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Abstract

Nuclear segmentation in medicine is vital for guiding
a pathologist’s diagnostic interpretation of whole-slide im-
ages (WSI). Hematoxylin and eosin (H&E) staining is com-
monly used to highlight tissue morphology, with nuclei ap-
pearing blue or purple. Accurate detection of nuclei is cru-
cial for procedures like cancer detection and grading. How-
ever, manual identification is labor-intensive and error-
prone, and automated detection is challenging due to the di-
verse appearances and overlapping nature of nuclei, as well
as artifacts from digital imaging. To address these chal-
lenges, we implemented, trained, and evaluated three im-
age segmentation models: U-Net, Mask R-CNN, and YOLO.
Our models were trained to output discrete confidence lev-
els for each nucleus, simulating expert pathologist annota-
tions. Additionally, for Mask R-CNN, we labeled segmented
nuclei as certain or uncertain to capture ambiguity, incor-
porating label maps of these regions during training. We
used metrics such as DICE score, Aggregated Jaccard Index
(AJI), and Average Precision (AP50 and APm) to ensure a
fair comparison. Our results show that Mask-RCNN out-
performed U-Net and YOLO in both segmentation quality
and instance segmentation metrics, achieving a DICE score
of 0.768 on the test set. Future research will focus on utiliz-
ing ambiguous masks, confidence-based segmentation, and
other advanced techniques to enhance the robustness and
accuracy of automated nuclei detection in pathology images

1. Introduction
In medicine, nuclear segmentation plays a critical role in

guiding a pathologist’s diagnostic interpretation of a whole-
slide image (WSI). Hematoxylin and eosin (H&E) stain-
ing is a widely used technique for better illuminating tissue
morphology; in these images, nuclei often appear blue or
purple, allowing a pathologist to easily assess their shape,
size, and spatial organization. These qualitative measure-
ments directly facilitate hospital procedures such as cancer
detection and grading, underscoring the importance in en-

suring accurate detection.
Given the large number of nuclei in a single tissue sec-

tion as well as the number of images a pathologist must ex-
amine daily, manually identifying nuclei is time consuming
and, quite importantly, prone to error. Automated identifi-
cation is equally challenging, as nuclei have varying appear-
ances and can overlap. The generation of digital pathology
images can additionally introduce several batch artifacts,
such as folded tissue.

Therefore, robust computational approaches are needed
to fully automate nuclei detection from H&E images at
scale. We propose to implement, train, and evaluate the
performance of three image segmentation models: U-Net,
Mask R-CNN, and YOLO. Each model - when trained -
takes in an image and outputs a segmentation mask, with
U-Net performing basic semantic segmentation and the
other models performing instance segmentation. To further
mimic expert pathologist annotators, our models will addi-
tionally be trained to output discrete confidence levels for
each nuclei. In order to capture and emulate human un-
derstanding of pathology images in regards to ambiguous
annotation - i.e., regions where there is no precise consen-
sus on where the nuclei are, even for human experts - we
additionally label segmented nuclei as either uncertain or
certain. To achieve this, we plan to include in the training
process masks corresponding to these vague areas provided
in the dataset.

2. Related Work
Historically, traditional segmentation methods like

thresholding, clustering, and active contouring have been
employed to extract nuclei in histopathological images [4].
While these methods can be effective under controlled con-
ditions, they often struggle with the variability and com-
plexity of real-world tissue samples. For example, tradi-
tional algorithms may falter in the presence of uneven stain-
ing, overlapping nuclei, and heterogeneous nuclear appear-
ances [11].

In recent years, deep learning algorithms have gained
prominence over traditional methods for cell nuclei seg-
mentation. Researchers have extensively employed various
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convolutional neural network (CNN)-based models, which
can autonomously learn complex features from images for
tasks such as classification, detection, and segmentation.
For instance, Long et al. [5] utilized classification networks
like AlexNet, VGGNet, and GoogleNet for semantic seg-
mentation by transferring and fine-tuning their learned rep-
resentations. These approaches marked the early use of end-
to-end deep neural networks for image-semantic segmenta-
tion, paving the way for subsequent advancements in the
field.

