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Abstract

The use of Machine Learning (ML) models in radiology
has significantly advanced medical imaging diagnostics.
However, model performance may not accurately reflect
certain underrepresented conditions if such conditions or
minorities are rare in the test set. This study demonstrates
that synthetic chest X-ray data generated by the state-of-
the-art Roentgen model is representative of real data and
can address these shortcomings. We generated 600 syn-
thetic images and conducted a comparative analysis with
real images using PCA, t-SNE, and histograms, examining
both the images and their embeddings through a DenseNet
model. Our results indicate that synthetic and real data
share similar distributions and feature embeddings. Per-
formance metrics, including AUC, accuracy, and precision,
were computed to evaluate a disease classification model
from the TorchXrayVision package on both real and syn-
thetic datasets. The results show that synthetic data can
enhance model evaluation by providing a more balanced
and diverse test set, supporting robust testing for underrep-
resented diseases. Using synthetic data thus has the poten-
tial to ensure fairer, more comprehensive assessments of ML
models in radiology.

1. Introduction

The application of Machine Learning (ML) models in
biomedical sciences, particularly in radiology, has signifi-
cantly advanced medical diagnostics based on imaging [1].
In particular, Chest X-Ray (CXR) imaging is a crucial diag-
nostic tool for various diseases, including cardiomegaly, at-
electasis, pleural effusion, and pneumothorax. However, the
complexity of such applications requires deep ML models
with a large number of parameters, which require extensive
and diverse datasets for effective training and evaluation.
While large clinical trials can provide reasonable datasets,
using data augmentation is a commonly accepted practice

*Project advisor, not enrolled in CS231N.

to extend the size of datasets and facilitate model training.
However, whether synthetic or real, such datasets may

not always be diverse enough and accurately capture un-
derrepresented subgroups. While data augmentation tech-
niques are extensively studied for training, only a few works
have explored the use of synthetic imaging as test data
[2, 3].

In this work, we investigate if a state-of-the-art chest
X-ray synthetic data generative model can be used to cre-
ate test sets that account for underrepresented conditions or
subgroups in the data to better assess the predictive perfor-
mance of ML models [2]. By incorporating high-fidelity
synthetic test data, we aim to determine if the claimed per-
formance of a predictor model, such as a disease detection
computer vision model, can be maintained across a wider
variety of test samples. This approach addresses the critical
issue of dataset diversity and representation, ensuring more
robust and reliable predictive models in healthcare.

First, we used a state-of-the-art text-to-image model
Roentgen [4] to generate chest X-ray synthetic data from
text prompts inspired by radiology reports. Second, we
used two existing real chest X-ray datasets, namely MIMIC
[5, 6] and CheXpert [7] to evaluate the fidelity and diver-
sity of the synthetic data, using techniques such as Prin-
cipal Component Analysis (PCA), t-Distributed Stochastic
Neighbor Embedding (t-SNE) and pixel histograms. Third,
we used a state-of-the-art disease classification model from
the TorchXrayVision package [8] taking X-ray images as in-
puts and outputting disease scores. One the one hand, we
used this model to compare spatial and final embeddings of
real and synthetic images to uncover any distribution shifts.
On the other hand, we used this model to make disease pre-
dictions on both real and synthetic datasets to analyze and
conclude if synthetic data can be used to assess the ability
of a model to account for underrepresented minorities.

2. Related Work
The efficacy of deep learning models in medical diag-

nostics has been well-documented, highlighting their poten-
tial to enhance diagnostic accuracy and efficiency in clini-
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cal settings [1]. Chest X-rays, which are frequently used
in the medical field, provide critical information for diag-
nosing various diseases. Consequently, the application of
deep learning methods to analyze chest X-rays has been ex-
tensively researched [9, 10, 11]. However, these techniques
require large amounts of data for effective training, posing
a significant challenge.

To tackle the scarcity of medical X-ray images for deep
learning, several approaches have been undertaken. Monshi
et al. [12] used data augmentation techniques based on seg-
ment extraction to enhance their dataset. Others, like Dev-
nath et al. used Generative Adversarial Networks (GANs)
and transfer learning techniques to augment their training
set. GANs have been used for multiple X-ray applications,
including abnormality classification [13], disease classifica-
tion [14], or inpainting [15]. However, most approaches dis-
cussed above focus on enhancing a train set to better train a
deep learning model and obtain better performance, but not
to augment the test sets.

