Blackjack Card Counting

Andrew Chung
Stanford University
450 Jane Stanford Way, Stanford, CA 94305

awchung@stanford.edu

Abstract

What’s the only way to beat a casino? Card counting.
But it’s extremely hard, as it requires mental tracking over
multiple decks of cards and only guarantees around 1%
edge against a casino. As a result, many avid casino players
simply rely on pure chance, since the mental strain of this
technique is not worth the potential payoff. However, we
aim to detail an extremely precise method of counting cards
with a video feed at a casino. This would take away from
the casino players’ need to remember the cards and only
need to know the live counts. In this paper, we build the
first step to tracking cards over a long period of time with
card detection and recognition in an image. We achieve
significantly better results compared to traditional methods
that wrap both card detection and recognition in the same
model, Yolov8 (5)) and Grounding Dino. These approaches
have been the commonly accepted standard for this type of
problem, but separating the two components, along with a
synthetic dataset and severe augmentation techniques, have
vielded much better results.

1. Introduction

The objective of this paper is to accurately detect an
identify playing cards within an image or video frame. This
system aims to achieve near-perfect accuracy in determin-
ing the card value and suite (Ace, 2, 3, ..,) and (Hearts, Di-
amonds, Clubs, Spades) respectively. This system would
then be used to recognize cards over a longer video setting.
In order to ensure the robustness and reliability of the sys-
tem in actual game play scenarios, this paper aims to ad-
dress the various challenges of current methods of playing
card detection in a scene.

1. Diverse card designs: Playing cards come in various
designs, with differences in the size, position, and style
of the value and suit symbols. The system must be able
to handle this variability and accurately identify cards
regardless of the specific design. The system designed
in this paper utilizes multiple augmentation and scal-

4321

Pranav Sai Ravella
Stanford University
450 Jane Stanford Way, Stanford, CA 94305

pravella@stanford.edu

ing techniques to help the model not over-fit on the
cards it was trained on, but rather apply to a general-
ized set of playing cards.

2. Cluttered environments: In a setting at a casino or
poker table, there are many other objects that could in-
terfere with detection, and even other cards that might
cover up the cards in totality. The model presented in
this paper can distinguish between backgrounds, play-
ing cards, and other objects during card detection and
recognition. The model also can detect and identify
multiple cards within a single image or video frame,
which is essential to keep track of all visible cards for
card counting.

3. Motion blur: In video footage of card games, motion
blur can occur due to the rapid movement of cards dur-
ing shuffling or dealing. To mitigate the impact of mo-
tion blur, we incorporate motion blurring techniques as
a preprocessing step, such as Wiener deconvolution.

This system utilizes two separate models. A card detec-
tion model that fine-tuned YoloV8 (5), and a card identifi-
cation/recognition model that was built on top of Resnet50
(4) . The dataset utilized in this system accounted for var-
ious designs, orientations, lighting, perspective, partial oc-
clusions, and noise. To measure the accuracy of our system,
we compared our combined models to a fully-fine tuned
YoloV8 model that was trained on all classes of cards and
observed the situations where the card detction model was
the bottleneck of identifying all cards in an image. We ob-
served nearly a 15% higher mAP@50-95 using this system
compared to the fine-tuned YoloV8 model. We also ob-
served the qualitative predictions from the model, and its
drawbacks with detection, especially when the cards are
barley visible in the frame and small.

The proposed system for card detection and identifica-
tion has the potential to be applied in various domains, in-
cluding casino monitoring, game analysis, and even assist-
ing visually impaired individuals in playing card games. By
accurately detecting and counting cards in real-time, this
system can provide valuable insights for both monitoring
purposes and players’ edge on casinos.