In terms of segmentation models for cell nuclei, CNNs,
such as U-Net, have become popular due to their ability to
learn complex features directly from data. The U-Net archi-
tecture, introduced by Ronneberger et al., has been widely
used for its effectiveness in biomedical image segmentation
[10]. Variants of U-Net, including Residual U-Net [12] and
Dense U-Net[13], have further improved segmentation per-
formance by incorporating advanced network designs. U-
Net and its variants are especially popular for their smaller
model size, which often performs better in the data-poor
biomedical setting.

Relatively older models such as YOLO, have also been
shown to work well. YOLO was a ground-breaking object-
detection system that reframed object detection as a regres-
sion problem, simultaneously outputting bounding box co-
ordinates and class probabilities from just image pixels [8].
In the context of computational pathology, YOLO adapted
to the analysis of the tumor microenvironment (referred
to as HD-YOLO by the authors) has shown exceptional
promise in outperforming existing WSI analysis methods,
even generating prognostic image features that correlate
with survival [9]. In our implementation of YOLO, we re-
ferred to these articles for inspiration and best practices.

Mask R-CNN, introduced by He et al. (2017), extends
the Faster R-CNN model by adding a branch for predict-
ing segmentation masks on each Region of Interest (RoI)
in a pixel-to-pixel manner [2]. This architecture combines
the advantages of region-based object detection and pixel-
level segmentation, making it particularly suitable for tasks
where precise delineation of objects is required. Several
studies have successfully applied Mask R-CNN for nuclei
segmentation. Naylor et al. (2018) employed Mask R-CNN
to segment nuclear instances in histological images, demon-
strating significant improvements over traditional methods
and earlier deep learning approaches [7]. Their results high-
lighted the model’s ability to handle the diverse morphology
of nuclei and its robustness across different tissue types.

Given the success of these specific models in other stud-
ies and their popularity in segmentation problems in gen-
eral, we decided to compare their performance on this new
segmentation dataset and explore their efficacy for defining
nuclei confidence/ambiguity.

3. Dataset and Features
Recently, scientific researchers have released one of the

largest datasets of labeled nuclei in H&E stained images
across 31 human and mouse organs. This dataset is called
NuInsSeg, and is completely open access, as discussed in
its corresponding paper [6]. Additionally, the authors go
beyond providing point estimates of nuclei location by pro-
viding ambiguity maps in regions where deterministic an-
notation, even for the expert pathologist, is difficult. This
novelty motivated our decision to perform instance segmen-
tation to classify nuclei as either confident or ambiguous.

The inputs are H&E stained image patches of size (512,
512, 3), collected across various organs from both humans
and mice. Each image patch is additionally associated with
two binary masks - one for nuclei and one for the patch’s
ambiguous areas. The outputs are annotated H&E stained
image patches of the same dimension, with bounding boxes
around each putative cell nuclei and a corresponding nuclei-
specific label annotation of ‘uncertain’ versus ‘certain.’ To
evaluate segmentation performance, we establish the origi-
nal U-Net implementation as our baseline.

The data is publicly hosted on Kaggle and is provided as
a nested directory structure for each tissue type, with sub-
folders providing different mask format files. For YOLO
and Mask R-CNN, we translated original tissue image files
and associated masks into the COCO format using ‘pycoco-
tools’. We then split the data into three directories: training,
validation, and testing. To evaluate the models’ ability to
generalize to unseen tissue types, all images of human and
mouse kidneys were placed in the testing directory. For the
remaining images, we performed a 80/20 train-validation
split. Since the dataset was limited in size, we employed
several image augmentations to artificially expand and di-
versify the training data.

These augmentations were facilitated by libraries such as
‘albumentations’. We used the following transformations:

• random cropping: a random section of the image is
cropped to a specified size, helping the model in learn-
ing relevant features regardless of their position within
the image.

• CLAHE (contrast limited adaptive histogram equal-
ization): the contrast in local image regions is ad-
justed, enhancing subtle differences in tissue textures
that might be crucial for segmentation.

