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Abstract

With the ongoing climate change crisis causing spikes in
wildfires across the globe, mitigating wildfire spread after
ignition has become paramount to supporting environmen-
tal success and in many cases save lives. While many lo-
cal governments are adopting policies to prevent wildfires
before ignition, it is common for wildfires to start without
human involvement. To aid in the mitigation of wildfires,
this paper explores computer vision as a solution to pre-
dicting next-day fire spread. We use the Next Day Wild-
fire Spread [14] dataset, a feature rich dataset contain-
ing satellite images of historical wildfires and their asso-
ciated explanatory variables (e.g. topography, vegetation,
weather, drought index, population density). Our model
aims to achieve stable performance in regimes without data
when compared to baselines of data availability. Our data
restricted model achieves comparable performance to both
the baseline and feature rich models, though further com-
putational resources may be required assess the validity of
this gap.

1. Introduction
Within the past century, human industrial activity has

sparked the uncontrolled release of carbon dioxide [6] [17],
leading to an escalation in the progress of climate change
[16]. This escalation has led to a global increase in average
ambient temperature [29] [25], increases in the frequency of
heatwaves [4], and regional increases in the duration, inten-
sity, and frequency of droughts [3] [2] [31]. Subsequently,
the frequency of wildfires have increased by around 22%
globally given historical trends [1] with forecasts estimat-
ing that the fire season will increase by more than 20 days
per year in northern latitudes within the next century [8].
In addition to frequency, the strength of wildfires have been
forecasted to increase, with a modelled increase of around
60% in Europe [10] and up to a 400% increase across re-
gions of historically low flammability in Alaska [32]. This

increase in wildfire probability poses a significant threat to
future anthropogenic activity and environmental prosperity;
the 2020 California wildfires burned 1.7 million hectares,
caused 33 deaths, $7.1 billion USD in damages caused by
CO2e emmisions alone [15], and countless long lasting res-
piratory issues caused by a 40% increase in PM2.5 concen-
trations around wildfires [5].

With this increase in wildfire probability and strength,
conventional fire management approaches may no longer
be effective in the new era. Alternative methods are being
pursued where instead of mitigating the spread of already
ignited fires, many local governments are taking preventa-
tive action against ignition by better regulating fire creation
and subsidizing environmental restoration [9] [23]. Though
technically effective, these governmental plans have been
met with mild backlash, specifically for their insufficient
handling of edge cases exemplified by California’s lack of
policy in regards to the local native populations’ habits [22].

In response to the occasional ineffectiveness of govern-
mental regulation and the occasional nature derived, non-
anthropogenic ignitions [27], mitigating and limiting the
spread of already ignited fires is a vital technology requiring
further development. This paper explores deep learning so-
lutions using both feature rich and data limited models with
the overall goal of creating a model capable of predicting
fire spread in worst-1 situations where we lack detailed fea-
tures [33]. This data obscurity is overwhelmingly common
during deployment, especially during emergencies such as
wildfires, showcasing the importance of performance. We
predict next-day fire segmentation masks from previous-
day fire segmentation masks (and corresponding explana-
tory features), of which each mask has three distinct classes:
-1 (no data), 0 (no fire), and 1 (fire).

2. Literature Review

2.1. Physics Based

A distinguishing set of fire spread prediction models rely
on physics based approaches. While massively reliant on
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data observability and precision, these models attempt to
capture the fundamental processes governing the fire sci-
ence of heat exchange.

FARSITE (Fire Area Simulator) uses vector propagation
techniques on top of existing models of surface fire, crown
fire, point-source fire acceleration, spotting, and fuel mois-
ture to produce fire perimeters at specified time intervals
[7]. Figure 1 details specific physic based approaches taken
by FARSITE to accurately predict fire spread. Under ideal
conditions, FARSITE produced reliable fire spreading pre-
dictions yet faltered when presented with more extreme sit-
uations such as crown fires.

Figure 1. Illustration of Huygen’s principle applied to fire growth
modelling under various fuel types and wind-slope vectors

Other physics-based simulations, such as Mell et al.
[19], harness their associated weakness of data by hyper
focusing on specific fire spreading environments. In this
specific case, grassland fires were modelled favorably us-
ing known equations from fluid dynamics, combustion, and
thermal degradation.