2. Related Works

A related paper was published from University of Can-
terbury, Christchurch, New Zealand by Chunhui (Brenda)
Zheng and Dr Richard Green called ’Playing Card Recog-
nition Using Rotational Invariant Template Matching.” (7))
This paper took a simpler yet more computationally effi-
cient method for card recognition. Rather than training
a YOLOvV8 model and a convolutional neural network to
learn the underlying mechanisms behind card recognition,
they took a more “hard code” approach by creating tem-
plates for every suit and value. It works by scanning the
image for matches to the template values and suits and find-
ing the ones that match the best which is a lot more com-
putationally efficient but can’t handle variation as well as
a neural network can and thus cannot generalize as well.
They are similar in that they both handle rotational invari-
ant though in different ways. Our model simply trains the
model on significant data augmented sets that it learns to
recognize rotation and properly categorize. For the related
paper, they rotated the card pixels to match the rectangular
shape/orientation that the template images were based on
before doing the similarity matching.

Another related paper was published called “Robust
poker image recognition scheme in playing card machine
using Hotelling transform, DCT and run-length techniques”
(1) by Wen-Yuan Chen and Chin-Ho Chung. A significant
difference was again how they handled rotational invari-
ance. For the paper, they used Hotelling Transform to stan-
dardize the orientation while our model again just trained
on a robust set of data. In essence, the model architec-
ture of the related paper was more manual and thus required
more precise preprocessing but was thus more computation-
ally efficient. They used more traditional image process-
ing methods like DWT and DCT and run-length encoding
but these are a lot more sensitive and don’t generalize and
adapt as well as the neural network approach we took. I
think we made a good choice using a neural network sim-
ply because of how large our synthetic dataset was so that
we could learn very nuanced features and could rely on the
advantage of not being limited by the dataset size to assume
that the model would eventually learn all the important de-
cisions made with more precise preprocessing.

An additional related paper that was published is called
”Poker card recognition with computer vision methods” (6)
by Xuewen Hu, Tao Yu, Kai Wan, and Jie Yuan from Nan-
jing University. For this one, the primary difference was
scalability. The related paper’s model relied on Hu invariant
moments, which are invariant to rotation and scale. These
computations were compared to a known database of val-
ues corresponding to suits and values similar to template
matching. Thus, this methodology was really good for han-
dling a wide range of data augmented sets with low training
volume but didn’t scale in performance with increasing data

4322

size. On the other hand, the model we created relied heavily
on the volume of training data and thus could capture more
nuances as we trained it more extensively. The related pa-
per’s model was capped and constrained and thus might not
be fit for many real life scenarios.

3. Dataset and Pre-processing
3.1. Card Identification Dataset

Finding a large card detection dataset with labeled boxes
and suite classification proved to be an extremely hard or-
deal. In order to combat this we created a synthetic dataset
that superimposed real card images into fake “scenes”. This
approach allowed us to have complete control over the
dataset’s size, diversity in class sizes, annotation quality,
and augmentation techniques. Using Geaxgx’s notebook
(3) as an initial step to develop this method, we were able to
generate the dataset split as shown in Table 2} To generate
the synthetic dataset, we followed these processes.

Dataset Percentage | Number of Images

Train Set 88% 21,210
Validation Set 7% 1,697

Test Set 5% 1,211

Table 1. Distribution of images across the training, validation, and
test sets for card detection.

1. We took a picture of each card in the 52 card deck in
three different angles, to account for lighting, perspec-
tive, and card type.

. We then took a mask to single out the card and remove
any other features, such as background and other ob-
jects.

. After each masked picture was created, we manually
annotated the bounding box that surrounded the the
suite and card value.

. After combining the bounding box and attaching it to
the card bounding box using openCV, we then took
the cards at random and assembled them into ran-
dom scenes with random jitters, rotations, perspec-
tives, noise, and assembly. We also created “fan-like”
card draws to account for how these types of cards
would be in a casino, and generated up to five cards
per image at random. Since every card was at a uni-
form draw to be chosen for the image, we ensured that
each card had equal representation within the dataset.
The random scenes were from the Describable Tex-
tures Dataset (2).

Some examples of the cards and their bounding boxes are

shown in Figure[T]

3.2. Card Recognition Dataset

After generating these synthetic scenes, within each of
the training examples, the bounding box for each card in

Figure 1. Example image from synthetic dataset.

the scene was used to crop out the suite and value of the
card. For a given scene, multiple of the same suite and value
image would have been cropped out due to superimposing
some cards over the other corner of the card. Using this, we
created another dataset that had the image of the suite and
value of the card that was cropped, scaled to the center of
100x100 box and padded until it fit the box with blue color.
As a result, each suite and value image was associated with
the class that it belonged to and could fit into a small feature
set that a model could process. Through this process, we
generated 52,000 images of which 15% was validation and
15% was testing. An of this dataset is shown in Figure 2]

Figure 2. Example image from synthetic dataset.

