Chessboard Understanding with Convolutional Learning for Object Recognition
and Detection

Alex Shan
Stanford University

azshan@cs.stanford.edu

1. Abstract

We present a convolutional neural network (CNN) based
approach for converting images of physical chessboard po-
sitions to Forsyth-Edwards Notation (FEN). While histori-
cal methods have used traditional feature extraction or at-
tempted to train a model end-to-end, we propose a three-
part model: a board detector, an occupancy detector for
each square, and a piece classifier. By training these com-
ponents independently and tying them together, we evalu-
ate their performance on a 3-D Blender generated dataset of
nearly 5,000 game states. We also explore different CNN
architectures, including ResNet and InceptionV3. We post
impressive results on the Blender dataset, with an average
mistake count of just 1.7 mistakes per board. We also ex-
plore additional questions regarding training size and trans-
fer learning, demonstrating that our approaches do surpris-
ingly well with small amounts of data and even generalize
well to other chessboard datasets.

2. Introduction

In this work, we attempt to build a computer vision sys-
tem that is capable of converting images of physical chess
boards and pieces to Forsyth-Edwards Notation (FEN).
FEN is a compact representation of a chess position used
to communicate and analyze the state of a chess game, de-
scribing the location of each piece on the board. It is chal-
lenging for existing systems to analyze the state of an over-
the-board chess game, motivating a FEN-conversion sys-
tem which enables this analysis via chess engines. To ac-
complish this goal, we construct a model, internally using
three different vision models, to detect squares, determine
the occupancy of each square, and finally classify which
piece belongs in each square. We experiment with different
open-source methods for each subtask, including OpenCV
for square detection and ResNet and InceptionV3 for oc-
cupancy and piece classification. After these three stages,
we use a mapping algorithm between piece location and
piece classification to systematically generate FEN for the
board position. We train our model variants on a 3-D vi-

Brent Ju
Stanford University

brent julcs.stanford.edu

sual engine-generated dataset of nearly 5,000 chess posi-
tions. During evaluation, we compare our model perfor-
mance against a baseline 3-layer CNN approach. We find
that while all CNN architectures perform well, achieving
an average error count of around 1 per image, examination
of subtask performance demonstrates slight advantages of
the InceptionV3 and ResNet models. We also discuss fur-
ther evaluation considerations, such as convergence speed
and transfer-learning capabilities of each model to different
datasets.

2.1. Problem Statement

We formulate our problem as taking an image of a phys-
ical chess board position and using various CNN architec-
tures (ResNet, InceptionV3, etc.) to output a corresponding
FEN string.

. "ribigrk1/p1p3pp/1bpp1n2/6B1/4P3/3N4/PPPIN
PPP/R2Q1RK1"

3. Literature Review

A key distinction to clarify is that this work deals with
FEN generation for over-the-board positions, not screen-
shots of online chess positions. These are distinct problems
in chess vision which are tackled in different ways due to
the standardized form of online chess positions compared
to noisier physical positions as shown in [6} |8, [15]. There-
fore, when using the term chessboard image, we refer to an
image of a physical chess position. FEN-conversion from
chess board images has been handled with approaches dat-
ing back to 2012, where Bennett et. al. [2]] use mathematical
algorithms to feature engineer a model to extract the edges
of squares. Modern approaches center around using neu-
ral networks to train end-to-end models to recognize chess
boards and chess pieces to generate FEN [4}[11]. Our three-
stage approach of square detection, occupancy detection,
and piece classification differs in that we use open-source

