using limited computation and power budgets. Au-
thors in [17] also directly uses a bidirectional LSTM to di-
rectly do trajectory prediction. Some also use a more tradi-
tional RNN for the same task [10], while others specialize
in more multi-object ball tracking [6]. Yolo has also been a
popular model for sports tracking implementation due to its
fast inference speed [15].

3. Methods

To enable our approach to detect ball targets in diverse
settings, we chose to use a learning-based method. We
approached our problem in three stages: Algorithm, Op-
timization, and Metric Selection.

3.1. Model Selection

Since we were interested in detecting ball position, this
task becomes an object detection problem. Out of all the
object detection algorithms, this project focuses on 1) Faster
R-CNN, 2) RetinaNet 3) Yolo. All implementations used
Pytorch’s pre-defined model architectures.

3.1.1 Faster R-CNN

Faster R-CNN (Region-based Convolutional Neural Net-
works) is a deep learning method that aims to be an efficient
and accurate detection algorithm [8]. It relies on a CNN as
a backbone that extracts features from a given input image
and cascades with a small network that outputs a bounding
box (pixel x,y min and pixel x,y max) and also the prob-
ability of that item’s within the box region. It’s then fed
into an ROI Pooling layer which standardizes the region di-
mensions regardless of the different aspect ratios, to finally
be put into a fully connected layer that classifies the object
category or the background.

3.1.2 RetinaNet

RetinaNet is a state of the art single shot detection that re-
lies on a feature pyramid network backbone with two sub-
nets for 1) classifying anchor box and 2) comparing anchor
boxes to the ground truth [5]. In order to address class im-
balance (background are more prevalent than foreground) it
introduces focal loss which effectively focuses training on
misclassified examples. RetinaNet is also a one-stage detec-
tor that performs object localization and classification in a
single pass, making it suitable for fast training and inference
time. This project incorporated RetinaNet for its advantage
in speed whilst maintaining comparable accuracy.

3.1.3 YOLO

YOLO (You Only Look Once) is also single shot detection
algorithm that optimizes for speed with fair accuracy [7]. It
first discretizes the image to a grid and applies a bounding
box with confidence scheme around the grid. It also pro-
duces a class probability map of the cells in the grid. Then
it combines the boxes, confidence score, and probability to
yield the object detection.

3.1.4 Finetuning

Because all three algorithms are catered to generic object
detections that’s not limited to just basketballs, we modified
the box predictor dimensions to adapt to our custom dataset.
The box predictor now has only two classes, either a 1 for a
basketball being present and 0 for background. Aside from
training from scratch, we also experimented with transfer
learning using pretrained models. Pretrained models used
the default weights, which are models that have been trained
under COCO - an object detection, segmentation, and cap-
tioning dataset with over 200,000 labeled images with 80
object categories. To compare the different models’ varia-
tion efficiency, the FasterR-CNN with no pretrained weights
was chosen as the baseline.

3.2. Parameter Optimization

3.2.1 Optimizers

Once the architectures were decided, we experimented with
ADAM, RMSProp, and SGD optimizers. For ADAM, we
experimented with learning rates between 0.0001 − 0.001
and weight decay between 0−0.001. The learning rate con-
trols how big of a step towards the negative gradient for the
next iteration and the weight decay controls how much gen-
eralization our models should behave to prevent over-fitting
to training data. In addition, RMSProp had momentum val-
ues between 0.5−0.9 and alpha values between 0.9−0.99.
Moreover, we used damping values between 0 − 0.1. 20
random sampling of the hyperparameters were used and ran

2



with 400 training images. We used a small training image
set to quickly cycle through different optimizers under dif-
ferent settings and chose the one with the lowest loss value.

3.2.2 Hyper-parameter Tuning

Once an optimal optimizer is determined, we performed a
grid search on hyperparameters to better tune our model’s
performance. Previously, during optimizer search a broad
range of hyperparameters were selected. In this step a grid
search was selected for a more in-detail evaluation of hyper-
parameters, hoping to hone in on finding the best perform-
ing model ready to train for longer epochs.