4. Methods
4.1. Card Detection

We also utilized several augmentation techniques that
were applied to synthethic images to further improve the
dataset.

¢ Geometric Transformations: Random rotations,
translations, scaling, and shearing were applied to sim-
ulate different viewing angles and distances.

* Color Jittering: Adjustments to brightness, contrast,
saturation, and hue were made to account for various
lighting conditions.

4323

* Random Cropping: Parts of the images were ran-
domly cropped to mimic different framing conditions.

¢ Noise Addition: Gaussian noise was added to simu-
late various image qualities.

* MixUp and CutMix: Techniques combining multiple
images to create new training samples were used to
help the model learn more robust features.

After this data augmentation, we fine-tuned YoloV8 with re-
spect to a single class of being that called a ’card”. YoloV8§
follows a single-stage detection architecture, which predicts
bounding boxes and class probabilities directly from full
images in one evaluation. This is different to two-stage de-
tectors, like Faster R-CNN. Faster R-CNN first generates
regional proposals and then classifies them. The backbone
of YolovV8 is a convolutional neural network (CNN). The
backbone of the network is then processed through a Fea-
ture Pyramid Network to enhance the feature maps at vari-
ous different scales. The YoloV8 head predicts the bound-
ing boxes, objectness scores, and class probabilities and
uses anchor boxes to predict bounding boxes at multiple
scales.

YOLOVS predicts bounding boxes using anchor boxes.
Each bounding box is parameterized by four values: the
center coordinates (b,;, b,), width b,,, and height bj,. These
are predicted relative to the anchor box dimensions and the
grid cell location.

by = 0(ts) + o (1
by =o(ty) + ¢y 2
by = pwe'™ 3)
by = pre™)

where:
o is the sigmoid function.
te,ty, tw, tn are the predicted offsets.

Cz, Cy are the coordinates of the top-left corner of the
grid cell.

Pw, Ppr are the dimensions of the anchor box.

The objectness score P, represents the confidence that an
object is present in the predicted bounding box with a sig-
moid function over the predicted objectness score. The
class probabilities P, for each class are also predicted us-
ing the sigmoid function over the predicted class score.

Ltotal = >\100Lloc +)\conchonf +)\clchls

The localization loss measures the error between the pre-
dicted bounding box and the ground truth bounding box us-
ing mean squared error (MSE). The confidence loss mea-
sures the error in the objectness score prediction. The clas-
sification loss measures the class probability error. These
both use binary cross-entropy loss.

N

Lioe = Z

i=1

N
Leont = » (P log(P,

i=1

Les = Z Z (P log

i=1 c=1

(ba — ba)? + (by — by)* + (bw — buw)® +

(1 _Po)log(]- - Po)

)

P.)log(1 - 12))

+ (-

Through the curated dataset aforementioned, we fine-
tuned the YoloV8 model and predicted the accuracy of the
model using mAP scores. To calculate mAP we first mea-
sure the Intersection over Union (IoU):

Area of Overlap

ToU =
© Area of Union

Average Precision (AP) is calculated for each class by mea-
sure the area under the precision-recall curve, which is ob-
tained by plotting precision against recall at different con-
fidence thresholds. Precision is the ratio of true positive
detections to the total number of positive detections (both
true positives and false positives) and recall is the ratio of
true positive detections to the total number of ground truth
objects.

1. Sort the predicted bounding boxes by their confidence

scores in descending order.

Calculate precision and recall at each detection thresh-
old.

Plot the precision-recall curve.