models and finetune each stage separately before integrating
all three to complete our model. Within each subcategory,
different approaches have been taken in existing literature.
For square detection, Czyzewski et. al. use straight line
and lattice-point detection to segment the chess board into
its 64 squares. However, these approaches can be limited
by lighting and angle distortions and are generally slow [4].
Attempts have been made to improve in these aspects, such
as a blur-reduction algorithm by Abeles and X-corner
detection by Chen et. al. [3]. We can formulate the oc-
cupancy detection problem as classifying the object inside
of a cropped image of a chess square, enabling the use of
object detection models such as Inception V3, which has
been shown to perform well on ImageNet [[16} [5]]. Lastly,
once occupation detection is complete, chess piece classifi-
cation can be formulated as a general classification problem
with a class for each (piece, color) tuple. Image classifi-
cation has significant overlap with object detection models,
leading us to use the same model architectures for each sub-
task. There have been examples of previous two and three-
stage models having success in this problem, such as Quin-
tana et. al. [13]]. We still offer novel research as previous
multi-stage models have not used new deep learning archi-
tectures in their intermediate steps, opting for the earlier
feature extraction-based approaches. Another key differ-
ence in architecture is that some current approaches attempt
to predict the most likely board state given the model’s un-
derstanding of piece placement, using knowledge of what
popular positions look like to inform prediction [4]. How-
ever, we attempt conversion without using prior database
information to influence the model’s decision-making, rely-
ing purely on the model’s understanding of square locations
and piece recognition.

4. Dataset
4.1. Blender Dataset

The dataset we are using is titled "Rendered Chess Game
State Images,” hosted on the Open Science Framework
site.[17] The dataset contains 4,888 images (1200 x 800)
of chess game states that occured in real games played by
Grandmaster Magnus Carlsen, recreated and rendered us-
ing Blender software. A large factor as to why we selected
this dataset is because the board positions were created un-
der various orientation and lighting conditions, which will
allow us to train a robust model that can handle images
from various different environments. The data are also very
well annotated with training labels: each image is associ-
ated with a JSON object containing data fields such as FEN
notation, camera orientation, board coordinates, and piece
information. Each piece is also labelled with its type, color,
square location, and a tuple of data that represents a bound-
ing box for the piece in the given image. For each subtask

model such as the occupancy detector and piece classifier,
we preprocess the raw dataset to generate a task-specific
dataset. Using our board detector, we generate the occu-
pancy detection dataset by cropping a small section around
each square and tagging it with whether it is occupied or
not by referencing the ground truth FEN notation from the
raw dataset. Similarly, we generate the piece classification
dataset by cropping each occupied square and tagging it
with the correct piece label of (color, piece), e.g. (white,
pawn) by referencing the ground truth FEN notation. Our
train/validation/test splits of the dataset were generated us-
ing a 85/5/15 split, respectively. After processing the origi-
nal dataset, the occupancy subtask dataset had over 300,000
total examples (100 x 100 resolution images) and the piece
classification subtask dataset had around 30,000 examples
(100 x 200 resolution images). Some examples of full test
images, as well as the processed occupancy and piece clas-
sification samples are shown below.

Figure 2. Sample occupancy subtask example showing an occu-
pied square.

Figure 3. Sample piece classification subtask example showing a
black queen.

4.2. Transfer Learning Dataset

We were also motivated to examine how well our models
trained on the Blender dataset would generalize to unseen
examples, so we use a handcrafted dataset from Wolflein
et. al. [[18]], which contains photos of chess board positions
that do not resemble the Blender dataset. We apply the same
preprocessing strategy as in section 3.1 to generate our sub-
task finetuning data. Ultimately, we have an intentionally
miniscule finetuning training set of 2 positions, with 30 test
positions to evaluate on. Our processed subtask datasets
have 128 occupancy examples and 64 piece examples for
the training set.

0 J Y

Figure 4. Sample image from transfer learning dataset.

5. Methods

Our proposed model will be comprised of a three step
pipeline. As a baseline for board detection, we will com-
pare our results against a object detection model trained for
implemented in Masouris et. al. [11]. The paper utilized
a ResNeXt backbone for feature extraction of an image,
which is then fed into a detection transformer (DETR). For
our implementation, we run the Canny edge detector [14]] on
the image to extract all edges. The algorithm is as follows:

1. Suppress noise in the image and compute the deriva-
tives of the grayscale image in x and y directions by
applying a 323 Gaussian filter.

