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Abstract

In this report, I present my approaches to creating a
general-use fruit-classification system by training a multi-
class classifier as well as an orange citrus detection model.
Since yield management is a predominantly manual task
across many farms and orchards, this problem would help
farmers reduce tedious tasks for their workers and minimize
wasted produce. This problem space has inspired many re-
searchers to apply cutting edge deep learning techniques to
identify, classify, and count fruit in trees. For my classifier, I
trained and evaluated several out-of-the-box models like the
VGG-16, ResNet-34, and MobileNet v2. For the object de-
tection system, I then fine-tune a Faster R-CNN pre-trained
on the COCO dataset to detect oranges in trees. Each task
required its own dataset. One is a dataset of 131 different
fruit and vegetable varieties while the other contains anno-
tated pictures of orange trees. Ultimately, the ResNet-34 is
the most accurate classifier and the fine-tuned model out-
performs the base object detector. I attempt, unsuccessfully,
to combine the two models, but still succeed in producing
two different models that are useful in classifying and de-
tecting fruit.

1. Introduction
Fruit yield management is a critical part of agriculture

businesses. Yield monitoring systems provide data on the
state of crops, which helps reduce waste, optimize efficien-
cies, and enhances sustainability. However, in many or-
chards and farms, yield management is still primarily man-
ual, with teams of field workers walking the orchards and
manually counting and sizing fruits. This is the perfect
problem space for computer vision programs. Correctly
solving this problem with computer-vision led analysis can
automate tedious and time-consuming processes, compile
real-time data on orchards and farms, eliminate waste, and
detect infestation and fruit diseases.

In this project, I wish to focus primarily on fruit detec-
tion, which is the foundation of yield management. Later

Figure 1. This is an annotated image from our dataset. Given an
image, we want our model to predict these red boxes.

steps in the yield management process, which includes
counting, monitoring and classifying features such as fruit
size, growth over time, and disease, will not be addressed in
this project for the sake of simplicity.

The input to my problem is a 800 x 1240 image of an
orange tree. We will then use an image detection network
(Faster R-CNN) to output boxes around detected oranges
(see Figure 1 for an example). Three different approaches
are introduced to detect oranges in trees. The first is apply-
ing a detection network pre-trained on the COCO dataset
[11], the second is fine-tuning this detection network, and
the third is implementing a classifier to augment the fine-
tuned model. This third step required additional analysis to
train, evaluate, and select a high quality classifier that can
properly generalize to other datasets, domains, and fruits.
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2. Related Work

Applications of deep learning in fruit detection tends to
fall into a few overlapping categories. First, several papers
solve inter-fruit classification by training classifiers that dis-
tinguish between different species of fruit or vegetables [15]
[1]. Many researchers innovate by applying novel data
sources to generic data infrastructures [14] [18]. Others
focus solely on applying and modifying new technological
methods and CNN architectures to fruit detection [8] [20].
Still others seek to solve niche problems in the fruit detec-
tion space, such as determining ripeness [12] [21]. Very few
describe novel algorithms [23].

It appears that novel data sources are particularly helpful
with improving classification. One that was particularly in-
teresting involved combining RGB images with Infrared to
better detect fruit in orchards [18]. Another state of the art
paper constructed their own algorithm to track fruit across
frames to avoid double counting [23].

Faster R-CNNs and other Convolutional Neural Net-
works are commonly utilized in this problem space and will
be utilized in this project.

One difficulty in comparing these methods is that there
is no state-of-the-art dataset for fruit detection and classifi-
cation. In fact, most of the papers describe how they created
their own datasets, which can be very useful for researchers
like me who don’t have the resources to do so, but it also
makes it difficult to compare methods. What could work
well with one dataset may not generalize well to others, as
we’ll see later in this report.

3. Methods

There were two phases in my project. The first involved
training and comparing different out-of-the-box networks
to build out a robust fruit classifier. The second involves
implementing the three object detection networks based on
the Faster R-CNN network.

3.1. Fruit Classification

3.1.1 Model Architecture

I experimented with three different image processing ar-
chitectures. The three selected were the VGG-16, Resnet-
34, and MobileNetV2. These were selected because of
the varying model innovations, network depths, and model
complexity. Each of these models were compared with the
CNN in the original paper (Figure 2), which is considered
the baseline.