Compute the area under the precision-recall curve

1 C
mAP = GZAPC

c=1

In our proposed system, we compare YoloV§ trained on all
52 classes to identify and recognize all cards in the picture
with one single prediction. However, we quickly realized,
that the the recognition portion of the detector often con-
fused suites together and numbers. As a result, we sepa-
rated the two to have a card detection and card recognition
model. For every prediction the card detection model made,
we would scale and pad the bounding boxes that included
the cards’ suite and value, and pass this into the card recog-
nition model that was trained on size 100x100 images to
identify the card.

4324

4.2. Card Recognition

As previously said in the Data Processing Section, the
dataset entering the card detection stage were 100x100 im-
ages of the corner pieces of cards (including number and
suit) and were separated into training (75%), validation
(15%), and testing (15%) sets. As highlighted in the flow
model architecture shown in Figure [3} the execution in-
cluded three primary steps: ResNet, convolution layers, and
linear layer. For the ResNet section, we decided to opt for
ResNet 50 for one primary reason: given that the accuracy
heavily relied on distinguishing between similar values like
6/9 and face cards and also would need to distinguish simi-
lar looking suits and colors, the model would require deeper
networks to accurately capture these details. In order to
tailor the model to our specific task, we removed the final
pooling and linear layer from the ResNet to add our own
trainable convolutions, while freezing previous layers. En-
tering the convolution layer, our spatial dimensions were
4x4 which was initially a concern, but given that the im-
ages were already zoomed into the area of importance and
majority of the critical features took a large portion of the
image, we projected that the results would have been indif-
ferent to this change. In Figure[d] you can see the visualized
intermediate feature maps that are outputted by the ResNet,
which though don’t give very understandable information in
sheer form, clearly highlight that 2048 of these feature maps
would be able to capture an enlarged number and suit that
each take a near-quadrant of the image. After the ResNet,
we have two convolution layers each followed by a batch
normalization and ReL.U. Each of these convolutions have
a kernel size of 3, stride of 1, and padding of 1 in order to
not reduce the spatial dimensions any further and remain a
4x4 throughout. The reason for a larger kernel size is again
to capture larger features given that finer details do not mat-
ter as much. The adaptive average pooling layer was sim-
ply in order to reduce the number of learned weights in the
fully connected layer and also under the assumption that
the individual 4x4 squares at this point would not portray
any significant unique information. The final layer was a
fully connected layer to simply bring it back to the 52 card
classes.

In terms of the hyperparameters, the main reason behind
choosing Adam was that the model had so many parame-
ters to learn that having a separate learning rate per param-
eter would become very useful in learning a broad range of
features. The learning rate of 0.001 was empirically very
successful and was chosen simply because it was a stan-
dard value that wouldn’t cause any drastic gradients and
also doesn’t affect Adam as much. The decaying learning
rate was in order to stabilize learning and converge to a solid
model consistently given that we had a lot of data per epoch
and thus wouldn’t expect that many large changes towards
the later epochs.

Initially, we were also considering using data augmenta-
tion again at this stage before the card recognition portion,
in addition to the initial round during card detection for fur-
ther randomization. Though data augmentation would im-
prove generalization and better hierarchical understanding
of the features, we realized that there was no need to for
this given how large our training data set was. We did not
need to artificially increase the size of our dataset and al-
ready got enough variation from the training dataset itself
and the first round of augmentation, so data augmentation
would add unnecessary complexity. We also tried this and
found that it was empirically worse.

We were also considering alternatively using a fully con-
nected network following the ResNet rather than the CNN
for simplicity sake under the assumption that the ResNet it-
self would be enough to capture the spatial features. But,
as supported from our empirical results, we found out that
it greatly worsened the performance. This was for two rea-
sons: flattening the data lost the spatial relationships previ-
ously gained and thus we would need to postpone it as late
as possible, and the number of learned parameters expo-
nentially increased especially since the ResNet output was
so large when flattened that it was difficult to scale the net-
work or learn properly.

Another alternative approach we considered prior was
just simply using a simplified convolutional neural network
to run directly on the input pixels. What we found was that
this lead to really good results on training data but failed
to perform at all on testing data sets. This was simply be-
cause it was very difficult to effectively train deeper con-
volutional networks to not overfit given the number of pa-
rameters and also the lack of layer-skipping. ResNet was
an important switch because it allowed us to incorporate a
much deeper network that could effectively learn the hier-
archical features, without necessarily overfitting because of
its skip connections.