• random brightness & contrast: the image’s bright-
ness and contrast are randomly altered within a defined
range, allowing the model to more robustly respond to
variations in lighting conditions during image acquisi-
tion.

• hue & saturation & value: random adjustments are ap-
plied to the image’s hue (color), saturation (color in-
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tensity), and value (brightness), allowing the model to
learn important features regardless of slight color vari-
ations in the tissue samples.

• horizontal & vertical flip: the image is randomly
flipped horizontally or vertically, improving the
model’s ability to recognize features that are indepen-
dent of their orientation in the image.

• random rotate: the image is randomly rotated by 90,
180, or 270 degrees, helping the model become more
invariant to the orientation of the tissue samples during
image acquisition.

• shift, scale, rotate: the image undergoes a shift (move),
a scale (resize), and a rotation in a single transforma-
tion, allowing the model to better handle slight varia-
tions in position, size, and orientation that might occur
naturally across tissues.

4. Methods
We decided to compare the performance of three image

segmentation models: U-Net, Mask R-CNN and Ultralytics
YOLOv8.

4.1. U-Net1

A fully convolutional neural network architecture specif-
ically designed for image segmentation tasks. It excels at
pixel-wise classification, allowing it to precisely delineate
the boundaries of individual nuclei or other structures in an
image. This makes U-Net a popular choice for nuclear seg-
mentation due to its ability to capture the intricate details of
these structures.

• Mathematical Formulation: Let XϵRH×W×C repre-
sent an input image, where H and W are the image
height and width, and C is the number of channels
(e.g., 3 for RGB images). U-Net utilizes an encoder-
decoder structure. The encoder part progressively
downsamples the input image to capture high-level
features, while the decoder part upsamples the feature
maps and combines them with corresponding features
from the encoder path to achieve precise localization.
The final output layer, denoted as yϵRH×W×C , pre-
dicts a probability distribution over M classes for each
pixel, indicating the likelihood of each pixel belonging
to a specific class (e.g., nucleus, background). A com-
monly used loss function for image segmentation tasks
is the multi-class cross-entropy loss:

L(y, ŷ) = − 1

N

N∑
i=1

M∑
j=1

yij log(ŷij)

1base implementation from https://github.com/jvanvugt/pytorch-unet

where N = HW is the total number of pixels, y is the
model’s predicted probability distribution, and yi is the
one-hot encoded ground truth label for pixel i.

4.2. Mask R-CNN (Mask Region-Convolutional
Neural Network) 2

Mask R-CNN builds upon the success of Faster R-CNN,
a deep learning architecture for object detection. It intro-
duces an additional branch to predict segmentation masks
for each detected object, making it suitable for instance seg-
mentation tasks like nuclear segmentation. Here’s a break-
down of Mask R-CNN’s functionalities and the underlying
mathematical concepts:

• Backbone Network: Mask R-CNN utilizes a pre-
trained convolutional neural network (CNN) as its
backbone. This network, like ResNet-50 or ResNet-
101, extracts high-level features from the input im-
age. The mathematical operations within the backbone
network involve convolutions, non-linearities (e.g.,
ReLU), and pooling layers. These operations can be
represented as:

Convolution:

fk(x) =

C∑
l=1

W l
k ∗ xl + bk

where xl denotes the input feature map from the pre-
vious layer (channel l), W k

l represents the learnable
kernel weights for the k-th filter in this layer, ⋆ denotes
the convolution operation. bk is the bias term for the
k-th filter, fk(x) represents the output feature map of
the k-th filter.

ReLU (Rectified Linear Unit):

f(x) = max(0, x)

Pooling: Various pooling operations are used to reduce
the dimensionality of the feature maps while capturing
essential spatial information.

• Region Proposal Network (RPN): The RPN takes the
feature maps from the backbone network as input and
generates region proposals (bounding boxes) that are
likely to contain objects. It utilizes small convolutional
layers to predict bounding box coordinates and object-
ness scores (confidence of a box containing an object).
Mathematically, the RPN outputs:

– Bounding box coordinates: These can be repre-
sented as offsets (∆x,∆y,∆w,∆h) applied to an-
chor boxes predefined at various scales and as-
pect ratios. Predicting these offsets allows the

2base implementation from https://github.com/facebookresearch/detectron2/
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model to refine the anchor boxes and achieve ac-
curate object localization.