2. Calculate the magnitude and direction of the gradient

as shown:
V(. y)l=\/f2+ 1]
6 = tan~* (;};)

3. Round all gradient directions to the nearest 45°. For
all pixels, if the gradient value at that location is not
the largest of the three pixels in the direction of and

opposite the direction of its own gradient, its value is
set to 0. This is to ensure specificity of the edges.

4. All remaining pixels are subjected to thresholding of
edge strength: we experimented with various threshold
values to divide pixels into strong edges, weak edges,
and no edges. Pixels below our low threshold are set
to O to indicate no edge, pixels above the high thresh-
old are set as strong edges, and pixels in between the
boundaries are marked as weak edges.

5. Consider pixels deemed as strong edges from the pre-
vious step as true edges. To connect the edges and
determine which weak edges to keep as true edges as
well, we run breadth or depth first search starting from
strong edge pixels and converting any weak pixels that
are directly linked to strong pixels into strong pixels as
well until all edges are detected.

To separate the board’s edges from any edges detected
from pieces, we perform Hough transform [7] for its ability
to detect lines from the result of edge detection and its sim-
plicity and ability to handle occluded ranks and files. To do
S0,

1. First, consider an edge point of known coordinates
(z,y). There are many potential lines that can pass
through this point at a variety of angles, which we
will deem as a family expressed in the polar coordi-
nate form:

—xcosf +ysinf =p

2. Now, consider the lines in (p,6) space: what this
means is that p and 6 are now our variables, and x and
y are constants. Any lines that intersect in (p, 6) space
will thus give us the p and € values in (z,y) space that
correspond to a line in our image.

3. Discretize the (p, 8) space by quantizing the space into
“accumulator” cells. For each (z,y) edge point, we
”vote” on cells that satisfy the corresponding (p, 6)
line equation by incrementing a counter in the cell.

4. Similar to the Canny edge detector, we establish a
threshold for votes to be determined as a line, and pick
the cells with more votes than the threshold to be our
lines.

However, this produces far more lines than necessary due
to noise during processing. To solve this issue, we divide
the lines into vertical and horizontal and then perform ag-
glomerative clustering of the lines produced by the Hough
transform, which are nicely presented as polar coordinates
to make grouping by angle differences simple with the help
of SciKit-Learn library functions [12]]. Once the clusters
of lines are established, for each cluster, we take the line
with the median p value as the singular representative of

that cluster. From there, we calculate as many intersection
points as we can from the generated lines. Using these in-
tersection points, we run RANSAC [9] to sample points and
calculate a transformation matrix that allows us to view the
board from a "birds-eye” perspective. To do so, for k itera-
tions:

1. Randomly sample a set of points from the data.

2. Compute a transformation matrix that will project
these points into an aerial 2D view.

3. Using this model, find the number of inlier points to
the transformation matrix.

We chose to run our algorithm for a minimum of 200
iterations to gather a large sample of candidate transforma-
tions and a maximum of 10,000 iterations before deeming
our search inconclusive. At each iteration, we keep track of
and update the best transformation matrix acheived across
the trials. This transformation simultaneously helps us de-
tect any missing points and edges from our collection and
gives us an easy method to segment each of the 64 squares
if they are projected at an angle where each square is of
roughly equal size in order to collect inputs for occupancy
detection and piece classification.

Next, for each of the 64 squares, we will sample the area
around the square and pass it into an occupancy detection
model that determines if the square is either empty or oc-
cupied by a piece. To do so, we have implemented three
approaches. The first is a baseline CNN model with 3 con-
volutional layers, 3 pooling layers, and 3 fully connected
layers, with the final fully connected layer being the classi-
fier head with 2 classes, representing either empty or occu-
pied. The second model is a ResNet model [[10] pretrained
on ImageNet and finetuned on our occupancy data, with the
classification head adapted to predict one of two classes.
Specifically, we use the ResNet18 pretrained model variant.
The third architecture uses InceptionV3 pretrained on Im-
ageNet; we finetune the model’s classification head in the
same way as the ResNet model.