5. Results
5.1. Card Detection

On the card detection task for single card image we
achieved an mAP@50-95 of 82.92% over seven epochs and
five hours. Since mAP contextualizes both the localiza-
tion of the bounding box and classification accuracy, mAP

=Data Formatting/Process

{key_id}_{label}.png
train(70%),val{15%),test(15%)

= Hyperparameters

Adam Optimizer

Leaming Rate: 0.001 with
gamma decay = 0.1 every 5
epochs

Loss Type: Cross Entropy
Batch size: 30

Y
0
= Pretrained Resnet

initial baseline: Resnet 50
with last two layers
removed

Qutput size: 30x2048x4x4

Convl

input channels: 2048
output channels: 1024
Kernel size: 3

Stride: 1

Padding: 1

Output size: 30x1024x4x4

= BatchNorm/Relu

input channels: 1024
output channels: 512
Kernel size: 3

Stride: 1

Padding: 1

Output size: 30x512x4x4

= BatchNorm/Relu

= Adaptive Avg Pooling

Spatial Reduction: 1x1

Output size: 30x512x1x1
*Flatten == 30x512

e

Linear

Fully connected layer
connecting 512 input
channels to 52 outputs
max to find prediction label

scores with a threshold between 50 and 95 were much lower Figure 3. Card Recognition Model Architecture

for the YoloV8 model trained on all classes However, when e
qualitatively looking at the predictions made by this YoloV8 . l - L8]] ﬂ .

model, we realized that the model was good at identifying Led = F |=F k|

the corner suite and values, but had an extremely hard time D 1=]-F | 1=]
identifying the card itself. Eventually for the YoloV8 model Figure 4. Feature Maps of ResNet Outputs
trained on all classes, the loss and accuracy plateaued as it

could not distinguish between suit and number values any

further. This is evident in Figure[5] Switching to the YoloV8

4325

Precision-Recall Curve

— all classes 0.927 MAP@0.5

o
00 02

Figure 5. Precision v. Recall Curve for YoloV8 on 52 Card Classes

trainfbox loss train/afloss

metrics/precision
o

ggggg

valicls_loss valfdfJoss

ssssss

ssssss

gggggg

aaaaaa

Figure 6. Training Curves for YoloV8 on Single ”Card” Class

model trained only on detecting the card itself resulted in
not as much over-fitting on the training dataset, as evident in
the test mAP, compared to the YoloV8 model trained on all
classes Figure[6] The training curve for the single-class de-
tection is still very jumpy, but even for training with longer
periods before GPU time-out the model was still actively
learning and had a much smoother loss curve compared to
the 52-class detector, which intuitively makes sense.

The model trained only detecting cards in the scene did
fail in some scenarios. When the cards were extremely
small or blurred in the background, as in Figure[7} the model
failed to detect the extremely small bounding box surround-
ing the suite and value. A better approach to this system
would be to segment the cards out individually with a model
and then have the card recognition model use the entirety of
the segmented image. An image segmentation model would
be able to segment out the entire white-space of the card and
suite values, but recognizing very small objects with com-
puter vision models is still a prevalent issue.

5.2. Card Recognition

Given the enlarged 100x100 images from card detec-
tion, we trained 10 epochs with a batch size of 30 and
measured the training loss and validation accuracy af-
ter each epoch. We ultimately reached a training loss
of 0.01752118092591223 and a validation accuracy of
98.84969325153374% after the last epoch and the exact tra-
jectory is shown in Figure [and Figure [9] The final test
accuracy was 99.02862985685071%.

As seen in Figure [8] the training loss graph was a stan-
dard logarithmic curve. There were many aspects of the

4326

oA, 08
ard 0.8}

\,

L]

Figure 7. Test Images Prediction on 1-class Card Detector

Results Value
Training Loss .0175211809259122
Validation Accuracy | 98.84969325153374%
Test Accuracy 99.02862985685071%

Table 2. Summary of Card Recognition Results

curve that led to higher confidence in the model’s intended
learning. First, the mode significantly decreased in train-
ing loss between the first two epochs and then gradually re-
duced the loss in smaller magnitudes after that which shows
steady convergence and a good adaptive learning rate. The
loss ultimately stabilized and did not continue to keep de-
creasing after reaching a certain state which was also good
because it led to belief that the model was not necessarily
overfitting.