Finally, WRF-SFIRE [18] is a predictive weather fore-
casting model coupled with a fire-spread model (SFIRE).
WRF-SFIRE is based on the Clark-Hall mesoscale atmo-
spheric model with a tracer-based fire spread model. Basic
evaluation revealed conclusive predictive ability with fur-
ther test-time evaluations yet to be conducted.

Though these models may be effective in controlled set-
tings, they commonly require unrealistically precise mea-
surements from fuel distribution and moisture to elevation
data.

2.2. Supervised Learning

The dataset itself presents a simple neural network with
a convolutional encoder as a modelling technique [14],
achieving a precision and recall of 33.6% and 43.1% re-
spectively. A similar approach was taken by Shadrin et al.
[28] who used CNNs in a U-Net style, specifically in the

MA-Net style [13]. This approach achieved an exceptional
F1 score of 0.85, though it was highly optimized for partic-
ular regions in the Republic of Sakha.

Finally, an alternative vision based method detailed in
Wu et al. [30] uses a two layer neural network to gen-
erate a flame propagation map which subsequently uses
a physical fire propagation model to predict fire spread.
This model achieved equivalently exceptional F1 scores of
89.85%, similar to Shadrin et al. [28], but was similarly
limited in scope to regions of China.

2.3. Limitations

An important observation on existing computer vision
solutions predicting wildfire spread is the disparity between
training and test data. The geographic and environmental
variables used during training are often rich and high resolu-
tion even though these AI systems may encounter partially
observed datapoints or high noise during deployment [33].
Robustness within these extreme circumstances are often
the most critical and useful to first responders, prompting
this paper to investigate prediction models under regimes
with limited observability.

3. Dataset
Next Day Wildfire Spread [14] is a Kaggle based dataset

containing 18,545 samples aggregated across the contigu-
ous United States from 2012 to 2020. Each sample contains
various explanatory variables describing a 64 km by 64 km
region with 1 km resolution. Next Day Wildfire Spread’s
explanatory variables include, but are not limited to: topog-
raphy, vegetation, weather, drought index, and population
density. See Figure 2 for example datapoints.

Importantly, each sample contains a previous-day fire
segmentation mask and a corresponding next-day gold la-
bel fire segmentation mask with a noted temporal separation
of a day. These segmentation masks contain three distinct
classes: -1 (no data), 0 (no fire), and 1 (fire). Class 0 (no
fire) overwhelmingly dominates these segmentation masks
in terms of pixel count with a pixel frequency of 97.26%
contrasting the pixel frequency of no data (1.77%) and of
fire-containing pixels (0.98%).

Since our model aims to predict fire spread irrespective
of observability, we only predict on the two data classes
(0/no fire and 1/fire). Data was split into 14,979 train exam-
ples, 1,689 test examples, and 1,877 validation examples.

4. Methods
4.1. Loss

Given the aforementioned class imbalance present in the
fire segmentation masks (background pixel percentage of
97.26% for no-fire pixels compared to a foreground pixel
percentage of 2.74% for data relevant classes), we require



Figure 2. Six sampled datapoints taken from Next Day Wildfire Spread dataset showing associated features. Note that on the fire
segmentation masks black pixels denote no data (-1), gray pixels denote no fire (0) and orange pixels denote fire (1).

a loss function that can weigh the classes according to their
frequency to mitigate any artificially low losses. Our algo-
rithm modifies the Dice score coefficient into a loss.

Dice =
2
∑

i(ŷiyi)∑
i(ŷi)

2 +
∑

i(yi)
2

(1)

The Dice score coefficient (1) is a similarity metric that
compares two binary arrays using overlap, innately account-
ing for class imbalance. It only compares the positive inter-
section, effectively ignoring all 0 classes. Here ŷi is the
predicted pixel value and yi is the real pixel value. Notably,
when applied to binary masks, the Dice coefficient is iden-
tical to the F1 score. This assumes pixel values only take
on classes 0 and 1. Since we want to drive similarity up and
since the coefficient is always less than 1, we can convert
this to a loss in a simple way.

LossDice = 1− Dice

= 1−
2
∑

i(ŷiyi)∑
i(ŷi)

2 +
∑

i(yi)
2

(2)

It is important to note that our model is predicting only
two classes even though the gold label fire segmentation
mask may contain three. In actuality, our model is mask-
ing a particular class when calculating loss: the -1 class (no
data).

