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Abstract 
 

Bright field microscope has enabled us to study the 
dynamics of cells and their morphological changes over 
time. While various methods for cell segmentation have 
been developed to extract single cell data from biological 
images, most of them have been created for multiplexed 
images, which has multiple channels with homogenous 
background and can simply be segmented using nuclear 
and cytoplasm channels. Bright field microscope images 
can have different gradients of background from images to 
images, making it difficult to perform cell segmentation. In 
this study, I applied the method used for cell segmentation 
of multiplexed-ion beam imaging (MIBI) data to bright field 
images. I used PanopticNet, a convolutional network 
architecture, to segment cells in bright field image data. I 
trained the model on the DeepBacs dataset, which contains 
bright field images of bacteria. The final model was trained 
using softmax loss, Adam optimizer, and learning rate of 
0.0001. 
 
1.  Introduction 

 
A bright field microscope is a crucial tool for studying 

microorganisms and diagnosing diseases. In a clinical 
setting, physicians use it to detect infections or 
abnormalities in blood and tissue biopsies. The pathology 
of cells and tissues can be investigated through examining 
morphological alterations of specific cell types. In basic 
science research, the most common use of a microscope is 
for cell counting and studying cell morphology. Cell culture 
is fundamental to molecular and cellular biology research, 
and most experiments involve examining cell dynamics by 
counting the number of cells at different time intervals or 
conditions. Manual cell enumeration can be time-
consuming and prone to error in large datasets. In addition, 
the development of novel microscopes has expanded 
microscope ability to include live-cell imaging and 
fluorescent microscopes for measuring protein expression. 
While these instruments are built on bright field microscope 
and can still function in that capacity, they can be used to 
identify unique protein expressions in individual cells and 
monitor cell migration at various time points. 

Due to this technological advancement, the amount of 

data generated in biological imaging studies is continuously 
growing, which can become challenging for classical data 
analysis and interpretation, requiring more complex 
computational approaches to extract relevant features from 
images. Single-cell analysis is critical for studying how 
cells respond to different stimuli. Yet, it is still difficult to 
extract protein expression pattern in tissues or inside the 
cells under a microscope. Cell segmentation is a crucial tool 
to achieve single-cell level analysis from biological images. 
Several cell segmentation algorithms have been developed 
for multiplexed imaging equipment, including fluorescence 
microscopes and MIBIs [1, 2]. These tools generate TIFF 
files with numerous channels, each containing expression 
data for a single protein. The nuclear channel defines the 
nucleus, while the cytoplasm channel identifies the 
boundaries of each cell. Because every cell contains 
nucleus and cytoplasm, these two channels typically have 
minimal brightness gradients and are useful for delineating 
boundaries. Most current methods rely on non-trainable 
algorithms or manual segmentation by expert pathologists. 
The algorithms generally require defining a threshold to 
discern between an image's background and foreground. 
Because of the brightness gradients, a single thresholding 
does not work well in bright field microscope images. 

In this study, I applied a tool developed and used in my 
lab, Mesmer, which is built on a PanopticNet architecture, 
to segment bright field microscope images. To explore this 
idea, I used DeepBacs dataset [3], which includes images 
of 2 species of most common bacteria, Escherichia coli (E. 
coli) and Bacillus subtilis (B. subtilis), for training and 
testing.  

 
2.  Related Work 
 

Before deep learning models, there are several automated 
segmentation methods to segment cells on biological 
images. Most of them rely on thresholding [4, 5, 6], where 
a single threshold is selected, and a pixel is classified as 
foreground if it has higher values and background if it has 
lower values. One of the most prominent methods was 
Otsu’s method [4]. The threshold for this method is chosen 
based on a value that minimizes the intra-class variance of 
background and foreground pixels. However, there is still 
limitation to this method when it comes to small objects or 
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images with high noise. Moreover, images can have 
brightness gradients, which cannot be solved with a single 
threshold. A new algorithm developed to deal with this 
problem, adaptive thresholding, decides whether a pixel is 
in foreground or background by calculating average pixel 
intensity around a pixel and measure if the pixel is higher 
or lower that the average intensity [5]. This has improved 
the ability of segmentation method to perform images with 
brightness variability.  

Another class of segmentation algorithm was developed 
using active contours, such as Snake active contour 
algorithm [7]. This method involves using energy 
minimization to fit splines to the contour objects in images 
and requires user to move splines out of local minima. This 
model was able to perform well on image with high noises. 
The watershed algorithm [8], which is used as a post-
processing step in my study, uses image as a topological 
relief map and has an intuitive explanation. Every image is 
flooded at the local minima, and the boundaries of 
segmented images are determined by the points where the 
water hits. While it works well in biological images, the 
standard watershed approach can result in over 
segmentation and incorrect edge segmentation. 

