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Abstract 

 

With vast improvements in deep learning in more recent 

years, such as transformers, deep learning has become 

more integrated in many fields of society, for all kinds of 

tasks, from audio, verbal, and visual. Deep learning has 

been helpful in alleviating burdens and tackling complex 

problems in the medical field, such as simulating protein 

folding. With more development of powerful transformer 

models, an area of recent focus has been in developing 

foundation models, for steps towards artificial general 

intelligence. DINOv2, a recently released model for robust 

feature extraction has promising results as a foundational 

model in performing a wide range of medical tasks, such 

as disease classification and organ segmentation. In this 

paper, we experiment with integrating DINOv2 encoder 

into different models, from a simple autoencoder model to 

a more complex convolution transformer model, to tackle 

a more complex problem of image registration with MRI 

imaging. The results indicate DINOv2 to show promise in 

being used in transformer models to tackle MRI 

registration, with future study being needed in integrating 

DINOv2 for stronger feature extraction for MRI 

registration. 

1. Introduction 

Magnetic resonance imaging (MRI) generates 3D 

images of the body, such as organs, and bones. MRI is 

used for brain imaging to help provide precise imaging to 

help detect anomalies, such as clots, tumors, and help look 

for causes for conditions such as seizures. Neurology, the 

study of the brain, proves to be an important area of focus, 

with the brain being a complex and highly detailed 

structure that requires extreme care in imaging, and 

interpretation to analyze for anomalies, or finding 

discrepancies. 

Advances in computer vision, and deep learning have 

benefitted the medical field immensely. Advances in 

predictive AI have helped simulate protein folding [10], 

while computer vision has helped with other tasks such as 

diagnosis, tumor detection, segmentation, object 

recognition, etc.  More importantly, recent focus on 

creating generalized models that can perform well on 

multitude of tasks without fine tuning, to avoid the 

complexity, time-consuming, and resource intensive 

nature of designing, finetuning, and training specialized 

models for a specific task.  

1.1. DINOv2 

The term “foundation model”, is a general term to refer 

to a model that can perform a wide range of tasks, usually 

trained on a large swathe of datasets, without need for 

finetuning per task.  

DINOv2 is an open-source foundation model library 

released in 2024, for visual based tasks, such as object 

detection, segmentation, depth estimation, etc. [8].  

Models released utilized visual transformers (ViT). 

Visual transformers break down the images into a series of 

patches as input and fed into a transformer encoder to 

extract features. DINOv2 provides a variety of pretrained 

model sizes ranging from small models, i.e. ViT-S/14, 

which has a total of roughly 21 million parameters, to 

huge models, i.e. ViT-g/14, which have roughly 1.1 billion 

parameters. DINOv2 also provides models with and 

without registers, a model feature that utilizes additional 

inputs to help determine high norm “outlier” tokens that 

are used for internal computation to generate more 

informative outputs [4]. 

Decoders are then used to interpret the extracted 

features to generate output. DINOv2 released not only 

pretrained ViT for extracting robust features, but also 

multiple decoder heads for a multitude of tasks, such as 

depth estimation, semantic segmentation, and image 

classification. 

The models were pretrained utilizing LVD-142M 

dataset, containing 142 million natural images, composed 

of millions of curated images from existing datasets, and 

uncurated images selected utilizing embeddings and k-

means clustering. 

DINOv2 pretrained model ViT-g/14 with registers, 

containing 1.1 billion parameters, achieved 83.7% on k-

NN evaluation, and 87.1% on linear probing on ImageNet, 

outperforming other methods, such as iBOT, CLIP, etc.  
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1.2. Image Registration 

Image registration is a task to generate a dense 

registration field used to align a moving image with a 

fixed image. A warped image is used to refer to the image 

generated by applying the registration field to the moving 

image. 

A more constrained approach is rather than generating a 

registration field with dimensions equal to the image, we 

only generate the parameters necessary for a 

transformation. Fundamentally, for a point, there are four 

transformations that can be applied: rotate, translate, scale, 

shear. The goal of affine image registration is to generate 

the necessary parameters for an affine transformation 

matrix. Compared to a dense registration field, the 

necessary parameters to discover is relative to the number 

of dimensions of the image, rather than the total number of 

points in the image itself. For a three-dimensional image, 

the total number of outputs needed to calculate for affine 

image registration will always be 12, regardless of the size 

of the image. 