– Objectness Scores: The RPN predicts a binary
probability for each proposed region, indicating
whether it contains an object (foreground) or not
(background). This can be formulated using the
sigmoid function:

Pforeground = σ(s)

where s is the score predicted by the RPN and σ
is the sigmoid function.

• Segmentation Branch:This branch operates on the fea-
ture maps from the backbone network and the refined
region proposals from the RPN. It utilizes a fully con-
volutional network to predict a segmentation mask for
each object within the proposed bounding box. The
mask predicts the probability of each pixel belonging
to the object of interest. The loss function used for
training the segmentation branch can be a binary cross-
entropy loss similar to U-Net.

• Overall Loss Function: Mask R-CNN employs a
multi-task learning approach, jointly optimizing for
object detection (bounding boxes) and segmentation
(masks). The overall loss function is a weighted sum
of individual losses:

L = λclsLcls + λregLreg + λmaskLmask

where Lcls is the classification loss for objectness
scores (typically binary cross-entropy), Lreg is is lo-
calization loss for bounding box coordinates, Lmask is
the mask loss for segmentation.

4.3. YOLOv8 with Segmentation Loss (Ultralytics)3

You Only Look Once (YOLO) is primarily an object de-
tection model. However, the Ultralytics implementation of
YOLOv8 extends its capabilities to include segmentation
through a custom loss function.

• YOLOv8 Object Detection: YOLOv8 utilizes a single-
stage network architecture to predict bounding boxes
and class probabilities for objects directly from the in-
put image. It employs various convolutional layers,
activation functions, and pooling layers to extract fea-
tures and predict bounding boxes and class probabil-
ities. The mathematical formulations for these oper-
ations are similar to those described for the Mask R-
CNN backbone network (convolutions, ReLU, pool-
ing).

3base implementation from https://github.com/ultralytics/ultralytics

• Segmentation Loss: Unlike traditional YOLO models,
Ultralytics YOLOv8 incorporates a segmentation loss
function alongside the object detection losses (bound-
ing box and class confidence). This loss function en-
courages the model to predict not only the bounding
box location and class of an object but also its detailed
segmentation mask.The YOLOv8-seg model employs
a combined loss function consisting of three individual
components:

– Bounding Box Loss: This loss calculates the dis-
crepancy between the predicted bounding boxes
and the ground truth boxes’ geometry. It mea-
sures how well the model predicts the size and
location of the objects of interest (e.g., nu-
clei) within the images. Common formulations
for bounding box loss include Intersection over
Union (IoU) loss or Smooth L1 loss.

– Objectness Loss: This loss determines how con-
fident the model is about the presence of an ob-
ject within the predicted bounding box. It essen-
tially compares the model’s predicted probability
of an object being present with the actual ground
truth value (object present or absent). The ob-
jectness loss is formulated using the binary cross-
entropy function.

– Segmentation Loss: This loss quantifies how
close the predicted segmentation mask is to the
ground truth mask. It measures how effectively
the model performs the semantic segmentation
task, accurately delineating the boundaries of the
objects within the image.

• Overall training: During training, the Ultralytics
YOLOv8 model optimizes a combined loss function
that incorporates both object detection losses and the
segmentation loss. This allows the model to learn to
perform both tasks simultaneously: identifying and lo-
calizing objects (with bounding boxes) and segment-
ing them (with masks).

Traditionally, YOLO is used for object detection tasks
like traffic monitoring, people detection in videos, etc.
However, we use the Ultralytics YOLOv8 which has a cus-
tom loss function combining the bounding box loss, object-
ness loss and segmentation loss. This enables the model to
simultaneously perform object detection and semantic seg-
mentation. U-Net is a popular choice for nuclear segmen-
tation and also a state of the art method due to its ability
to perform pixel-wise classification. This allows it to pre-
cisely delineate the boundaries of individual nuclei or other
structures in an image. Mask R-CNN is yet another popular
choice for segmentation tasks as it excels at providing pixel-
wise segmentation masks in addition to the bounding box.
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These properties might facilitate precise analysis of nuclear
morphology or boundaries.