Recent work has explored the use of synthetic data to
enhance test sets. Vanbreugel et al. [2] focused on im-
proving test sets to better represent underrepresented sub-
groups and manage distribution shifts. Ktena et al. [3] used
synthetic data to test models on radiology images, training
generative models on the CheXpert dataset to account for
minority groups and distribution variations in model evalu-
ation. Coyner et al. [16] employed progressively growing
generative adversarial networks (PGANs) to generate syn-
thetic retinal vessel maps for robust and privacy-preserving
AI model training in retinopathy of prematurity diagnosis.
However, none of these generative approaches allow for the
synthesis of representative X-ray images from simple text
descriptions in a scalable way.

In 2022, Chambon et al. tackled that issue and intro-
duced the Roentgen model, which generates high-fidelity
chest X-ray images from text prompts, effectively address-
ing the lack of sufficient labeled data in radiology [4].

Our approach builds on these foundations by focusing
on using synthetic data to enhance test sets in chest X-ray
imaging. Unlike previous work that primarily addresses
training data augmentation, we emphasize the importance
of diverse and representative test data for robust model eval-
uation. Leveraging state-of-the-art synthetic data genera-
tion techniques, our work aims to ensure that predictive
models are thoroughly assessed across a wide range of sce-
narios.

3. Data
In this work, we used two real chest X-ray datasets. First,

we used the MIMIC dataset [5, 6], which is the largest avail-
able chest X-ray dataset and the dataset on which the Roent-
gen model has been trained on. The MIMIC dataset con-
tains a total of 377,110 images and associated free-form ra-

diology reports. For this study, we focus on frontal chest X-
ray scans, which represent the majority of the dataset. The
MIMIC data is available online after taking privacy training
(to access patients’ health data).

Second, we used the publicly-available CheXpert dataset
[7] to be able to compare to a dataset that is not the original
dataset used for Roentgen training. The CheXpert dataset
covers the same diseases as MIMIC, with various degrees of
severity, allowing us to compare synthetic images of more
severe cases.

We filtered the MIMIC and CheXpert test sets down to
patients with the diseases of interest and with frontal chest
X-ray images (see section 4.1.2).

Lastly, we compare chest X-ray images from these two
real datasets to synthetic images from the dataset we cre-
ated using Roentgen. The methodology to generate such a
dataset is further developed in the subsequent section.

Before being forwarded into the TorchXrayVision model,
both real and synthetic images were preprocessed (resized
to be Nx1x224x224 where N is the batch size, normalized
and cropped) using TorchXrayVision package functions [8].

4. Methods
4.1. Synthetic Data Generation with RoentGen

The RoentGen model is an advanced vision-language
foundation model adapted specifically for generating syn-
thetic chest X-ray (CXR) images. It builds upon the Stable
Diffusion (SD) architecture, leveraging a latent diffusion
model (LDM) [17] that combines the capabilities of vari-
ational autoencoders (VAEs) and denoising U-Nets. The
model is trained using a corpus of publicly available CXR
images and their corresponding radiology reports from the
MIMIC dataset. RoentGen utilizes a text encoder to process
free-form medical text prompts and generate high-fidelity,
anatomically realistic CXR images.

4.1.1 Model Architecture

RoentGen’s architecture is represented in Figure 1 and con-
sists of three main components:
• Text Encoder: Converts radiology reports into 768-

dimensional embeddings. This encoder is fine-tuned
or replaced with domain-specific models like RadBERT
[18] or SapBERT [19] for better performance.

• Conditional Denoising U-Net: Iteratively denoises ran-
dom Gaussian noise, conditioned on text embeddings.

• Variational Autoencoder (VAE): Compresses high-
dimensional CXR images into lower-dimensional latent
representations and decodes them back to the pixel space.

During training, RoentGen combines these components
to generate high-fidelity synthetic CXR images from text
prompts.

2



Figure 1: RoentGen Architecture. Source [4]. The model is
trained on X-ray images along with the associated radiology
text reports from the MIMIC dataset. The core of this stable
diffusion model is a VAE, a conditional denoising U-net and
a conditioning mechanism (or text encoder).