3.3. Metrics

3.3.1 Intersection over Union (IoU)

To quantify the model performance, we use two metrics:
Intersection over Union (IoU) and Average Precision (AP).

IoU is a measure of the overlap between the predicted
bounding box and the ground truth bounding box. It is cal-
culated as follows:

IoU =
Area of Intersection between two boxes

Area of Union between two boxes
(1)

The IoU score ranges from 0 to 1, where 1 indicates a
perfect overlap. As a demonstration, Figure 1 shows an IoU
with our dataset. The blue box refers to the ground truth and
the red dotted box is a proposed region. Both red boxes have
similar area of unions, but the smaller box has a smaller
intersection and therefore a smaller IoU.

Figure 1. Proposed Bounding Boxes

However, using only IoU as a metric has limitations. 1)
What threshold should we set to identify as a real detection?
2) How should multiple detections of the same object in the
image be handle? To address these issues, Average Preci-
sion (AP) was used as a more holistic and complete metric
for accuracy. The rest of the project compares primarily
mean AP values and uses IoU as a secondary metric.

3.3.2 Average Precision (AP)

Average Precision works as the following: a bounding
box is first produced by the network and the model’s out-
put probability score is compared with a certain threshold.
Since there are only two classes, the probability indicates
how likely this bounding box contains a basketball. Then,
the values of the confusion matrix are computed as shown
in Table 1.

Prediction (+) Prediction (-)
GT (+) TP (True Positive) FN (False Negative)
GT (-) FP (False Positive) TN (True Negative)

Table 1. Confusion Matrix

Precision is then defined as the ratio of correct predic-
tions to total predictions, which measures the accuracy of
the model’s predictions.

Precision =
TP

TP + FP
(2)

Similarly, recall is defined as the ratio of correct predic-
tions to ground truth (GT) instances, which effectively mea-
sures the model’s ability to detect all instances.

Recall =
TP

TP + FN
(3)

There’s a trade-off relationship between precision and
recall: increasing the threshold improves precision but de-
creases the recall value. Therefore, to evaluate a model’s
prediction performance, AP is calculated in Equation 4 as
the area under the precision-recall curve. The range of AP is
from 0 to 1 where 1 indicates a theoretically perfect model.

AP =

∫ 1

0

p(r)dr (4)

mean Average Precision (mAP) is then calculated as the
average of AP values across all classes. Since in our case
we only have one class, the mAP is the same as AP.

4. Dataset and Features
Our dataset is sourced from Roboflow’s open dataset,

found in this link. [2] This dataset comprises of 17,505
training images, 2,738 validation images, and 1,158 test im-
ages. The dataset collects a diverse and well-annotated set
of basketball images, including those from various indoor
and outdoor venues, under different lighting conditions, and
from different angles. Most images come from different na-
tional leagues, game scenarios, player portraits, and house-
hold settings. A distinctive feature of this dataset is the sig-
nificant variation in the color, size, occlusion blur, and noise
of the basketballs. These variations allow our model to learn

3

https://universe.roboflow.com/biomechanics/basketball-annotation-training/dataset/2


more features during training and generalize better to differ-
ent scenarios during testing. Figure 2 shows an example of
a few images in the dataset.

Figure 2. Sample Images in the Dataset

For data pre-processing, all collected materials in this
dataset are uniformly resized to 640 x 640 pixels. As for
data augmentation, images within the dataset come flipped,
rotated within 15°, and sheared. The images also undergo
blurring, color saturation (between -31% and +31%), and
brightness modification (between -20% and +20%).