3.1.2 Learning Algorithm

For this problem, I implemented mini-batch gradient de-
scent. In this algorithm, small batches of our training data

Figure 2. This is the baseline Convolutional Neural Network we
will compare our classifiers against.

are computed and used to compute the gradient. This gra-
dient is then used in gradient descent to update the model’s
parameters. The algorithm will repeat this for all batches in
the training data. Upon the conclusion of the training data,
the model will be evaluated on the validation data. The val-
idation loss will then be used to notify the scheduler. This
entire process is one epoch and will repeat for all epochs.
The equation for the parameter update rule is as follows:

θ(t+1) = θ(t) − η

m

m∑
i=1

∇θJ(θ;x
(i), y(i))

m denotes the size of the mini-batch, where x is the input
and y is the target output. η is the learning rate.

3.1.3 Loss Function

For this image classification problem, I used a binary cross
entropy equation to quantify loss during model training.
The equation is as follows:

L = −
C∑
i=1

yi log(ŷi)

This loss function encourages the model to minimize the
difference between its predicted distribution and the correct
distribution of classes, thereby encouraging the model to
choose the correct class and no other.

3.2. Object Detection

3.2.1 Model Architecture

I utilized a ResNet-50 backbone architecture on a Faster R-
CNN that has been pretrained on the COCO dataset. One
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Figure 3. Faster R-CNN network as described in the original paper
[17]

of the COCO classes is for an orange. We will use this pre-
trained Faster R-CNN to make classifications on oranges in
our orange tree dataset. This will be our baseline model
and is available for use out-of-the-box. We fine-tune this
baseline model on orange fruit trees. Finally, we will add in
our fruit classifier to enhance the predictions that we make
on regions.

For context, an R-CNN is a fully convolutional network
that utilizes a selective search algorithm to efficiently se-
lect regions of an image that are likely to have an object in
them. These regions are called Regions of Interest (RoI).
These RoI are then converted into images, resized into a
fixed size, and then passed through a classifier to get both
classifications and ”boxes” around the regions.

Faster-R-CNN improves this selective algorithm and im-
age resizing step and by instead applying a ”backbone”
network onto the input image. These backbones can be
any convolutional neural network, but excludes the fully-
connected layers. The backbone network produces features
that can then be cropped and resized into different regions
and then passed through another convolutional neural net-
work to get the object’s category and box coordinates. See
a diagram here 3 of the model’s architecture.

There are other possible backbone models, but PyTorch
has only two that are implemented in their pre-trained mod-
els. I selected ResNet because of my familiarity. If I had
more time, I would’ve tested PyTorch’s various implemen-
tations of ResNet and MobileNet Faster R-CNN models.

3.2.2 Learning Algorithm

I used mini-batch gradient descent, which is the same learn-
ing algorithm as described in 3.1.2.

Figure 4. Examples from the fruits-360 dataset.

3.2.3 Loss Function

Object detection is a multi-task problem that involves both
localization and classification. As such, the loss function
combines regression and classification losses into a single
loss function:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )+λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ).

This is the loss function for a single image. The left-hand
term computes to the classification loss of each Region of
Interest and takes as inputs the difference between the pre-
dicted pi and true p∗i class probabilities. The second term
calculates the difference between predicted ti and t∗i bound-
ing box parameters for the i-th RoI.

4. Dataset and Features
4.0.1 Classifier: Fruits-360

There are 90,483 total images of size 100 x 100 x 3 and 131
classes of fruits and vegetables. Many fruits and vegeta-
bles include multiple varieties, for example, Apples include
Crimson Snow, Golden, Granny Smith, Red Delicious, and
others. These images were pre-split into a training set of
67,692 and 22,688 for testing. This dataset can be found
here and was used in this paper [15]. See 4 for examples of
the data.

The dataset description observes that: ”Fruits and veg-
etables were planted in the shaft of a low-speed motor (3
rpm) and a short movie of 20 seconds was recorded... Be-
hind the fruits, we placed a white sheet of paper as a back-
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ground... However, due to the variations in the lighting con-
ditions, the background was not uniform and we wrote a
dedicated algorithm that extracts the fruit from the back-
ground.”

For my pre-processing, I first split the training data into
training and validation (80-20 split). Then, after I com-
pared models, I applied a ColorJitter transformation to en-
sure that the classifier did not become too dependent on spe-
cific lighting or hues. This was an important step because of
the uniformity of lighting conditions for these fruits, which
would not be seen on farms or orchards.