As seen in Figure 9} the validation accuracy showed a
steady step-wise increase over epochs. The rapid increase
in validation in the beginning shows that training is learn-
ing the hierarchical features well as it is generalizing very
well. The lack of any significant decline also shows that
the model is not likely overfitting. The graph also stabilizes
towards the last few epochs which is promising as it seems
like the model learned the true underlying mechanisms and
plateaued at optimal performance without overfitting thus
would likely do well in generalization.

To identify common failure modes, I identified the most
common cases of mislabeling in the test dataset in order
to see in what way it was mislabeled and also what in the
input image caused this mislabeling. The most common
reasoning was because of partial occlusion. In order to en-
sure that our model could handle real-life scenarios where
part of the image could be obscured, we included images
with parts of the image covered. We found that a majority
of the issues arose from cases where the blocked out por-

Training Loss v. Epoch

= [N
o W o

Cross Entropy Training Loss

o
n

6 8

Epoch

2 4

Figure 8. Training Loss Graph

Validation Accuracy v. Epoch

100 {

95 4

90 4

854

80

Validation Accuracy %

754

70

6 8
Epoch

2 4

Figure 9. Validation Accuracy Graph

tion was critical in identifying the value. The values had
similar curves and differed most significantly in the blacked
out portion. The second most common reason was color-
ing. As part of the data augmentation process, the pixel
values sometimes became gray scaled. The primary issue
with this is that spades and clubs are black and diamonds
and hearts are red which would be a significant identifying
factor. What we found was that diamonds were often identi-
fied as spades when turned to grayscale, but we deemed this
not that important of a problem given that real-life scenar-
ios wouldn’t really have this problem and would be likely
full color. Actually, we found that we never ran into issues
where hearts/diamonds were identified as spades/clubs for
full color images, which highlights how important the color
values were for suit identification. Given that these were
majority of our 1% error rate, we were pretty confident our
model performed well on the tasks as the misclassified im-
ages were intuitively difficult and likely not a problem in
real-life circumstances.

5.3. Combined System

The YoloV8 model trained on all 52 card classes was
trained for five epochs over 2 hours, but after 3 we cut train-
ing off after noticing the model’s learning tended to plateau.

4327

Using the test images, we compared the the mAP@50-95
and mAP @50 scores of this YoloV8 model compared to the
combined system in Table [3| As noted, our combined sys-
tem resulted in much less over-fitting and more confident
predictions in the cards detected and recognized. One of

Model Metric Score
Validation mAP@50 0.927

Validation mAP@50-95 | 0.637

YOLOVS (52 classes) Test mAP@50 0.308
Test mAP@50-95 0.558

Validation mAP@50 0.991

Our System Validation mAP@50-95 | 0.801

Test mAP@50 0.989

Test mAP@50-95 0.785

Table 3. Comparison of mAP scores for YOLOvVS model and com-
bined YOLOvVS8 Detector + Card Recognition system.

the key advantages of the combined system is its ability to
mitigate overfitting. The YOLOv8 model, when trained in
isolation, showed signs of overfitting, as evidenced by the
divergence between training and validation mAP scores. In
contrast, the combined system, which separates the detec-
tion and recognition tasks, demonstrated more stable learn-
ing curves and higher confidence in its predictions. This
is likely due to the specialized training of each component,
allowing for better generalization to unseen data.

However, in both situations, the systems are bottle
necked by the ability to detect the cards in the image. De-
spite the improvements in recognition accuracy, both sys-
tems are fundamentally limited by their ability to detect
cards in the image. The detection stage is crucial, as any
missed or inaccurately localized cards directly impact the
subsequent recognition stage. Enhancing the detection ac-
curacy is therefore essential for further improving the over-
all performance of the system.