4.1. Video Dataset

Aside from the public dataset, this project also exper-
imented using the best trained model to evaluate its de-
tection efficiency on video footage. The dataset consists
of recorded 3-point shot attempts in NBA games [14] [11]
[13]. Each clip includes 32 frames of wide-shot images with
a resolution of 1280 x 720 pixels. To fit the same image
dimension as Roboflow’s dataset, we pre-processed each
frame by resizing it to 640 x 640. Then the dataset is fed
into the model in the same way as the previous dataset.

5. Experiments and Results
5.1. Tuning

Once the architectures were selected, the first thing we
experimented with was the optimizer. Running 3 architec-
tures with 3 optimizers at both pre-trained and not trained
settings would yield 18 different runs. Because this is only
the initial effort in tuning our results, we opted to run using
only our baseline’s architecture with 20 different parameters
for 400 images. The results are shown in Table 2.

The ADAM optimizer using a learning rate of 2.85e− 5
with weight decay of 3.4e− 4 demonstrated the lowest loss

Setup Loss Values
ADAM pre-trained 0.1498
ADAM not-trained 0.232

SGD pre-trained 0.153
SGD not-trained 0.232

RMSProp pre-trained 0.1514
RMSProp not-trained 0.222

Table 2. Optimizer Search with FasterR-CNN

value. This made intuitive sense because of ADAM’s ca-
pability for adaptive learning rates compared to Stochastic
Gradient Descent and also over RMSProp due to its inclu-
sion of the first moment. Therefore, the rest of the project
uses ADAM on all the models for a more unbiased compar-
ison.

Next, we performed a more in-detail parameter search of
the hyperparameters. We ran for 1 epoch with 3 learning
rates and 3 weight decays on our models. As an example,
Table 3 shows the hyperparameters we tested on Yolo using
grid search with LR referring to learning rate and WD as
weight decay. The values shown are mAP values instead of
loss because we wanted to use the same metric as our final
comparisons for the sake of consistency. The experiment
showed that having the highest learning rate demonstrated
the highest mAP values. This intuitively also makes sense
because a faster learning rate usually helps the solver con-
verge to optimal faster with a bigger step towards the neg-
ative gradient. Interestingly, the middle value for weight
decay showed best performance. This could be explained
by striking a balance over-fitting versus over-generalization:
too low of a weight decay could cause an overfit while too
high of a value makes it over-generalize and hard to train
the model.

When we applied the same grid hyperparameter search
for the Faster R-CNN and RetinaNet, both models yielded
nearly 0 mAP values during validation. The IoU values
also wavered up and down without a clear sign of improve-
ment. It became evident that the model wasn’t learning and
converging with the same parameters from Table 3. This
could be explained by the disparity in architecture with our
models, as the optimal hyper-parameters are tied to the opti-
mizer but also the diversity in model backbones. Therefore,
we implemented a similar search as in Table 2 with an epoch
of 1 and still found the learning rate of 2.85e−5 and weight
decay of 3.4e− 4 performed best.

LR 1E-3 LR 1E-4 LR 1E-5
WD 5E-3 0.54 0.296 0.141
WD 1E-4 0.552 0.281 0.142
WD 5E-4 0.523 0.315 0.198

Table 3. Hyperparameter Search with Yolo

4



5.2. Training

We then ran the three models for 5 epochs of the train-
ing data. As an example, Figure 3 shows RetinaNet’s loss
curves versus iterations. Due to GPU RAM limitations,
each iterations takes in 32 training images and 16 validation
images. After each iteration, the model’s parameters are
backward propagated and updated. Initially, the no-trained
loss demonstrates higher values than pre-trained because
it’s learning from scratch. Because it’s learning from near
zero initialization, the training and validation loss decreases
rapidly as seen from iterations from 0 to 500. However, the
pre-trained models began to stagnate learning after 500 iter-
ations. The high fluctuations in the training and validation
values are due to the relatively small batch size. Regard-
less, the validation loss for both models shows an overall
decrease with iterations, indicating an increase in model’s
performance over time.