4.1.2 Data Generation

We focused on four diseases for synthetic data generation:
Cardiomegaly, Pleural Effusion, Pneumothorax, and At-
electasis. We also added a ”No Findings” category for a
total of 4 conditions and one healthy control category. We
extracted reports from the MIMIC test set and created 40
new prompts for each disease, representative of the realis-
tic reports associated with the corresponding disease. Each
set of 40 prompts is expanded to a set of 120 prompts by
varying the degree of severity of the disease. As a result, a
total of 600 prompts were gerenated. An example of short
prompt used is: ”Mild left apical pneumothorax. The right
lung appears relatively clear. No pneumothorax on the right
side is seen.”. Using these prompts, we used RoentGen via a
HuggingFace API token to generate 600 synthetic chest X-
ray images. Each image was visually inspected for anatom-
ical relevance, and 14.8% of the images were re-generated
to ensure high fidelity.

4.2. Real and synthetic images comparison analysis

4.2.1 Raw Images

To evaluate the similarity between real and synthetic im-
ages, we employed the following techniques:
• Principal Component Analysis (PCA): A linear dimen-

sionality reduction technique which captures the principal
components explaining the most variance in the data, use-
ful for initial exploratory analysis and identifying broad
patterns.

• t-Distributed Stochastic Neighbor Embedding (t-
SNE): A non-linear technique for visualizing complex re-
lationships and local structures in 2D and 3D. t-SNE fo-
cuses on finding neighboring points, thus detecting clus-
ters, which are not necessarily identified in PCA.

• Silhouette score on 3D t-SNE: Evaluates cluster quality.
A high score indicates distinct clusters, while a low score

indicates overlap. We expect a low score to show syn-
thetic and real images are similar, indicating good repre-
sentativeness of the synthetic data.

• Histogram Comparisons: Provides a straightforward
assessment of pixel intensity distributions, highlighting
variations in image content.

4.2.2 Image embeddings

To go beyond raw image comparisons, we also compared
real and synthetic images embeddings through a DenseNet
ML model from TorchXrayVision package [8]. DenseNet
models introduced by Huang et al. in 2016 leverage con-
nectivity between each layer and its subsequent layers to fa-
cilitate feature propagation and identification [20]. We used
the output of the DenseNet (a spatial embedding of dimen-
sion Nx1024x16x16 where N is the batch size) to first visu-
ally compare them (cf SI Figure 5). Most importantly, these
embeddings were then fed into a ReLu layer and average
pooling layer to generate flattened embeddings of dimen-
sions Nx1024). We then applied similar techniques (PCA
and t-SNE) to analyze how representative of the real data
the synthetic data was. The cosine similarity metric was
also used to compare real versus synthetic image embed-
dings.

4.3. Model Evaluation

Finally, we evaluated the model performance on both
real and synthetic datasets using the TorchXrayVision pack-
age [8]. The model all was chosen for its robust train-
ing on diverse datasets, including NIH [21], CheXpert, and
MIMIC-CXR, which allows it to generalize well across var-
ious populations and imaging conditions. This broad train-
ing base is essential for assessing performance on synthetic
data, ensuring that the evaluation accurately reflects the
model’s ability to maintain high performance across differ-
ent and potentially underrepresented test samples. The core
of the model is a DenseNet. The output of the DenseNet
is flattened and fed into a Linear classifying layer followed
by a Sigmoid function for the final multi-label classifica-
tion that covers 14 diseases. As a result, the final output is
disease probabilities, of size (Nx14).

4.3.1 Test Set Composition

The composition of the real and synthetic test sets for each
disease is detailed in Table 1.