While pure Dice loss handles class imbalances and pro-
vides good signal for segmentation accuracy, it has been
found to be susceptible to adversarial perturbations [24]. To
increase robustness, Dice loss can be combined with binary
cross entropy (BCE) (3) loss. To mitigate the effects of class

imbalances, BCE loss can be modified to weighted binary
cross entropy (WBCE) (4) which accounts for the distribu-
tion of classes by weighting the binary classes.

BCEi = −(yi · log(ŷi) + (1− yi) · log(1− ŷi))

LossBCE =
1

N

N∑
i=0

BCEi

(3)

LossWBCE =
1

N

N∑
i=0

(yi · w1 + (1− yi) · w0)BCEi (4)

Where w1 is the weight associated with class 1 (fire) and
w0 is the weight associated with class 0 (no fire). Our loss
sets w1 = 100 and w0 = 1 matching the frequency distribu-
tion of pixel classes. These loss functions can be combined
using a weighted sum, giving us our final loss function (5).

L = WBCE + 2 · Dice (5)

4.2. Evaluation

Our model leverages three evaluation metrics commonly
used throughout the literature to determine predicted seg-
mentation mask accuracy: mean intersection over union
(Mean-IoU), mean pixel accuracy (MPA), and average dis-
tance [20]. Note that F1 score was not used since the loss
function (Dice loss) is identical to F1 score when applied to
a binary mask.

IoU is the area of the intersection between predicted and
gold label segmentation mask over the union of these two
segmentation tasks (6). Mean-IoU is the IoU averaged over



all classes. IoU is often considered better at penalizing un-
der and over segmentation [21].

Ic =
∑
i

1yi=ŷi=c

IoUc =
Ic∑

i 1yi=c +
∑

i 1ŷi=c − Ic

Mean-IoU =
1

|C|
∑
c∈C

IoUc

(6)

MPA is a trivial accuracy measurement involving the
number of correctly classified pixels over the total number
of associated pixels, averaged over every class (7).

PAc =

∑
i 1yi=ŷi=c∑
i 1yi=c

MPA =
1

|C|
∑
c∈C

PAc

(7)

Since the predicted fire segmentation mask is made up
of probabilities, an insightful evaluation metric would be
the proximity these probabilities are to correctly describing
gold label segmentation masks. We can compute the aver-
age distance between probabilities and gold labels using a
simple euclidean norm (8). This metric provides valuable
insights into the models’ ability to produce accurate predic-
tions.

Average Distance =

√∑
i

(yi − ŷi)2 (8)

4.3. Baseline

The baseline architecture took inspiration from the Next
Day Wildfire Spread Dataset’s baseline [14]. This base-
line involved implementing a MobileNetV2 encoder layer
followed by a seven layer decoder built up of six upsample
blocks completed with a convolutional layer (4.3).

MobileNetV2 utilizes inverted residual architectures to
allow the model to learn and embed interesting features into
a higher dimension which subsequently gets collapsed back
down once learning has been completed [26]. Further com-
plexity is added during this projection with the addition of
residual connections between bottleneck layers to improve
gradient flow and training efficiency.

4.4. Feature Rich

Our feature rich architecture aims to exploit as much in-
formation as possible from the twelve explanatory variables
(irrespective of the foreshadowed deviations we may expe-
rience during deployment) with performance in mind. This
architecture took inspiration from the widely used Mask R-
CNN segmentation model [11] which uses a regional CNN
(R-CNN) with supplemented mask heads (4.4).

Figure 3. Baseline architecture inspired by the Next Day Wildfire
Spread dataset. All activation functions are ReLU and the opti-
mizer chosen is AdamW. MobileNetV2’s first convolutional layer
is modified to take in all twelve features and the final upsampling
blocks are completed with a convolutional layer to rescale to the
appropriate 64x64 image resolution.

Figure 4. Head architecture for Mask R-CNN detailing the mask
branches added to ResNet C4 and FPN backbones. The Feature
Rich model built off of this backbone architecture.

Our architecture composed two known architectural pat-
terns to create a Mask R-CNN adjacent segmentation
model. The first pattern contained two 3x3 convolution lay-
ers designed to upscale the number of channels while keep-
ing number of parameters constant. This design choice was
meant to allow the model to decipher increasingly complex
features to better predict the potential of fire spread. Down-
scaling was provided by two convolution layers, one 3x3
convolution layer and a 1x1 convolution layer used to effec-
tively reduce the high channel dimension into a more man-
ageable form to be fed into the ResNet50 backbone [12].
From there, a fully connected layer was used to reduce the
dimension to the expected 64x64 resolution.