Finally, if the square is detected as occupied, we run a
piece classifier to determine the color and type of piece that
is on the square. For our classifiers, we use the same three
model architectures used in the occupancy detector but we
adapt the classification heads of the ImageNet-pretrained
models to have 12 classes, one for each (color, piece) pair.
We will then create a mapping for each piece to an identi-
fier, square, color, and type. With these mappings and the
locations of the squares of the chessboard, we have the in-
formation to manually create a FEN representation of the
board.

In order to evaluate the model, we have chosen criteria
at each step to check performance. For board detection, our
dataset contains ground truth labels for where the 4 corners

of the board are located, and we measure the distance be-
tween our prediction and the actual location in pixels. For
occupancy detection and piece classification, we can use bi-
nary cross-entropy loss for training and weighted validation
set F1 as a metric for how the model is performing. To
evaluate the FEN representation of the board, we use the
Python chess library to populate a board object based on
which squares were classified as occupied with the iden-
tified piece at that square. We gauge the accuracy of our
model on the number of squares correctly classified as oc-
cupied or empty, the number of pieces correctly identified,
and the overall accuracy of the 64 squares of the board being
filled in.

We use all of the same methods to train and evaluate the
models on the transfer learning dataset.

6. Experiments
6.1. Occupancy Detection

We train our occupancy classifier on the Blender dataset-
generated subtask data for 10 epochs, a learning rate of
0.001, and batch size 32; these were chosen using grid
search based on validation set results. We train using bi-
nary cross entropy loss (occupied or empty) and use the
Adam optimizer. We created three occupancy models, each
with a different CNN architecture described in our meth-
ods section (3-layer Convnet, InceptionV3, and ResNet18).
Training time for these three occupancy classifiers took 30
minutes, 2.5 hours, and 1.5 hours, respectively on a single
NVIDIA RTX A5000.

6.2. Piece Classification

Similar to the occupancy detector, we train our piece
classifier on the Blender dataset-generated subtask data
with the same hyperparameters. These hyperparameters
ended up having the best performance on the validation set
out of the different hyperparameter arrangements. We use
standard cross entropy loss and the Adam optimizer. Our
three piece classifiers are also a 3-layer CNN, InceptionV3-
finetuned, and ResNet18-finetuned on the dataset. It took 1
hour, 3 hours, and 2 hours, respectively on a single NVIDIA
RTX A5000.

6.3. How much data do we need?

During experimentation, we found that the occupancy
and piece classifiers demonstrated strong validation set per-
formance only a few epochs into training. This motivated
us to explore how many examples we needed to achieve
strong performance. Therefore, we ran the same occupancy
and piece classification training jobs (same hyperparame-
ters) for the ResNet18 and 3-layer CNN but with stratified
subsets of the training data of increasing sizes (1,000, 2,000,
10,000, and 20,000 examples). We examine the model per-

formance at each checkpoint to see if only a fraction of
the data may yield comparable results to the fully trained
models. We chose to experiment with one ImageNet-
pretrained model (ResNet) and the non-pretrained model
(3-layer CNN) to see if the ImageNet data may help the
pretrained model converge faster on the Blender dataset.

6.4. Transfer Learning

We also examine how well our models generalize to dif-
ferent physical chessboard arrangements from outside the
Blender dataset. We take the trained occupancy and piece
classifiers for the 3-layer CNN and ResNet18 architectures
and finetune them on the training set of the transfer learn-
ing dataset. We finetune using the same hyperparameters as
the original training, except that we lower the learning rate
to 0.0001 from 0.001 to avoid large updates overshooting
the adjustments in parameters needed to transfer the learned
features effectively to the new dataset. We also experiment
with different numbers of epochs (35 and 50 epochs); we
found that the original 10 epochs resulted in barely any
change from the baseline (no finetuning), so we hypothe-
sized that looping over the dataset more could contribute
to improved results given how little data there was to learn
from.