Figure 3. Loss Curves with Trained vs. Pre-trained

Aside from loss curves, the IoU and mAP values are also
plotted in Figure 4. At each iteration, a prediction with a
class score and bounding box is produced. The IoU values
of the validation images are computed using the predicted
vs. ground truth bounding box. The two boxes then gets ap-
pended to the model’s history of seen data, which the mAP
algorithm uses to compute a value. Figure 4 shows both the
IoU and mAP values increasing, indicating that the model
is improving with more training. Similar to the loss curves,
the pre-trained models show better mAP/IoU performance
than the no-trained models. Because this behavior is evi-
dent amongst all three model architectures, we proceeded
to compare the architectures only with their pre-trained ver-
sions against the baseline (FasterR-CNN Notrained).

Figure 4. IoU/mAP with Trained vs. Pre-trained

5.3. Evaluation

5.3.1 Model Evaluation

Lastly, the transfer-learned models are then compared with
one another along with the baseline. The models performed
prediction based on test images with a outputs of bounding
boxes and class scores. During testing, we noticed that the
model outputs a lot of potential bounding boxes of where
the basketball is. However, not all probability scores of
these boxes are high. Therefore, we set a score threshold
of 0.5 during evaluation to only account for boxes that the
model deems as a higher ball chance than background. Fig-
ure 5 shows the difference in evaluation before and after the
threshold.

Figure 5. Left: Bounding Box Prior to Thresholding; Right:
Bounding Box Post-Thresholding

With an applied score threshold, the mAP (referred as
map50 because of the 0.5 detection) values could be cal-
culated. The results are shown in Table 4 with RetinaNet
as the best performer, achieving up to 0.977 accuracy. All
three pretrained models demonstrated better performance
than the baseline.

Figure 6 shows a series of sample outputs for our best

5



Model mAP50
Baseline (Faster R-CNN Notrained) 0.919

FasterR-CNN (Pretrained) 0.935
RetinaNet (Pretrained) 0.977

Yolo (Pretrained) 0.963
Table 4. Model Evaluation Results

model’s detection. Overall, the model performed really well
in basketball detection. The top row demonstrates example
cases where the detection is accurate: in-game scenarios,
multi-target shots, and also solo scenes. In almost all the
cases during validation the model was able to really accu-
rately find the ball position.

However, there are a few scenarios where the model out-
puts false positives. As seen in the bottom row, hands,
shoulders, and faces sometimes gets misclassified as bas-
ketballs. Based off of these false positive observations, it
could be hypothesized that the model yields a positive out-
put based off of color, shape, and texture. Since most train-
ing inputs have basketballs as dark brown and circular, it’s
easy for the model to heavily rely on those features. Aside
from these few wrong examples, the model generally per-
formed well in a high diversity of basketball images.

Figure 6. Qualitative Results

5.4. Applying RetinaNet to Video Footage

With the model’s high performing result using our
dataset, we were curious to see its effect on game video
footage. The trained RetinaNet model was then applied on
five short video clips, each demonstrating a 3-point shot at-
tempt. The detection results of the RetinaNet model on the
five clips are shown in figures 7 - 9.

Our observations indicate that when the confidence score
was set to 0.5, the model scarcely detected any basketballs
in the frames. If we lowered the confidence score to 0.1, the
model did detect some basketballs but it comes as the cost
of an increase in false positives. As an example, Figure 8
shows the basketball being detected where Figure 7 wasn’t
able to. Now with a lowered threshold, some players’ heads
became wrongly detected.

Figure 7. Detection Results - Confidence Score 0.5

Figure 8. Detection Results - Confidence Score 0.1

In some scenarios where the ball is positioned with a
highly contrasting background, similar to Figure 9’s white
floor, the model was capable of detecting the ball position.
However, these cases were not the majority of the test set.
The model overall performed subpar as compared to the
datasets shown in Figure 6.