1.3. Contribution 

This paper aims to explore the effectiveness of DINOv2 

feature extraction on MRI registration, integrating into 

pre-existing model architectures. Specifically, an initial 

bare bones model, utilizing the pretrained DINOv2 

encoder, and a simple decoder head. The simple model 

failed to achieve any loss decrease, and based on 

examples, virtually no warping has taken place.  

From there, we explored more established models, such 

as ViT-V-Net, a convolutional transformer model, with 

modifications to substitute the 3D encoder with the 

DINOv2 2D encoder. The model achieved loss decrease 

for both training and validation, and test examples indicate 

warping taking place, with warped images showing more 

similarities with fixed images.  

The experiment showed promising signs of utilizing 

DINOv2 for feature extraction for complex tasks, such as 

image registration for a single pass model, given the 

relative time window to conduct the experiment. Given 

more time, it would be valuable to explore integrating 

better volumetric encoding from DINOv2 encoder into 

transformer models to see any performance impact. 

2. Related Works 

2.1. Iterative Based Models 

  An approach to solving the problem of image 

registration is to generate an initial registration field, apply 

it on the moving image to generate a warped image, and 

then iterates repeatedly to optimize the registration field, 

apply to warped image, and compare similarity between 

fixed and new warped image. The iteration continues until 

 

Figure 1: Sample pair of fixed and moving MRI images for MRI 

registration. Test example for simple model, with generated 

warped image, after only ten iterations of training. 

 

reaching convergence, or after a set number of iterations. 

An iterative approach for 3D image registration involves 

generating 3D volumetric encoding and utilizing the 

iterative approach above to generate the registration field, 

and iteratively achieve the warped image [12]. DINO-Reg 

utilizes DINOv2 to generate a 3D volumetric encoding 

and utilizes the iterative approach to solve image 

registration [13]. DINO-Reg, unlike other convolution, 

and transformer models, has no learnable parameters, 

making it a ready to use model on any data without 

needing for training, since it optimizes iteratively during 

evaluation. 

DINO-Reg resolves certain issues with using DINOv2 

for MRI registration, such as meaningful feature extraction 

for MRI images by enlarging the image and generating 

2,080 14x14 patches as input for DINOv2 encoder to get a 

strong 3D volumetric encoding of the MRI image.  

However, a major trade-off of DINO-Reg, is that the 

encoding process is incredibly costly timewise, and 

therefore, the entire time it takes to generate an output. 

With the given time with this project, we won’t have the 

capacity to fully explore utilizing components of DINO-

Reg, such as generating robust 3D volumetric encodings. 

However, it is an area of exploration, with integrating the 

DINO-Reg methodology for volumetric encoding with 

DINOv2, into transformer models with DINOv2 encoder.  

2.2. Convolution and Transformer Based Models 

Convolution based models utilize convolution layers for 

feature extraction for down sampling, and then up 

sampling to generate a result. U-Net, a model originally 

created for organ segmentation, utilizes an autoencoder 

model, with skip connections between the encoder and 

decoder [9]. While originally formalized for organ 

segmentation, U-Net proved to be a strong model for other 

medical tasks, such as image reconstruction, and image 

registration [6]. 

With the introduction of transformers for strong feature 

extractions, used in both computer vision and natural 

language processing, transformers helped previous models 

with powerful features. One utilization of transformers for 

image registration is to utilize similar models as 
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convolution-based models, with skip connections between 

down sampling and up sampling. ViT-V-Net utilizes 

transformer for generating embeddings features for up 

sampling to generate registration field [3]. More recent 

models built off ViT-V-Net, such as TransMorph utilizes 

multiple ViT encoders during down-sampling to generate 

feature embeddings used for both down-sampling, and up-

sampling with skip connections [2]. We will utilize a 

similar set up, with the general idea of Vit-V-Net, 

substituting the 3D ViT encoder with the DINOv2 ViT-

14/L encoder for feature generation. 