7. Results and Evaluation

Each subtask of our 3-stage process has its own evalu-
ation metric. For the board detector, we used pixel-wise
Euclidean distance between ground-truth labels for the cor-
ners of the board and our detector’s predicted locations. For
the occupancy detector and piece classifier, we use the accu-
racy and weighted F1 of their predictions to evaluate them
as independent model components. We chose to measure
weighted F1 because of the class size imbalances, espe-
cially in the piece classification subtask dataset, which has
disproportionately more pawns than queens, for instance.
When evaluating our entire system, we mainly focus on the
average number of mistakes made per board. A mistake is
defined as a missing, hallucinated, or misidentified piece.
For granularity in analysis, we also record the number aver-
age number of occupancy mistakes per board and the aver-
age number of piece classification mistakes per board.

7.1. Board detection

Appendix [5] shows the performance of our board detec-
tion model compared to the ResNeXt baseline model from
Masouris et. al. [11]], which pales in comparison to our
preliminary results across the various metrics that we com-
puted such as the average pixel error from ground truth and
percentage of boards with no mistakes.

Table 1. Performance comparison of different model variants

on occupancy subtask dataset test set
Model Type | Accuracy | Weighted F1
RESNETI18 99.88 99.93
3-layer CNN 99.47 99.47
InceptionV3 99.93 99.93

7.2. Occupancy detection

Unsurprisingly, every model architecture demonstrates
strong performance on the occupancy subtask. While the
InceptionV3 model posts the strongest performance (99.93
F1), the miniscule difference in performance trades off with
inference time, where the InceptionV3 model takes nearly
twice as long as the ResNet and 3-layer CNN models. We
believe that the strong performance of all model variants re-
flects the relative ease of the task; intuitively, determining
the occupancy of a square should be somewhat trivial.

7.3. Piece classification

Table 2. Performance comparison of different model variants
on pieces subtask dataset test set

Model Type | Accuracy | Weighted F1
RESNETI8 99.81% 99.81
3-layer CNN | 96.24% 96.20
InceptionV3 99.92% 99.93

Similar to Table [T} Table 2] demonstrates that all model
architectures exhibit strong performance on the pieces test
set. However, there is a notable improvement between the
pretrained CNN architectures (ResNet18 and InceptionV3)
compared to the 3-layer CNN, with a difference of about 3
FI1.

In order to better understand what features our model
uses to predict the piece type, we generated saliency maps
with a collection of image samples varying in piece type,
color, and residing square color. The process of generat-
ing saliency maps involves computing the gradient of the
output class score with respect to the input image. This gra-
dient, when visualized, reveals the areas in the image that
the model considers most important for its classification de-
cision. By examining the saliency maps generated from
both models, we were able to identify key differences in
how each network processes and prioritizes different parts
of the input images, as well as understanding certain pitfalls
the model may face when classifying pieces. For instance,
both the CNN and ResNet saliency maps have more defined
structures when detecting queens and kings, but the maps
are noisier and less interpretable for pieces like pawns.

Figure 5. An occluded black queen on a black square (left), along
with its ResNet saliency map (right.)

Figure 6. An isolated black king on a black square (left), along
with its ResNet saliency map (right.)

Additionally, the model also has noisier saliency maps
when there are other pieces in view, as evidenced by the ex-
ample of this pawn’s saliency map with lots of neighboring
pieces.

Figure 7. A heavily occluded white pawn on a black square (left),
along with its ResNet saliency map (right.)

7.4. End to End Results

We now examine the results for the fully-connected
model on the test set of full chessboard positions.

Table 3. Average number of mistakes per chessboard for dif-
ferent models on Blender test set

Model Total mistakes ~Occupancy Mistakes Piece Mistakes
ResNet18 1.77 0.19 1.58
3-layer CNN 1.70 0.44 1.26
InceptionV3 1.66 0.19 147

In line with the results of the previous sections, we find
that the end-to-end model results are close between the three

variants. The average number of mistakes is around 1.7 for
each model, but the distribution of mistakes is uneven. In
particular, the models all suffer from more piece identifica-
tion errors than occupancy detection mistakes. This sug-
gests that piece classification is harder for the models to
perform, which aligns with our intuition, since certain chess
pieces often tend to be mistaken for one another (king and
queen, for instance). It is worth noting that the ImageNet-
pretrained ResNetl8 and InceptionV3 models performed
better on occupancy detection, but worse than the 3-layer
CNN in piece detection.