The poor detection behavior of the video could be ex-
plained with a few reasons. First, the training dataset fo-
cused only on individuals or a few number of people in the
foreground. It lacked datasets with a large and noisy crowd
background. Therefore, when presented with images with a
large audience, our model struggled to detect where the bas-
ketball is. As a result, the model often misclassified human
heads from the audience as the target.

Second, the raw video footage were designed to capture
the whole playing field, so the camera tends to zoom out
with few close-up shots. During data pre-processing, we
reduced the resolution of the images to match the original
public dataset dimension. This resizing caused the targets
to appear blurry, hence causing the model to have a hard
time detecting ball location.

Third, the videos were sampled with 32 frames per sec-
ond. Since the ball is in motion, not every frame can detect a
clear basketball in a fast-paced game. This motion blur fur-
ther distorted the shape and clarity of the basketball, which
hindered the model’s prediction performance.

6. Conclusion and Future Work
In this project, we trained different object detection mod-

els to specialize in basketball detections. We conducted ex-

6



Figure 9. High Contrast between the Ball and Floor

periments with three distinct models: Faster R-CNN, Reti-
naNet, and Yolo. These models were tuned with finding
an optimal optimizer along with its corresponding hyperpa-
rameters. The models were further evaluated using IoU and
mAP metrics to evaluate their performance in prediction ac-
curacy. By including a class score threshold, all models
were fairly capable of detecting ball location. Our find-
ings revealed that RetinaNet surpassed the other models,
achieving a mAP of 0.977. Despite its overall effectiveness,
the model occasionally misclassified non-basketball objects
like hands, shoulders, and faces, which suggests a heavy re-
liance on features such as color, shape, and texture that are
typical of basketballs.

Furthermore, we applied our best model RetinaNet to
video footage of 3-point shot attempts. When applying to
video footage, the threshold needed to be lowered for any
ball detections. As a result, false positives started to arise
with player and crowd heads as wrongful detections. The
results from video footage were less promising than an-
ticipated due to the lower-resolution of images and higher
ball motion blur. In scenarios with high contrasting back-
ground images, the model was able to make detections be-
cause these were similar environments the training dataset
included.

Looking ahead, an intriguing extension to this project
would be to track the basketball within a video and predict
the success of a shot. Both tracking and shot success pre-
diction require a model that’s capable of processing tempo-
ral information and a comprehension of the game context.
Model architectures like LSTM, Vision Transformers, or
3D CNN are suitable candidates. The effort in this project
could serve as a feature extractor and be incorporated into
these larger models which are specialized to predict the out-
comes of player shots. Such models could be more advan-
tageous for coaches and players by providing new sports
metrics that better help analyze the game whilst enhancing
players’ performance.

7. Contributions & Acknowledgements

Justin contributed to the majority of the writing of the
paper. He also performed the optimizer tuning and the
five epoch training on RetinaNet and FasterR-CNN. He also
worked on providing the experiment plots along with writ-
ing the qualitative and quantitative findings of the results.

Pin-Hsuan was responsible for developing the core struc-
ture of the code, creating the custom dataset class, and im-
plementing the training loop. He conducted the hyperpa-
rameter sweep for the FasterR-CNN and YOLO models,
and carried out the five-epoch training on YOLO. He also
wrote the code to test the performance of the models on
the test dataset, evaluated the model on video footage, and
documented the qualitative findings of the results on video
footage.

References
[1] S. S. Ali Shah, M. A. Khalil, S. I. Shah, and U. S. Khan.

Ball detection and tracking through image processing using
embedded systems. In 2018 IEEE 21st International Multi-
Topic Conference (INMIC), pages 1–5, 2018.

[2] Biomechanics. Basketball annotation train-
ing dataset. https://universe.
roboflow.com/biomechanics/
basketball-annotation-training, mar 2024.
visited on 2024-06-04.