2.3. PIRATE+ 

PIRATE+ is a plug and play model used for MRI image 

registration [5]. Unlike previous work that utilized an 

iterative approach to develop a registration field, 

PIRATE+ trains a denoiser, used to help generate a 

registration field. Unlike PIRATE+, which iterates in 

generating a registration field until convergence, our 

methodology utilizing DINOv2 will only require one 

forward pass given a fixed and moving image. Our model 

will only require one forward pass in generating a 

registration field to help align a moving image with a fixed 

image. However, since we’re utilizing DINOv2, a pre-

trained encoding model for feature extraction, we will still 

require training a decoder to generate a registration field. 

2.4. Medical Applications with DINOv2 

Previous experiments explored the effectiveness of 

DINOv2 on radiology tasks such as disease classification 

and organ segmentation compared to existing methods [1]. 

DINOv2 pre-trained models indicated strong performance, 

and utilizing fine-tuning techniques, such as LORA, and 

BitFit, increased overall performance, by training bias 

terms within the pretrained DINOv2 encoder. The study 

indicated prospects of DINOv2 as a foundational model 

for medical imaging tasks, with good out-of-the-box 

performance, and better fine-tuned performance. 

DINOv2 provides decoder heads for classification, and 

segmentations, but none for image registration, meaning 

we will need to find existing image registration models to 

integrate DINOv2 encoder into. With a wide range of 

existing image registration models, as described above, we 

won’t be able to experiment with all the models described 

above and will mainly focus on integrating DINOv2 with 

a model like ViT-V-Net. Even though DINO-Reg is a 

strong image registration model that utilizes DINOv2 for 

volumetric encoding, it’s time-consuming nature at  

 

evaluating makes it difficult to test, given the timeframe of 

the project. 

 
Figure 2: Simple model setup for MRI registration using 

DINOv2 ViT-L/14. Concatenate fixed and moving image as 

input into encoder. Use generated embeddings as input into 

decoder to generate registration field. Combine registration field 

with moving image to create warped image. For training, use 

warped image and fixed image as inputs to loss function to train 

decoder. 

3. Technical Approach 

3.1. Datasets 

For MRI registration, we utilize open-source dataset 

OASIS-1. OASIS-1 contains 457 MRI scans [7, Figure 1]. 

MRI scans are anonymized, and preprocessing OAIS-1 

dataset includes affine registration, skull stripping, and 

rescaling1. Each MRI scan is of size 160x192x224, where 

slicing by index 0, 1, 2 will give you sagittal, axial, and 

coronal views, respectively. 

We will select 414 samples from the dataset, and split 

the dataset into training, validation, and testing groups, 

with 320 samples in training, 47 samples in validation, and 

47 samples in testing. Since image registration requires 

two images, a fixed image and moving image as input, 

given 47 images, we have C(47, 2)*2 = 1,081 *2 = 2,162 

examples in the testing group. Similarly, for training set, 

given 320 images, we have C(320,2)*2 = 51,040*2 = 

102,080 examples in the training set. So even though the 

dataset is relatively small, the total number of unique 

examples for image registration tasks is large. 

3.2. Simple Model Setup 

The general structure of the simple model is a ViT 

encoder to generate feature embeddings, with a decoder to 

generate a registration field, and a spatial network to apply 

the registration field to moving image to generate a 

warped image [Figure 2]. 

For MRI registration, we utilize DINOv2 ViT-L/14 

with registers for the encoder. Since ViT-L/14 takes in 2D 

images with three channels, with dimension sizes divisible 

by 14, we rescale the MRI images to be of shape 

3x224x224. We slice by axial view, transposing an MRI  

 
1 https://github.com/adalca/medical-datasets 
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Figure 3: Modified ViT-V-Net model with DINOv2 encoder. 

Training down-sampling and up-sampling layers, and freezing 

encoder. 

 

image, add three channels, and add zero-padding to 

achieve the shape of 192x3x224x224 for an MRI image.  

Since image registration requires both fixed and warped 

images, we can concatenate the fixed and moving images, 

to generate an input shape of 384x3x224x224. We will 

add a top layer to the encoder allowing batch processing. 

The resulting embeddings generated by the encoder will 

be of shape Nx384x1024, where each axial slice has a 

feature vector of size 1024, generating embeddings for 

each slice for fixed and moving images. 

For decoder, we utilize U-Net decoder to generate 

registration field from the embeddings generated from the 

encoder and utilize a spatial transformation layer to 

generate the warped image.  