4.0.2 Detection: Orange

I have a smaller dataset of oranges found here and used in
this paper [?]. There are 392 images of trees of size 800
x 1040 x 3 or 800 x 1240 x 3. Across these images, there
are 6,967 total annotations of orange citrus. This averages
to around 17 annotated oranges per image. See 1 for an
example.

This data was not pre-split between training and testing,
so I did a 70-15-15 split. This meant that I had 274 training
images, 58 for validation, and 60 for testing.

For pre-processing, I had to process the annotation xml
files accompanying every image. The images themselves
were unaltered, although there were several images that had
varying sizes and one image that contained no annotated
oranges. If I had more time, I would’ve liked to have ex-
perimented with different image augmentations, especially
since this is a smaller dataset.

5. Experiments, Results, and Discussion

5.1. Fruit Classification

5.1.1 Experiments

In order to ensure that these models are properly compared
to the baseline model in the original dataset paper [15], the
following hyper-parameters were utilized when training:

Hyperparameter Description

Epochs 25
Batch Size 50
Learning Rate 0.1
Loss Function Cross-Entropy
Optimizer AdaDelta
Scheduler ReduceLROnPlateau
Reduction Factor 0.5
Patience 3
Min. Learning Rate 0.00001

Table 1. Hyperparameters used in training

In order to ensure that proper comparisons were made
across models, the hyper-parameters for the original paper
[15] were utilized.

Each of the three models was trained according to these
hyper-parameters and then tested on the same dataset.
The training data was randomly split between training and
validation data during training. The validation data was
used in the scheduler.

Optimizer
The optimizer used in the original paper [15] is an

AdaDelta optimizer [22]. It offers some improvements to
the Adagrad optimizer. Specifically, it seeks to reduce Ada-
grad’s aggressive, monotonically decreasing learning rate
which often causes learning to stop too early. A key advan-
tage is that there is no manual tuning of the learning rate.
The update rule is as follows:

∆xt = − η√∑t
τ=1 g

2
τ

gt

This update rule is used in gradient descent. The de-
nominator computes the l2 norm of all previous gradients
on a per-dimension basis, which is slightly different from
Adagrad’s update rule.

Scheduler
The scheduler in the original paper is Pytorch’s ”Re-

duceLROnPlateau”. As its name suggests, it will automat-
ically reduce the learning rate by the reduction factor if the
validation loss delta over three consecutive epochs (as de-
termined by the patience parameter) stays below a specified
threshold. By default, this threshold is 0.0001.

5.1.2 Primary Metrics

For this problem, the primary metric is accuracy. The equa-
tion for accuracy is defined as follows:

Accuracy =
TP + TN

TP + TN+ FP + FN
With TP, TN, FP, FN meaning true positive, true nega-

tive, false positive, false negative, respectively. We want to
ensure that a fruit is correctly labeled, full-stop.

5.1.3 Results

See (Figure 5 and Figure 5.1.3). Note that while the test
sets are exactly the same across models. The only thing that
changes across these four models is the model architecture.

5.1.4 Discussion

Overall, the ResNet-34 appeared to edge out slightly the
baseline convolutional network. However, this comes at a
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Figure 5. Loss and accuracy saturated quickly for the classifier.

Model Training Set Test Set
Accuracy Accuracy

Baseline 99.98% 98.66%
VGG-16 99.98% 94.5%
ResNet-34 99.98% 98.77%
MobileNetv2 99.98% 98.09%

Table 2. Comparison of models on Val Set and Test Set

cost. The ResNet-34 is much more complex than the base-
line model, which means that it may introduce unnecessary
complexity both computationally and in memory.

These models appear to saturate very quickly 5 and
achieve extremely high test accuracy. This is most likely
a result of the uniformity of conditions across fruits during
the creation of the dataset. Specifically, in image genera-
tion, a fruit was attached to a drill and rotated. Images were
captured from the frames of webcam footage. This may also
cause some training set leakage in that the same fruit may
be present in both training and test, but at a different angle.

This hypothesis is supported by the original paper [15].
They found that if they converted all images to grayscale,
test performance declined, suggesting over-dependence on
the colors of the same fruit. If they augmented the data
through hue/saturation modifications and horizontal flips,
test performance declined further. In other words, this clas-
sifier may be over-fit to the exact fruit in this dataset, which
will likely not generalize well to other fruit datasets.