[3] T. D’Orazio, C. Guaragnella, M. Leo, and A. Distante. A
new algorithm for ball recognition using circle hough trans-
form and neural classifier. Pattern Recognition, 37(3):393–
408, 2004.

[4] Q. Liang, L. Mei, W. Wu, W. Sun, Y. Wang, and D. Zhang.
Automatic basketball detection in sport video based on r-fcn
and soft-nms. In Proceedings of the 2019 4th International
Conference on Automation, Control and Robotics Engineer-
ing, CACRE2019, New York, NY, USA, 2019. Association
for Computing Machinery.

[5] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal
loss for dense object detection. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2999–3007,
Los Alamitos, CA, USA, oct 2017. IEEE Computer Society.

[6] A. Milan, L. Leal-Taixé, I. D. Reid, S. Roth, and
K. Schindler. Mot16: A benchmark for multi-object track-
ing. ArXiv, abs/1603.00831, 2016.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection, 2016.

[8] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(6):1137–1149, 2017.

[9] S. Saraireh, A. Hassanat, M. Abu Altaieb, and H. Kilani.
A new dataset method for biomechanical training model of
the free throws shots in basketball using image processing
technique. Modern Applied Science, 13:132, 01 2018.

[10] R. Shah and R. Romijnders. Applying deep learning to bas-
ketball trajectories, 2016.

[11] J. Tang, X. Shu, R. Yan, and L. Zhang. Coherence con-
strained graph lstm for group activity recognition. IEEE
transactions on pattern analysis and machine intelligence,
2019.

[12] M. Teimouri, M. H. Delavaran, and M. Rezaei. A real-
time ball detection approach using convolutional neural net-
works. In S. Chalup, T. Niemueller, J. Suthakorn, and M.-A.

7

https://universe.roboflow.com/biomechanics/basketball-annotation-training
https://universe.roboflow.com/biomechanics/basketball-annotation-training
https://universe.roboflow.com/biomechanics/basketball-annotation-training


Williams, editors, RoboCup 2019: Robot World Cup XXIII,
pages 323–336, Cham, 2019. Springer International Publish-
ing.

[13] R. Yan, J. Tang, X. Shu, Z. Li, and Q. Tian. Participation-
contributed temporal dynamic model for group activity
recognition. In Proceedings of the 26th ACM international
conference on Multimedia, pages 1292–1300, 2018.

[14] R. Yan, L. Xie, J. Tang, X. Shu, and Q. Tian. Social adap-
tive module for weakly-supervised group activity recogni-
tion. arXiv preprint arXiv:2007.09470, 2020.

[15] Y. Yoon, H. Hwang, Y. Choi, M. Joo, H. Oh, I. Park, K.-H.
Lee, and J.-H. Hwang. Analyzing basketball movements and
pass relationships using realtime object tracking techniques
based on deep learning. IEEE Access, 7:56564–56576, 2019.

[16] H. Zhang, Y. Wu, and F. Yang. Ball detection based on color
information and hough transform. In 2009 International
Conference on Artificial Intelligence and Computational In-
telligence, volume 2, pages 393–397, 2009.

[17] Y. Zhao, R. Yang, G. Chevalier, R. C. Shah, and R. Romijn-
ders. Applying deep bidirectional lstm and mixture density
network for basketball trajectory prediction. Optik, 158:266–
272, 2018.

8


	. Introduction
	. Related Work
	. Methods
	. Model Selection
	Faster R-CNN
	RetinaNet
	YOLO
	Finetuning

	. Parameter Optimization
	Optimizers
	Hyper-parameter Tuning

	. Metrics
	Intersection over Union (IoU)
	Average Precision (AP)


	. Dataset and Features
	. Video Dataset

	. Experiments and Results
	. Tuning
	. Training
	. Evaluation
	Model Evaluation

	. Applying RetinaNet to Video Footage

	. Conclusion and Future Work
	. Contributions & Acknowledgements