The decoder with a spatial transformation layer will be 

the only aspects of the model that will require training. For 

the loss function, we utilize Normalized Cross 

Correlation2 (NCC), a technique used to determine 

similarity between two sources, as a function of 

displacement relative to one another [11]. For training, 

every iteration runs N examples, where each example is 

two images randomly selected from the training set, 

training the decoder, and utilize Adam optimizer. After 

running test examples, we evaluate the model on ten 

examples from validation set and calculate average 

validation loss to determine effectiveness of current 

iteration of the decoder. We then save the model state after 

finishing the validation check. 

After training, we evaluate the effectiveness of DINOv2 

ViT-L/14 encoder with U-Net decoder, we will utilize 

Dice score to evaluate the similarity of overlap between 

the generated warped image, and the fixed image. 

3.3. Modified ViT-V-Net Model Setup 

Our new modified set up will address the faults of the 

previous iteration. For input, rather than processing fixed 

and moving images separately through the encoder, we 

concatenate the fixed and moving images together to  

 
2 https://github.com/wustl-cig/PIRATE-code/blob/main/model/loss.py 

 
 
Figure 4: Training and validation loss after 2,500 iterations of 

training transformer convolution model. NCC is used for loss 

function. 

 

extract features from the input, with respect to both the 

fixed and moving images.  

 

For the new set up, we will utilize a similar model as 

ViT-V-Net, utilizing three down-sampling convolution 

layers, a ViT encoder, and three up-sampling convolution 

layers with skip connections from the associated down-

sampling layers, with a spatial transformer to apply the 

registration field to the moving image to generate the 

warped image output [3]. Each down-sampling layer is 

composed of max pooling, and two convolution blocks, 

where a convolution block is composed of 3D 

convolution, ReLU, 3D convolution, ReLU. Each up-

sampling layer is composed of an upsampling layer, and 

two blocks, each composed of 3D convolution, batchnorm, 

ReLU, 3D convolution, batchnorm, ReLU. 

Skip connections, like U-Net model, utilize pre-

encoding fixed and moving images to provide further 

information during up-sampling [Figure 3]. However, 

unlike ViT-V-Net, since DINOv2 encoder requires input 

to be divisible by 14, we up-sample the output for each 

down-sampling layer, and concatenate them together, 

running through a final convolution layer with batchnorm 

and ReLU to generate the input for the DINOv2 encoder. 

We utilized existing codebase for ViT-V-Net to build 

the model, utilizing code for down-sampling and up-

sampling logic3, adding additional code to adjust down-

sampling outputs to fit the necessary requirements as input 

for the decoder. 

The model will utilize the same training method as the 

simple model discussed in the previous section. Similarly, 

we will utilize Adam optimizer for parameter updates, and 

avoid training the DINOv2 encoder. The parameters we 

will be training will be the down-sampling layers before 

the encoder, and the up-sampling layers after the encoder 

to build the registration field, freezing the DINOv2 

encoder. 

 
3 https://github.com/junyuchen245/ViT-V-

Net_for_3D_Image_Registration_Pytorch 
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Figure 5: A scatterplot, and a histogram plotting both baseline 

and model Dice score test results. 

4. Results 

4.1. Problems with Simple Model 

After running over 1,000 iterations, overall training loss 

never budged between the range of 0.88 and 0.86. 

Generated warped images with simple model show little 

warping or aligning of moving image to fixed image 

[Figure 1]. 

An issue that could be causing ineffective training, as 

indicated by the lack of loss decrease, could be the dataset. 

Even though we’ve established that there are more than 

100,000 unique examples, since it’s limited to 320 images, 

the size of the original dataset could be another cause. 

Another issue is that since the model generates 

embeddings for fixed and moving images separate from 

one another, the generated features lack information of 

how fixed and moving images interact.  

Similarly, since we up-sample from only the extracted 

features, we lose out on the relative positional information 

of the pixels from the fixed and moving images, making it 

more difficult to generate a registration field. Since a 

registration field is warping the pixels from the moving 

image to a new position, without any positional 

information when up-sampling can lead to difficulty in 

generating a registration field. 

4.2. Loss 

Normalized cross correlation was used to calculate loss 

for training the model. Resulting training loss dropped 

from initial 0.88 to roughly 0.73, with validation loss 

dropping from 0.88 to 0.74, with a lower variance for 

validation loss compared to training loss [Figure 4], 

compared to the simple model that oscillated between 0.88 

and 0.86. This indicates that data size most likely is not 

the main cause of the inability of the simple model to 

decrease loss over hundreds of iterations of training. 