4.3.2 Performance Metrics

The chosen metrics—AUC, accuracy (optimal threshold),
and precision (optimal threshold)—are particularly relevant
to our problem statement. The optimal threshold is com-
puted by finding the point on the ROC curve that maximizes
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Disease CheXpert Synthetic MIMIC
Cardiomegaly 175 120 43
Pleural Effusion 120 120 41
Atelectasis 178 120 38
Pneumothorax 10 120 11
“No Findings” 185 120 19
Total 668 600 107

Table 1: Test set composition for each disease across CheX-
pert, Synthetic, and MIMIC datasets.

the true positive rate while minimizing the false positive
rate, essentially where the sum of sensitivity and specificity
is highest.
• AUC (Area Under the Curve) provides a robust measure

of the model’s ability to generalize across different data
distributions. A higher AUC on synthetic data suggests
that these images effectively capture the variability and
complexity of real-world scenarios, which is crucial for
robust model evaluation.

• Accuracy (with optimal threshold) shows the best-case
performance of the model on synthetic versus real data.
This metric helps us determine whether synthetic data
aids in achieving higher reliability in predictions, which
is critical for clinical applications where accurate diagno-
sis is paramount.

• Precision (with optimal threshold) measures the pro-
portion of true positive predictions among all positive pre-
dictions at the optimal threshold. High precision is essen-
tial in medical diagnostics to reduce false positives, which
can lead to unnecessary treatments and patient anxiety.
High precision on synthetic data indicates that the syn-
thetic images are realistic enough to challenge the model
effectively, validating the use of synthetic data in enhanc-
ing test sets.

These metrics are relevant because they provide a compre-
hensive evaluation of model performance, ensuring it can
generalize across diverse datasets and maintain reliability
in clinical settings.

5. Results and discussion

5.1. Synthetic chest X-ray generation

First, we generated synthetic X-ray images for each of
the four diseases and the healthy patients (“No findings”. A
few chest X-ray examples are shown in figure 2 (a-d), and
two real X-ray images are added (e-f) for comparison.

Given the underrepresentation of conditions like pneu-
mothorax (1.4% of CheXpert test patients), enhancing the
test set to include these conditions allows for better model
evaluation as we will develop in the following subsections.

(a) No findings (synthetic) (b) Cardiomegaly (synthetic)

(c) Pleural effusion (synthetic) (d) Pneumothorax (synthetic)

(e) No findings (real) (f) Cardiomegaly (real)

Figure 2: Synthetic chest X-ray images generated with
Roentgen model

5.2. Comparison between real and synthetic images

5.2.1 Raw images

Our analysis indicates that while synthetic images generally
resemble real images, notable differences exist.
• PCA Plots: The 2D and 3D PCA plots (e.g., Figures 3a

and 3c for Pleural Effusion) reveal overlapping but sepa-
rate clusters for real and synthetic images. Some variance
along the first principal component is observed, explained
by different sources. Despite this, there is good overlap in
the second and third directions, indicating synthetic and
real images are quite similar.

• t-SNE Plots: The 2D and 3D t-SNE plots (Figures 3b and
3d) show distinct clusters for real and synthetic images,
but the points are still scattered across all three dimen-
sions. This scattering suggests synthetic data can repre-
sent real images.
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(a) 2D PCA Comparison for Pleural Effusion. (b) 2D t-SNE Comparison for Pleural Effusion.

(c) 3D PCA Comparison for Pleural Effusion. (d) 3D t-SNE Comparison for Pleural Effusion.

Figure 3: Comparative Analysis of Real and Synthetic Images. In both PCA and t-SNE representations, synthetic data is
spread out in all dimensions, illustrating that synthetic images and real images are not from distinct distributions.

• Silhouette Scores: The silhouette scores for Car-
diomegaly, Pleural Effusion, Atelectasis, Pneumothorax,
and ”No Findings” are 0.145, 0.171, 0.199, 0.066, and
0.140, respectively. These low scores indicate overlap-
ping clusters, demonstrating that synthetic and real im-
ages are similar.

• Histograms: Pixel intensity histograms on Figure 4 show
that both MIMIC and CheXpert real datasets present a
uniform distribution with a peak at 0, indicative of the
black pixels of the background. However, the synthetic
dataset’s pixel distribution is less uniform and slightly
shifted toward white pixel values. This may be due to
the model accentuating severe disease traits or artifacts in
synthetic data.

Our analysis of raw images shows that synthetic images
generated by RoentGen resemble real images, with some

differences in pixel intensity distributions and local data
structures. Despite these differences, the synthetic images
are sufficiently similar to real ones to augment test sets, pro-
viding comprehensive model evaluation. The low silhouette
scores further confirm the similarity between synthetic and
real images, validating the effectiveness of synthetic data
for robust ML model evaluation.