7.5. Stratified Data

Table 4. Average number of total chessboard mistakes for end-
to-end evaluation on Blender test set

Model Type/Num examples 1K 2K 10K 20K
ResNet18 385 230 1.64 1.53
3-layer CNN 10.28 877 551 3.63

Table {4} shows that in certain cases, a lower amount of
training data does not necessarily lead to worse test set
performance on the end-to-end model. For instance, the
ResNet18 achieves an average error count of 1.53 mistakes
per chessboard, which is actually lower than the ResNet18
model trained on the entire training set (3). This suggests
that the ResNet18 model ends up overfitting to the training
set after it trains on too many examples and therefore, train-
ing on a subset of the training data leads to a model more
robust to generalization. Another result of this experiment
is that after 20K examples, the ResNet18 model has already
reached performance that is equal to its final state; the 3-
layer CNN model is at 3.63 mistakes per board, while its
final state has 1.7 mistakes per board. Therefore, we can
conclude that the ResNet18 model converges faster than the
3-layer CNN. These results make sense considering that the
ResNet18 model’s pretrained feature extraction allow it to
learn faster than the 3-layer CNN; this may also explain why
the ResNet18 model which trained on the full dataset gen-
eralized worse to the test set than the 20K examples model.

7.6. Transfer Learning

For our results, see Table E] (moved due to formatting
issues).

Both the ResNet18 and 3-layer CNN improve after trans-
fer learning compared to their trained baselines, but they
ultimately fall short of the excellent results found in Table
Bl In particular, it seems that the piece mistakes drive the
majority of the errors during evaluation, suggesting that the
models do not generalize well to the new piece designs. The
ResNet model does slightly better than the 3-layer CNN in
this aspect, which may be a result of its vast pretraining
data exposing it to a broader set of images, allowing it to
generalize to the new data better than the 3-layer CNN. We

believe that our results are still impressive given the scarcity
of our training set and hypothesize that a greater number of
examples would produce dramatically better results.

8. Conclusions and Future Directions

Our objective is to automate the generation of a board
position given an image of a chess board by splitting the
task into 3 phases of board detection, square occupancy de-
tection, and piece classification. We use classical methods
for board detection and trained a variety of deep models
for occupancy detection and piece classification. For board
occupancy, InceptionV3 displays strongest performance in
prediction accuracy; however, not by a large margin com-
pared to ResNet and a CNN baseline. For piece classifica-
tion, ResNet and InceptionV3 display stronger performance
than the simple 3 layer CNN. Finally, our end-to-end results
show strong performance in classification, with all 3 mod-
els averaging less than 2 total mistakes per board. How-
ever, the distribution of mistakes is skewed more heavily
towards piece classification errors, with each model aver-
aging less than 0.5 occupancy mistakes per board. Strat-
ification of the data into various training dataset sizes re-
veals that the ResNet model does not require training on
the full dataset to achieve optimal performance and perfor-
mance actually tapers off with further training. We conclude
that the pretrained models we used converge quickly to the
training set, and can overfit the data if trained for too many
epochs. While transfer learning on the handcrafted dataset
did show improvement over the pretrained baselines, the
discrepancy between occupancy mistakes and piece classi-
fication was even wider, suggesting that the models had a
difficult time generalizing to new piece designs, a problem
that we acknowledge to be common due to different piece
design choices across chess set makers. With more time,
we would be interested in exploring transfer learning across
different, larger datasets of chessboard images and observ-
ing the effects of catastrophic forgetting, for instance. Addi-
tionally, with more compute resources and data, we would
experiment further with transformer architectures such as
CLIP and ViT to compare their performance against our
CNN based architectures.