The combined system performed extremely well when
presented with normal images and some augmentation.
However, when cards were rotated or partially occluded, as
shown in Figure |10} the model failed to either detect or rec-
ognize the card properly. We chose an arbitrary 100x100
input size for the card recognition model, however, sizing
this down to 50x50 would have resulted in less memory be-
ing used, higher batch size, and better ability to recognize
these augmentations. Furthermore, 98% of the images were
75% of the area of 100x100 feature, and though the model
learned to ignored the padding, a smaller input feature could
have allowed deeper training.

6. Conclusion

We developed and evaluated a combined system of card
detection and a custom card recognition model to clas-
sify and detect cards in images with sever augmentations.

Figure 10. Error in prediction using combined system

The approach of separating out the two models in a two-
stage system demonstrated significant improvement in per-
formance compared to a standalone YoloV8 model trained
to perform both detection and recognition tasks simultane-
ously. The YOLOv8 model trained on all 52 card classes
showed signs of over-fitting and struggled to distinguish be-
tween similar card values and suits. By separating the detec-
tion and recognition tasks, our combined system achieved
more stable learning curves and higher confidence in its pre-
dictions.

However, both systems were fundamentally limited by
their ability to detect cards in the image. The detection stage
is crucial, as any missed or inaccurately localized cards di-
rectly impact the subsequent recognition stage. Enhanc-
ing the detection accuracy is therefore essential for further
improving the overall performance of the system. Future
work will focus on improving the detection capabilities of
the YOLOVS model, exploring advanced data augmenta-
tion techniques, and integrating object tracking algorithms
to maintain a consistent count of detected cards over time.
Furthermore, with more allocated time, a custom image seg-
mentation model to mask out the cards would have been
another tested approach to try, in order to give the high-
performing card recognition model more of a priority rather
than being “bounded” by small bounding boxes in the im-
age.
Additionally, we observed that the combined system per-
formed well under normal conditions but faced challenges
when cards were rotated or partially occluded. Further-
more, our current method of the card recognition model was
trained separately from the card detection model, but hav-
ing a custom card detector that is fine-tuned synchronously
to the recognition model with a fused layer between the two,
could result in better predictions than a custom scaling and
padding when passing the predictions of the detector into
the recognition model.

References

[1] W.-Y. Chen and C.-H. Chung. Robust poker image
recognition scheme in playing card machine using
hotelling transform, dct and run-length techniques.

4328

(2]

(3]

(4]

(3]

(6]

(7]

https://www.sciencedirect.com/science/
article/pii/S105120040900178%,2010.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and
A. Vedaldi. Describing textures in the wild. In Proceedings of
the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2014.

geaxgx. playing-card-detection. https://github.
com/geaxgx/playing-card-detection?tab=
readme—ov-file#readme, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

Ultralytics. YOLOvVS8: A state-of-the-art real-time object
detection system. https://docs.ultralytics.com,
2021.

K. W. Xuewen Hu, Tao Yu and J. Yuan. Poker
card recognition with computer vision methods.
https://ieeexplore.ieee.org/stamp/stamp.
Jsp?tp=&arnumber=9563607, 2021.

C. B. Zheng and D. R. Green. Playing card recognition
using rotational invariant template matching. |https:
//digital.liby.waikato.ac.nz/conferences/
ivenz07/papers/ivenz07-paper51.pdf, 2007.

https://www.sciencedirect.com/science/article/pii/S105120040900178X
https://www.sciencedirect.com/science/article/pii/S105120040900178X
https://github.com/geaxgx/playing-card-detection?tab=readme-ov-file#readme
https://github.com/geaxgx/playing-card-detection?tab=readme-ov-file#readme
https://github.com/geaxgx/playing-card-detection?tab=readme-ov-file#readme
https://docs.ultralytics.com
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9563607
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9563607
https://digital.liby.waikato.ac.nz/conferences/ivcnz07/papers/ivcnz07-paper51.pdf
https://digital.liby.waikato.ac.nz/conferences/ivcnz07/papers/ivcnz07-paper51.pdf
https://digital.liby.waikato.ac.nz/conferences/ivcnz07/papers/ivcnz07-paper51.pdf