With the introduction of convoluted neural network 
(CNN) [9, 10], we can train a model on multidimensional 
data efficiently. Multiple models have been developed for 
the task of cell segmentation. In 2012, deep neural network 
(DNN) [11] was developed for transmission electron 
microscopy (TEM) image segmentation and composed of 
successive layers of convolutional, max-pooling and fully 
connected layers. The major difference between DNN and 
other early CNN models is that it uses max-pooling layers, 
which is non-trainable, instead of subsampling layers. For 
each pixel, DNN determines whether it falls into the 
membrane or non-membrane category by estimating the 
probability of a pixel p being classified as a membrane and 
non-membrane, based on the raw intensity values within a 
square window centered on p, where the width of the 
window is w pixels. When a pixel is near the edge, the 
window extends beyond the limits and the out-of-bounds 
pixels are created by mirroring the nearby pixels from the 
image. The model was trained using a patch around 
classifying pixel as an input. It could efficiently localize 
pixels on TEM images. Yet, there are still drawbacks of this 
method. The model runs very slowly because there are 
multiple patches for training and there is redundancy 
between overlapping patches. Moreover, larger patches can 
reduce the localization accuracy because of the usage of 
more max-pooling layers, whereas small patches do give 
only little context of images.  

Recently, our lab has created a deep learning model, 
Mesmer, for cell segmentation of MIBI images [1]. Mesmer 
is a CNN-based model built upon PanopticNet architecture, 
which consists of Resnet50 backbone with a Feature 
Pyramid Network and four prediction heads [12]. The 

model receives 2-dimensional TIFF image as an input, 
where the first dimension is nuclear channel and the second 
is cytoplasm channel. It produces centroid and boundary 
predictions as output, which is then used as an input in 
watershed algorithm to create masks. Mesmer outperforms 
other cell segmentation algorithms in the same category. 
Therefore, it would be beneficial if we could use a 
PanopticNet model to segment bright field microscope 
images. 

 
3.  Methods 
 

PanopticNet Architecture. A PanopticNet is a deep 
learning model based on Feature Pyramid Network (FPN) 
connected to a CNN backbone, such as ResNet, DenseNet, 
or EfficientNet (Figure 1) [1]. In this study, the backbone 
was constructed from an EfficientNetV2L backbone 
connected to a feature pyramid network. I used backbone 
layers C1-C5 and pyramid layers P1-P7. The model 
receives images that were concatenated with a coordinate 
map as input and compute 3 transform during training: 
inner distance transform, outer distance transform, and 
foreground-background transform. Three semantic heads 
are used for model training. Inner distance captures the 
distance between each pixel to cell’s centroid. We can 
compute inner distance transform where the distance of the 
pixel and its centroid is r as: transform =  !

!"#$%
, where a = 

!
√'())	#%(#

  and b is a hyperparameter that is normally set to 
1. The outer distance transform is the Euclidean distance of 
the image. The foreground-background transform predicts 
whether a pixel belongs to the foreground or background. 
During testing, only inner distance and outer distance 
transforms are used for predictions. The mean squared error 
(MSE) is used for inner distance and outer distance 
transforms. Softmax loss is used for the foreground-
background transform. The softmax loss is scaled by 0.01 
to stabilize its value. These transforms are used as an input 
for watershed algorithms to generate cell segmentation 
masks. The model was trained using the Adam optimizer 
with a learning rate of 10-4, a clipnorm of 10-3, and a batch 
size of 8 images. Training was performed for 32 epochs. 
After each epoch, the learning rate was reduced using the 
function lr = lr × 0.99epoch.  

Feature Pyramid Network. The feature pyramid 
consists of bottom-up pathway, top-down pathway, and 
lateral connections (Figure 2) [12]. The algorithm takes an 
image of arbitrary size as input and outputs proportionally 
sized feature maps. The bottom-up pathway is a feed 
forward computation of the backbone used for feature 
extraction. The pathway consists of multiple convolutional 
modules, where each module has many convolutional 
layers. The bottom-up pathway generates a feature 
hierarchy consisting of feature maps at various scales with 
a scaling step of 2. The semantic values of data increases as 
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data flows from bottom to top as the model can detect high-
level structure, whereas the resolution decreases due to 
successive convolutional layers. In contrast, the top-down 
pathway is used to create higher resolution features from 
semantic rich layers by upsampling coarser resolution 
feature maps from higher pyramid levels that are 
semantically richer but spatially coarser. These features are 
connected to the output of the bottom-down pathway 
through lateral connections. Each lateral connection 
integrates features of the same spatial size from top-down 
pathway and bottom-up pathway by element-wise addition 
iteratively until the finest resolution map is generated.  