A. Board Detection Results

Table 5. Board detection evaluation of our approach vs
ResNeXt baseline

Metric Our Approach
Mean incorrect squares per board 0.15
Boards with no mistakes (%) 93.86 %
Boards with < 1 mistake (%) 99.71%
Per-square error rate (%) 0.23%
Average pixel error from ground truth 1.36

Table 6. Average number of end-to-end mistakes per chess-
board for finetuned ResNet and 3-layer CNN model variants
on transfer learning test set

Model Type Total Mistakes Occupancy Mistakes
ResNet18p4se 12.22 1.37
ResNet1835 6.19 0.07
ResNet185¢ 6.19 0.07
3CNNpgse 22.48 0.11
3CNN3s 10.37 0.15
3CNNj5o 10.00 1.25

Note: the subscript base next to a model name means that
the model was not finetuned on the transfer learning data;
these are the baselines. The subscripts with numbers
correspond to the number of training epochs for each
model.

B. Contributions and Acknowledgements

Alex wrote the occupancy and classifier model training
code and infrastructure for training and evaluating these
subtask models. Alex also wrote dataprocessing code to
load in downloaded datasets and ran the experimentation
and training jobs. For the report, Alex helped write/edit
the Abstract, Introduction, Literature Review, Dataset, and
Experiments sections. Alex is part of Stanford’s Artificial
Intelligence Lab (SAIL) and used three GPUs from his lab
cluster to run the experiments shown in our paper. Brent
wrote the code for board detection, saliency map genera-
tion for piece classifiers, and the end-to-end pipeline for
performing inference on a board image. Brent also wrote
the code for evaluating board detection and FEN generation
accuracy for the full model. For the report, Brent helped
write the Dataset, Methods, Results, and Conclusions sec-
tion.

ResNeXt Baseline
1.19
39.76%
65.20%
1.86%

22.3

Piece Mistakes

10.85
6.11
6.44

22.37
10.22
8.74

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

(16]

[17]

(18]

P. Abeles. Pyramidal blur aware x-corner chessboard detec-
tor, 2021.

S. Bennett and J. Lasenby. Chess - quick and robust detection
of chess-board features. CoRR, abs/1301.5491, 2013.

B. Chen, C. Xiong, Q. Li, and Z. Wan. Rcdn — robust x-
corner detection algorithm based on advanced cnn model,
2023.

M. A. Czyzewski, A. Laskowski, and S. Wasik. Chessboard
and chess piece recognition with the support of neural net-
works, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248-255, 2009.

J. Ding. Chessvision : Chess board and piece recognition.
2016.

R. O. Duda and P. E. Hart. Use of the hough transforma-
tion to detect lines and curves in pictures. Commun. ACM,
15(1):11-15, jan 1972.

X. Feng, Y. Luo, Z. Wang, H. Tang, M. Yang, K. Shao,
D. Mguni, Y. Du, and J. Wang. Chessgpt: Bridging policy
learning and language modeling, 2023.

M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Commun. ACM,
24(6):381-395, jun 1981.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

A. Masouris and J. van Gemert. End-to-end chess recogni-
tion. In Proceedings of the 19th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics
Theory and Applications. SCITEPRESS - Science and Tech-
nology Publications, 2024.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825-2830, 2011.

D. M. Quintana, A. A. del Barrio Garcia, and M. P. Matias.
Livechess2fen: a framework for classifying chess pieces
based on cnns, 2020.

W. Rong, Z. Li, W. Zhang, and L. Sun. An improved canny
edge detection algorithm. In 2014 IEEE International Con-
ference on Mechatronics and Automation, pages 577-582,
2014.

S. Saha, S. Saha, and U. Garain. Valued — vision and logical
understanding evaluation dataset, 2024.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision,
2015.

G. Wolflein and O. Arandjelovic. Dataset of rendered chess
game state images, 2021.

G. Wolflein and O. Arandjelovi¢. Determining chess game
state from an image. Journal of Imaging, 7(6):94, June 2021.