5.2.2 Last Embedded Layer

In addition to investigating the variance and data clustering
in the raw images, we also looked at the distributions of real
and synthetic image embeddings using the DenseNet model
described in section 4.

First, a visual inspection of the spatial embeddings
shows that the features extracted by the model are focus-
ing on the same region of the images. Figure SI 5 shows
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Figure 4: Pixel Intensity Histogram for Cardiomegaly. NB:
MIMIC (green) and CheXpert (blue) distribution overlays
almost exactly.

4 out of the 1024 spatial embedding dimensions for a real
image (from CheXpert dataset) and a synthetic image, both
with “No findings”. We can clearly see that the features ex-
tracted are looking for specific areas of the chest X-rays, for
example, in the first dimension represented on the far left,
the features focus on the regions outside the lungs or the
rib cage. Notably, these features are looking for the same
regions in both the real (Figure SI 5-a) and the synthetic
(Figure SI 5-b) images.

Second, to confirm the ability of the Roentgen model to
generate representative data with high fidelity, we generated
synthetic data using the exact text in the radiology report of
the real data as a prompt. Figure SI 6 shows both the images
and their embeddings. Qualitatively, while the synthetic
data is not a exact copy of the real X-ray image, it visually
captures the principal elements of it and the embeddings
are similar. Quantitatively, the average cosine similary met-
ric across all 1024 embedding dimensions was 76.2% with
a standard deviation of 20.1%. This analysis was repeated
on three samples, everytime with similar results, confirming
that synthetic data can capture real images features.

Finally, Figure 7 represents the first and second dimen-
sions of the entire data (2 real datasets and the synthetic
dataset) after applying PCA (7a) and t-SNE (7b). Very in-
terestingly, there is a very good overlap in both the first and
second directions between the synthetic data cluster and the
real data clusters in PCA. This indicates that the synthetic
data embeddings are representative of real image embed-
dings and do not differ significantly from real data. How-
ever, when looking at the t-SNE graph, similarly to the case
of raw image t-SNE analysis, we see neat and separate clus-
ters between real and synthetic data along the second di-
mension. However, importantly, real and synthetic distribu-
tions along the first dimension of the t-SNE are very similar.

These embedding results consolidate our conclusion that
synthetic data, although not perfectly identical, are repre-
sentative of real data and captures the relevant features. As
a result, synthetic data can be used to enhance test sets.

(a) Spatial embeddings for a real image from CheXpert dataset

(b) Spatial embeddings for a synthetic image

Figure 5: Real (CheXpert) (a) and synthetic (b) image spa-
tial embeddings through a DenseNet model. Only 4 out of
1024 dimensions are represented. We can visually see that
the embeddings are focusing on the same region of the data.

Figure 6: Comparison of a real image from the MIMIC
dataset (left) and a synthetic image (right) generated using
the exact text from the real image’s radiology report. Em-
beddings are also shown. The exact text prompt is: ”No
new focal consolidation is seen. Mild right apical pleural
thickening is seen. No pleural effusion or pneumothorax is
seen. The cardiac and mediastinal silhouettes are stable.
Small calcification projecting over the upper chest seen on
the lateral view is present since at least, and may relate to
aortic calcification.”
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(a) 2D PCA

(b) 2D t-SNE

Figure 7: Comparison of embeddings for real and synthetic
data. PCA clusters overlap, illustrating that all datasets con-
tribute to explaining some variability, particularly in the sec-
ond direction. While t-SNE clusters are more distinct, both
real and synthetic datasets share similar embeddings along
the first dimension.

5.3. Assessment of Prediction Performance

Results in Table 2 show that the TorchXrayVision model
tends to classify synthetic images slightly more accurately
than real images. The relevant metrics are AUC, accu-
racy (optimal threshold), and precision (optimal threshold).
These metrics provide a comprehensive view of the model’s
ability to discriminate between classes and its performance
at the most effective decision threshold.