5.2. Object Detection

5.2.1 Experiments

Three models were tested on the Orange Tree dataset. The
Orange Tree dataset was split into training, validation, and
test data. The following hyperparameters were used to fine-
tune our model:

Hyperparameter Description

Epochs 10
Batch Size 8
Learning Rate 0.0001
Optimizer Adam
Scheduler ReduceLROnPlateau
Reduction Factor 0.5
Patience 3
Min. Learning Rate 0.000001

Table 3. Hyperparameters used in training the orange detector.

Epochs were selected to give the validation or training
accuracy enough time to plateau. After which, the epochs
were adjusted to prevent over-fitting. The batch size was
selected to be smaller in order to improve generalization
while still being feasible given GPU constraints (8 was too
small a batch). The Adam optimizer is a good default choice
in that it combines the benefits of the AdaGrad and RMS
prop optimizers while performing stochastic gradient de-
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Figure 6. The finetuned model best approximated the ground truth.

scent. I paired this optimizer with a scheduler, the same
scheduler from classification training, in order to improve
performance by tuning the learning rate.

5.2.2 Metrics

For this problem, the key metric is mean Average Precision
(mAP). This metric is calculated by analyzing three other
metrics. First, note that precision is defined as the propor-
tion of correctly identified objects among all identified ob-
jects (true positives + false positives). Recall is related in
that it is the proportion of correctly identified objects among
all actual objects (true positives + false negatives). These
two metrics can be plotted on a Precision-Recall Curve,
which plots precision against recall for different threshold
values. Average Precision is the area under this precison-
recall curve and it effectively summarizes precision-recall
curve. This metric is calculated for each class (in this case,
only oranges), and then averaged across all classes. This
allows us to summarize detection performance in a single
score.

5.2.3 Results

After running the experiment, the following scores were
generated.

Model mAP

Baseline 0.1111
Finetuned 0.4403
Finetuned + Classifier N/A

Table 4. The finetuned model performed better than the baseline.

Figure 7. The fruits-360 classifier correctly classified so few of
the oranges as to be unusable. It classified this orange as a ”rasp-
berry”.

5.2.4 Discussion

The fine-tuned model demonstrated improvement over the
pre-trained COCO detector. This is evident both numeri-
cally through the mAP scores (Figure 5.2.3) and visually 6
This makes sense because of the principle of ”transfer learn-
ing.” The pre-trained model could already recognize objects
such as oranges, as demonstrated by the baseline model. By
fine-tuning this pre-trained model, we could take advantage
of that knowledge and ”transfer” some of its learning onto
this new task. Unfortunately, the classifier didn’t prove to
generalize outside of the fruits-360 dataset and didn’t cor-
rectly classify any of the detected oranges. Therefore, it was
left unimplemented.

4326



6. Conclusion / Future Work
In this project, two things were done. The first was the

training of a highly accurate fruit classifier capable of dis-
tinguishing between 131 different variety of fruit with high
accuracy. The second was the implementation and training
a fruit detection model that could detect oranges in trees.
In the first part of the project, the ResNet-34 performed the
best on the test set. In the second, the fine-tuned model per-
formed much better than the baseline. I was unsuccessful in
connecting the two.

If I had more time (or any other team-members), there
are a few categories of things I would’ve liked to have done.
First, I would’ve liked to have successfully merged the two
models into one all-purpose fruit classifier. I would like to
integrate the fruit classifier into the classification architec-
ture of the Faster R-CNN. If that is infeasible, I would like
to instead to try and layer it on top to enhance predictions.

Second, I would like to improve the fruit classifier by
adding more image augmentations. This would make it
more generalizable, particularly regarding hue, brightness,
and occlusion. This would’ve overcome the shortcoming
with the dataset.

Third, I would like to improve the object detection sys-
tem. Many of the papers I read described using YOLO and
reported good performance. It would also be nice to run
some more experiments on hyperparameters and backbone
models to improve my detector.

This was a great project where I learned a lot. I think I
was too ambitious, given my experience and that I’m work-
ing by myself, but I learned enough to implement and train
both classifiers and object detection models and I’m excited
to build better systems in the future.

4327



7. Appendix
N/A

8. Contributions Acknowledgement
I did the entire project by myself.
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