However, we do see the speed at which loss is decreasing 

by, is slowing down as we increase the number of 

iterations. This could be an issue with the generated 

feature embeddings. ViT-V-Net trains both the 

convolution layers and the ViT encoder, while for our 

model, we only train the convolution layers, which could 

limit the robustness of the features extracted after down-

sampling. A way to possibly improve this model would be 

to generate more robust feature encodings by integrating a 

similar volumetric encoding methodology as DINO-Reg 

[12]. 

4.3. Dice Score 

The evaluation metric used to determine performance is 

Dice score, a similarity metric calculated by dividing areas 

of overlap between the sum of the total area of the two 

images. Even with a relatively small decrease in both 

training and validation loss, from 0.88 to 0.73 [Figure 4], 

we see an improvement in dice score based on examples 

ran on the test set. Dice score is a value within the range of 

0, 1 inclusive, measuring the overlap between two sources. 

For a baseline, we calculate dice scores between 

moving and fixed images, and for the model, calculate 

dice score between warped and fixed images. This way, 

we can determine how well our model performs relative to 

not performing any warping. 

 We will randomly select 100 image pairs from the test 

set, and calculate dice scores between moving and fixed, 

and between warped and fixed. From there, we compare 

average dice scores, and dice score variance. 

 Based on the test scores, the baseline average is 0.332, 

with variance of 2.9e-4, and model having an average dice 

score of 0.362, with variance of 3.3e-4 [Figure 5, Figure 

6]. Though far from a success, the results indicate an 

improvement regarding aligning the moving image to the 

fixed image. To better visualize the performance of the 

model, we will look at some examples of warped MRI 

images generated by the model.  

4.4. Model Outputs 

Based on the dice score evaluation, our model indicates 

an improvement compared to the baseline. Next, we can 

examine how our model performs based on test examples.  

The warped image has some traits of the fixed image, such 

as relative brain shape, and edge deformations, but also 

traits of the moving image near the center [Figure 7]. This 

indicates that unlike the simple model, the modified ViT- 
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Figure 6: Test example of modified ViT-V-Net model, 

displaying fixed, moving, warped images, and a heat map of 

difference between fixed and warped images.  Brighter areas in 

heat map indicate areas of larger differences. 

 
Figure 7: Left image indicates heat map of difference between 

fixed image and moving image. The right image indicates a heat 

map of difference between fixed image and moving image 

generated by modified ViT-V-Net model. Brighter areas in heat 

map indicate areas of larger differences. The right image shows 

less areas of high difference compared to the left image. 

 

V-Net model is much better in generating a registration 

field for aligning the moving image to the fixed image, 

however, not fully able to fully align the moving image to 

the fixed image. Similarly, comparing the differences 

between the warped and fixed image, and the difference 

between the moving and fixed image [Figure 6], we see 

that the warped image has less areas of high contrast, 

compared to the moving image, with respect to the fixed 

image. 

5. Conclusion 

The focus towards developing foundation models has 

become a hot topic of research. DINOv2 has shown 

promises as a robust feature extractor used for multiple 

tasks, from depth estimation, image segmentation, 

classification. While there exist models that utilize 

DINOv2 for volumetric encoding for iterative models for 

image registration, this paper explores possible integration 

of DINOv2 into transformer and convolution-based 

models. Utilizing a modified version of ViT-V-Net with 

DINOv2 encoder, early results have shown promising 

results with generated outputs showing indication of 

aligning moving image towards the fixed image, and hope 

of DINOv2 being a robust feature extractor as a 

fundamental component for foundation model for medical 

tasks. 

5.1. Future Work 

The constraints of the time frame to research, set up, 

and run the experiment allowed only a baseline 

experiment in integrating DINOv2 encoder into 

transformer and convolution-based models. Early results 

as discussed shows promise but fall short in solving MRI 

registration. 

For future work, it would be good to explore different 

feature extraction using DINOv2 with the current model, 

such as integrating DINO-Reg’s methodology used for 

generating volumetric encoding for 3D images [13]. 

Also, more recent models such as TransMorph show 

much better results for image registration and are worth 

investigating with DINOv2 encoder integration. 
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