The results in Table 2 show that the model’s AUC and
accuracy are similar or slightly higher on synthetic data for
all diseases. This slight improvement may be explained by
the fact that Roentgen model may amplifies disease traits in
synthetic data, making classification more consistent. It is
worth noting that the precision on synthetic data is gener-
ally higher for real data (except for Pneumothorax), indi-
cating that synthetic data can more easily be misclassified
positively. These results show that synthetic data perfor-

mance metrics are in line with real data. Thus, synthetic
data can be used to enhance test sets, in particular to ac-
count for under-represented minorities.

We use “Pneumothorax” disease as an example use case
to illustrate the value of augmenting the test set. The CheX-
pert and MIMIC real test sets used here only have 10 and 11
positive samples of pneumothorax respectively. As a result,
performance metrics of the model on this disease cannot be
trusted as much as the others. Using synthetic data with 120
positive pneumothorax cases as a reference, we can have a
better assessment of the predictive power of the model for
this minority group. From Table 2, we can see that the AUC
on synthetic data is about 71.4%, compared to 63.8% and
78.0% for CheXpert and MIMIC respectively. On the one
hand, while the CheXpert AUC and accuracy seem in line
with other diseases, its precision is off (only 5.2% versus
36.0% for the synthetic data), indicating that the model is
not able to pick up positive cases of pneumothorax, despite
displaying a good AUC and accuracy. On the other hand,
MIMIC exhibits very high AUC and accuracy performance,
higher than the synthetic data. However, from diseases with
large number of positive samples, performance on synthetic
data is expected to be better. This could be an illustration
of the lack of pneumothorax samples in the MIMIC dataset
leading to artificially inflated results seen here. This “Pneu-
mothorax” use case highlights the benefit of synthetic data
in creating balanced test sets.

These findings indicate that high-fidelity synthetic test
data can improve model evaluation by providing a compre-
hensive and diverse test set. This supports the use of syn-
thetic data for fair and robust testing, especially for under-
represented diseases.

Disease Data AUC Accuracy Precision
[%] [%] [%]

Cardio. Synthetic 88.96 82.71 61.94
Cardio. CheXpert 72.72 68.61 71.20
Cardio. MIMIC 72.97 72.73 70.21
P.E. Synthetic 79.34 80.63 61.16
P.E. CheXpert 75.05 71.20 62.81
P.E. MIMIC 70.11 67.05 77.27
Atelect. Synthetic 73.21 66.04 41.15
Atelect. CheXpert 61.13 60.52 67.28
Atelect. MIMIC 55.21 56.82 50.00
Pneumo. Synthetic 71.39 57.71 36.03
Pneumo. CheXpert 63.81 52.10 5.19
Pneumo. MIMIC 78.04 71.59 28.13

Table 2: Performance metrics in percentage of the
TorchXrayVision model on synthetic, CheXpert, and
MIMIC datasets. Diseases: Cardio. (Cardiomegaly), P.E.
(Pleural Effusion), Atelect. (Atelectasis), Pneumo. (Pneu-
mothorax).
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6. Conclusion

This study demonstrates the effectiveness of using syn-
thetic chest X-ray data generated by the RoentGen model
to enhance test sets for ML models evaluation in radiology.
First, we generated a total of 600 synthetic chest X-ray im-
ages spanning 5 different conditions. Second, we found that
synthetic X-ray images, while not strictly identical, are rep-
resentative of real X-ray images, with similar feature distri-
butions in PCA and t-SNE for both the images themselves
and their embeddings via a DenseNet model. Third, our
analysis showed that, using a state-of-the-art disease classi-
fication model from chest X-ray TorchXrayVision, synthetic
data have similar if not slightly higher model evaluation
metrics compared to real data. As a result, synthetic data
can be used to enhance test sets for a fair model evaluation.
As a final use case, we investigated the model performance
on “Pneumothorax”, for which both real datasets have lim-
ited positive samples. We highlight the challenge of eval-
uating underrepresented conditions, underscoring the value
of synthetic data in such cases.

Future work should focus on incorporating metadata to
compare images within specific groups or categories of peo-
ple could enhance the evaluation of model performance
across different demographics. Expanding the use of syn-
thetic data to other imaging modalities and conditions could
also broaden its applicability, ensuring comprehensive and
equitable evaluations of ML models across various medical
fields.
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