4.5. Data Restricted

In contrast to the Feature Rich architecture explained
previously, the data restricted model aims to perform irre-
spective of the environmental conditions specifically by as-
suming as little data as possible. This is analogous to a
worst-1 situation as described in the literature where virtu-
ally no data is accessible [33]. For this architecture, only
three features were chosen for propagation: elevation, veg-
etation, and population density. We chose these features
with accessibility in mind; in other words, we believe these
features could be generated simply given a satellite image
so that during deployment wildfires can be accurately pre-
dicted only with the use of a dedicated satellite.



With these restrictions in mind, this architecture reflects
the Feature Rich model in regards to choice of upscaling
and downscaling using convolutional layers. Our data re-
stricted model uses two 3x3 convolutional layers to upscale
with max pooling and dropout added during upscaling to
improve regularization and numerical stability. For down-
sampling, again one 3x3 and one 1x3 convolution layer was
used with max pooling and dropout used as well. This was
finalized with a fully connected layer.

5. Results
Hyperparameters were explored during the initial phase

of experimentation. It was determined via early accuracy
measurements that the best hyperparameters for experimen-
tation are learning rate of 10−3, batch size of 32, and the use
of the AdamW optimizer. Such a low batch size was used to
increase model specificity with the other two hyperparam-
eters being chosen for their documented positive effects on
convergence. Generally around 15 to 50 epochs were used
for training.

Generally, we see similar performance across all models
with the data restricted model edging out both the baseline
and the Feature Rich model on accurately classifying fu-
ture fire spread. With that being said, the overall best per-
forming model in terms of Mean-IoU and MPA is the Fea-
ture Rich model with the lowest average distance coming
from the baseline.

5.1. Loss

The overall structure of these models’ loss functions dur-
ing training is not standard. We see plateauing loss with
little to no decrease in loss over the training barring for
stochasticity (5). Loss that plateaus is often caused by two
factors: incorrect hyperparameters or a model that is in-
effective (either due to over complexity or a lack of com-
plexity). A range of hyperparameters, specifically learn-
ing rate and batch size changes, were explored during the
initial phase of testing. These tests yielded the same re-
sults, plateauing loss, which ultimately prompting us to be-
lieve the cause of this error comes from model concerns.
The most likely culprit is that the lack of computational re-
sources (specifically time allowed for training) ultimately
led to an apparently flat loss even though in actuality the
loss is decreasing but the time scale makes is such that this
decrease is is too small to see.

With this being said, we see that the validation loss
changes over the training time scale. This is evidence that
some effective (or ineffective in the case of the limited data
regime) learning is being done. To further investigate this, a
random set of test points were predicted upon and their as-
sociated fire segmentation masks were generated (6). These
predictions glaringly display some form of reward hacking
where every model has picked up on the generalized data

Figure 5. Loss plots over the training of the three models: base-
line (top), feature rich (middle), and data limited (bottom). Notice
the plateau of each loss barring stochasticity yet the either subtly
increasing or decreasing validation loss.

bias for fire to most likely be present in the middle of the
image. Consequently, every model predicts some general
fire spread within the middle of the image irrespective of the
inputted explanatory variables. This reward hacking is not
strictly caused by a faulty loss function and may be caused
simply by an unrepresentative dataset, though future work
is required to explore whether there exists some metric to
negate this form of model exploitation.

5.2. Confusion Matrices

From the faulty seeming loss functions presented above,
it may seem evident that our models have failed to learn any
useful functionality. Yet, we clearly see positive examples



Figure 6. Fire segmentation mask predictions for the three models:
baseline (top left), feature rich (top right), data limited (bottom).
Notably, all three models appear to have picked up on bias present
in the data for the common occurrence of fire spread in the center
of each next-day fire segmentation mask. Note that in each ex-
ample the left column is the previous day segmentation mask, the
middle column is the true next-day segmentation mask, and the
right column is the model-specific predicted next-day segmenta-
tion mask.

of prediction on unseen datapoints as shown in the fourth
row of the baseline predictions and the fifth row of the data
limited predictions in Figure 6. To further explore the abil-
ity of our models to predict fire spread, confusion matrices
(7) were used to cross check their ability to positive predict
class 1 examples. Across every model, there is an over-
whelmingly positive ability to correctly classify class 0 as
is expected given the class imbalance previously discussed
between class 0 and class 1. Given the class imbalance
considerations made in determining the loss function, these
confusion matrices provide evidence that the model has not
hacked this imbalance and is indeed attempting to predict
segmentation masks.