 

Figure 2. Feature Pyramid Network (FPN). A top-down 
architecture and bottom-up architecture is connected 
through lateral connections. 
 

EfficientNetV2L. EfficientNet2VL is an improved 
version of EfficientNet [13, 14]. EfficientNet is a class of 
models that uses training-aware neural architecture search 
(NAS) to search for the baseline model EfficientNet-B0. 
The model has a trade-off between accuracy and FLOPs. 
There are 3 major problems with the first version of 
EfficientNet. (1) Large datasets training is very slow; (2) 

early layer depthwise convolutions are slow. EfficientNet 
uses MBConv, which is slower than a recently published 
Fused-MBConv (Figure X); (3) scaling up every level 
equally is inefficient. EfficientNet equally scales up all 
layers using a compound scaling rule. To address these 
issues, EfficientNetV2 uses both MBConv and Fused-
MBConv in the early layers, has smaller expansion ration 
to reduce the memory usage, and uses smaller 3x3 kernel 
sizes with more layers to compensate for the reduced 
receptive field. They also removed the last stride-1 stage in 
the original EfficientNet. EfficientNetV2L is a scaled-up 
version of EfficientNetV2 using compound scaling.  

 

Figure 3. MBConv and Fused-MBConv structures 
 
Watershed Algorithm. We obtain inner distance 

transform and outer distance transform predictions from the 
model. These values are on continuous scales. To create a 
discrete label from these values, I used them as an input for 
a Marker-based watershed algorithm [15]. I first applied a 
peak- 

Figure 1. Panoptic architecture. Images are fed into the ResNet50 backbone (EfficientNetV2L in my case) connected 
with a feature pyramid network. Semantic heads produce inner and outer distance transforms. These values are then fed 
into the watershed algorithm. 
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finding algorithm to the inner distance transform and outer 
distance transform predictions to define the centroid of each 
cell in the image. These values are thresholded at value 0.01 
and 0.025, respectively. The cell centroid and boundary are 
used as inputs to the watershed algorithm to generate the 
label image.  

Segmentation Evaluation. I evaluated the model on a 
per-cell basis instead of per-pixel basis [16]. The cost 
matrix is built between cells in ground truth and prediction. 
I used the intersection over union (IoU) as the cost for each 
pair of cells. IoU is calculated as: 

 

𝐼𝑜𝑈(𝑥, 𝑦) =
𝑥	 ∪ 	𝑦
𝑥	 ∩ 𝑦 =

𝑥 ∩ 𝑦
|𝑥| + |𝑦| − |𝑥 ∩ 𝑦| 

 
The cost matrix then underwent a linear assignment 
process, with a cost of 0.4 assigned to unassigned cells, to 
determine the cells that match the ground truth labels. For 
other remaining cells, the graph in which an edge connects 
between ground truth and predicted cell if the IoU is more 
than zero was constructed. I classified the error type for 
each subgraph based on the connectivity of the graph. Node 
without edges were classified into either a false positive if 
the graph had only predicted cell, or a false negative if the 
graph only contained ground truth cells. A merge error was 
defined as a predicted node that is connected to multiple 
ground truth nodes. A split error, on the contrary, was 
defined as a ground truth label node that is connected to 
multiple predicted nodes. Lastly, catastrophe is any 
subgraphs that have multiple ground truth or predicted 

 

EfficientNetV2L 

Resnet50 

EfficientNetV2L without pyramid layers  

Figure 4. Representative Predicted Images. Two predictions are generated from raw images: Inner distance and Outer distance. 
The representative images here are from a sample that EfficientNetV2L were able to correctly predict all cells in the image. The 
first row shows images from EfficientNetV2L; The second row shows images from ResNet50 backbone. The third row shows 
images from EfficientNet2VL backbone without pyramid layers.  
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nodes. F1 score is also used as an additional metric to assess 
the model performance. F1 score is calculated as: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

 
4. Dataset and Features 
 

Datasets. I trained a model on DeepBacs datasets that 
consist of multiple bacterial species: Escherichia coli (E. 
coli), a Staphylococcus aureus (S. aureus) and Bacillus 

subtilis (B. subtilis). To train our model for bright field 
microscope image segmentation, I only used E. coli and B. 
subtilis for model training and testing. Each dataset is split 
into training, validation, and testing sets using a 60-20-20 
split. Each image in E. coli datasets is three-channel, 512 x 
512 pixel image, whereas each image in B. subtilis is three-
channel, 1024 x 1024 pixel image. There were 113 images 
in the training set with over 1,337 cells in total from a 
diverse cultural density. B. subtilis is long rod-shape 
bacteria, whereas E. coli are rounded bacteria. This ensures 
that the model can segment images of bacteria with any 
shape. To generate label data, they manually annotated cells 
in training data by filling the annotated cells with a grey 
value of 1 and cell boundaries were drawn with a grey value 
of 2.  