Investigating the ratio between true positives and false
negatives (7), we see that both the baseline and feature rich
model are drastically underperforming with respect to their
ability to positively classify a true class 1 pixel as class 1 or
class 0. With the baseline model, the probability of it cor-

rectly classifying a true class 1 pixel as class 1 is 39.39%
and with the feature rich model its probability is even worse
at 30.58%. Given that there are only two classes, any prob-
ability less than 50% is considered abysmal. This is in
comparison to the data limited regime, which predicts a
true class 1 pixel as class 1 with a probability of 72.20%.
While this seems promising, it is evident that the data lim-
ited regime over compensates and classifies nearly ten times
as many pixels as positive pixels when compared to base-
line and feature rich settings. Yet, considering how little
data was provided to the data limited setting, this ability to
accurately classify a positive pixel irrespective of the over-
estimation present in the model is impressive.

5.3. Accuracy Metrics

We see dominant performance by the feature rich model
when using the accuracy metrics we defined for this task.
The feature rich model peaks amongst all three models at
both Mean-IoU and MPA, arguably the two most important
heuristics of performance considering their ability to con-
trol for data imbalance and incorrect classification as well
as positive classification (1).

Though the feature rich model achieves peak Mean-IoU
and MPA on test data, we see an interesting pattern emerge
when analyzing the output prediction masks from the fea-
ture rich model (6): repeated prediction patterns as seen in
rows one, three, and five. This goes to show that perhaps
the feature rich model is simply overfitting to training data
and this performance may be artificial.

With that being said, the baseline model achieves a sim-
ilarly high performance to the feature rich model across the
board with a notably low average distance metric. Given
how distinct both the baseline and feature rich models are
from one another, these models are unlikely to achieve such
similar accuracies, suggesting that more computational re-
sources should be allocated to determine the effectiveness
of these architectures.

As previously discussed, even though the data limited
regime’s accuracy metrics are underwhelming, other statis-
tics and manual inspections suggest that this model has per-
formed well given the lack of data availability provided to
it.

Mean-IoU MPA Average
Distance

Baseline 0.55175 0.9683 61.2018
Feature

Rich
0.55367 0.9749 180.8642

Data
Limited

0.44404 0.8372 124.3158

Table 1. Accuracy metrics across all three models



Figure 7. Confusion matrices over the training of the three models:
baseline (top), feature rich (middle), and data limited (bottom).
Notice the ease in each models’ ability to predict class 0 labels yet
the difficulty of the model to predict class 1 labels. In the data lim-
ited regime, a surprising majority of class 1 labels are accurately
classified.

6. Conclusions/Future Work

Even though additional explanatory variables can in-
crease accuracy during deployment, we have seen that these
explanatory variables are not vital to the successful predic-
tion of wildfire spread. Specifically, if we assume data was
only collected from a satellite (as is done in the data re-
stricted mode), relatively similar accuracy to the feature rich
mode can still be gathered at the cost of overestimation.

Future work can be done to pair the explanatory vari-
ables used in the Next Day Wildfire Spread dataset with
satellite imagery. Often detailed explanatory variables are
unknown when calculating fire spread during deployment;
adding satellite data to our model would allow for maximal
robustness since this is the most easily accessed data. In
addition to this dataset change, basic image manipulations
to create synthetically new data was not explored due to al-
ready existing computational complexity concerns.

Potential architectural changes include more advanced
techniques such as meta learning, ensemble of experts, or
physics-backed vision solutions (such as [30]). Given the
computational limitations of this project, these architectures
have not been explored though are plausible avenues for fu-
ture work given the distinct features presented and the over-
all task structure of predicting fire spread.

7. Contributions and Acknowledgements

Baseline CNN model and data retrieval code was in-
spired from the Kaggle Next Day Wildfire Spread dataset
[14]. All other work was done manually and can be found at
github.com/jmichaels32/fireprediction.
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