Data augmentation and processing. Training data were 
augmented with random flips, rotations, and scaling to 
increase the diversity of data.  

Figure 5 Comparison of average precision, F1 score, and Recall between ResNet50 (Blue), EfficientNetV2L (Red), and 
EfficientNetV2L (Green) without pyramid layers. 
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5. Experiments/Result/Discussion 

 
I experimented with multiple backbones of PanopticNet 

model. I used E. coli dataset, which is relatively smaller 
than other datasets to optimize and selected the best model 
architecture. I qualitatively inspected ground truth labels 
and predicted masks to assess the model performance. I 
used IoU as the cost to quantitatively evaluate my model 
performance. After segmentation, I compared between the 
model with Resnet50 backbone, the backbone used in 
Mesmer, and EfficientnetV2L, the backbone used in cell 
tracking study.  

Qualitatively, EfficientNetV2L could segment E. coli 
images more efficiently than Resnet50 (Figure 4). Resnet50 
could not produce a single segmentation of bacterial cell in 
the image. The model seemed to detect noises in the 
background of images. This is likely because Resnet50 is 
more sensitive to brightness gradients in the image than 
EfficientNetV2L and predicted the noises instead of true 
signals. I assessed their performance qualitatively by 
comparing IoU for images outputted by ResNet50 and 
EfficientNetV2L models. ResNet50 could not predict any 
cells and had average precision, recall, and F1 score equal 
to 0 (Figure 5). On the other hand, EfficientNetV2L 
predicted 666 cells from the total of 688 cells and yielded 
average precision, recall, and F1 score of 68.32%, 66.13%, 
and 65.7%, respectively (Figure 5). Comparing missed 
detections across different samples, EfficientNetV2L 
performed the best with only few samples with high missed 

detections (Figure 6). As a result, I chose EfficientNetV2L 
for further training on B. subtilis dataset.  

I compared the model's performance with and without 
pyramid layers. The evaluation of output images revealed 
that the model incorporating pyramid layers P1-P7 
outperformed the one without these layers, particularly in 
images featuring aggregated bacteria (Figure 4). This 
improvement is likely due to the pyramid layers enhancing 
the detection of subtle structures in the images. 
Consequently, the model with pyramid layers achieved 
higher precision, recall, and F1 scores (Figure 5). Based on 
these findings, I proceeded to train a B. subtilis model using 
the same training settings. 

Finally, I trained the E. coli-pretrained model with B. 
subtilis data and compared the model trained on both E. coli 
and B. subtilis with the models trained individually on the 
E. coli and B. subtilis datasets. While the models performed 
relatively the same in B. subtilis test data. The individually 
trained model performed much better than the combined 
model on E. coli test data (Figure 7). This discrepancy is 
likely due to the unequal amount of training data, with 
much less data available for E. coli compared to B. subtilis, 
and the different in brightness gradients of these two 
datasets. Upon inspection, the combined model generated 
more noise in the inner and outer distance transforms than 
the individually trained models (Figure 8). 

 
6. Conclusion and Future work 

 
In this project, I trained a model for segmenting cells in 

bright field microscope images. Cell segmentation is a 
critical step for extracting single cell features from image 
data. An automated cell segmentation method would 
greatly enhance the speed of labeling cells while prevent 
human bias. I experimented the model with two different 
backbones: Resnet50 and EfficientNetV2L. The final 
model that performed the best was constructed on 
EfficientNetV2L with Adam optimizer and learning rate of 
0.0001. The model worked very well in E. coli data but not 
B. subtilis data, suggesting that it cannot distinguish cells 
that are clustered together. To address this issue, the next 
step should involve performing augmentation to enhance 
the model's sensitivity to subtle image details. 

Future steps should include comparing the model with 
EfficientNetV2L to other backbones or pyramid layers and 
performing cell segmentation on larger datasets and 
unseen test data from independent sources. Other models, 
such as U-net, which is often used for biological image 
segmentation, might also work. Finally, bright field 
microscope image data is limited when compared to 
medical imaging data such as MRI. In the future, a larger 
dataset containing cells from various species is likely to 
increase model performance. 

 
 

Figure 6 Comparison of missed detections per sample index 
between ResNet50 (Blue), EfficientNetV2L (Red), and 
EfficientNetV2L (Green) without pyramid layers. (Bottom) 
Comparison of missed detections per sample index between 
ResNet50 (Blue), EfficientNetV2L (Red), and 
EfficientNetV2L (Green) without pyramid layers. 
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