5. Experiments
Given that the models (specifically U-Net compared with

the instance segmentation models) were trained using dif-
ferent loss functions and for slightly different objectives,
we needed to come up with sufficient metrics to compare
fairly. For comparing the segmentation quality, we decided
to use the DICE score and Aggregated Jaccard Index (AJI),
as was used in the NuInsSeg paper.

The Dice score is a measure of overlap between two sam-
ples. It is defined as:

DSC =
2× |X ∩ Y |
|X|+ |Y |

(1)

where X is the set of predicted nuclei and Y is the set
of ground truth nuclei. A Dice score of 1 indicates perfect
overlap, while a score of 0 indicates no overlap.

The AJI is a more complex metric that evaluates the ac-
curacy of instance segmentation by accounting for both de-
tection and segmentation quality [3]. It is defined as:

AJI =
∑

i |Ai ∩Bi|∑
i |Ai ∪Bi|+

∑
k |Bk|

(2)

where Ai represents the ground truth objects, Bi rep-
resents the predicted objects, and Bk are the false positive
predictions. The AJI penalizes both false positives and false
negatives, providing a comprehensive measure of segmen-
tation performance.

For comparing the performance of the instance segmen-
tation models, we preferred to use Average Precision, re-
porting both AP50 (average precision at IoU > 0.5) and
APm (mean average precision over IoU ∈ (0.5, 0.95)).
These metrics are more common in the instance segmen-
tation literature and, though they exhibit some issues such
as being insensitive to small changes and producing gross
changes in score near the threshold [1], they are sufficient
for our setting.

For all three of our chosen models, there are well-
established defaults for various hyperparameters. For
YOLOv8 and Mask R-CNN especially, these are encoded
as the defaults for the Ultralytics and Detectron2 frame-
works respectively. This was the case for learning algo-
rithm, for instance (we used Adam for YOLOv8 and U-Net
and SGD for Mask R-CNN). We did not spend significant
compute tuning the learning rate, but we did ensure suitable
loss curves over a range of rates. Testing rates from 10−2

to 10−5 resulted in selecting 10−3 for all models. Further-
more, we used a linear scheduler for YOLOv8 and a step-
wise scheduler with a 20% decay for Mask R-CNN. These
slight differences in hyperparameters do make direct com-
parisons of the models difficult, but we attempted to balance

consistency across models with choosing performant hyper-
parameters for each model architecture (whether the default
parameter or best one empirically).

Beyond the optimizer configurations, we also experi-
mented with other hyperparameters through ablation tests
for all models. Specifically, we tested various sizes of the
backbone model, batch sizes, and numbers of frozen lay-
ers (as well as use of batch normalization in the U-Net
model). Given that the YOLO and Mask R-CNN models
are much larger than U-Net, we chose to use pre-trained
weights (trained on the COCO dataset) and finetuned them
on our NuInsSeg dataset. In contrast, the U-Net model was
trained from scratch on our dataset and represents the histor-
ical approach to biomedical data, assuming that this setting
is too far removed from everyday images to benefit from
pre-training. We then chose the best objective model re-
sulting from these tests to perform later comparisons and
exploration of the ambiguous maps. Overall, the models
were quite robust to changes in architecture, as measured
by the DICE and AJI scores applied to the validation sets 1.
There was significant drop-off in performance when freez-
ing a large number of block layers; however, un-freezing
all the layers (as compared to freezing the first few) showed
only modest gains. Similarly, using a larger model did not
result in much gain in performance; for U-Net, the 7-layer
model performed worse as measured by both metrics than
the standard 5-layer model. This result is slightly unintu-
itive, however our relatively small dataset (we trained on
491 images and 22122 segmented nuclei) likely limits the
ability to train larger models.

From these results, we selected our best performing
model to use for comparison and further testing. For YOLO,
this was the large backbone with no frozen layers (and batch
size of 1 due to computational constraints). For Mask R-
CNN, this was the smaller backbone with no frozen layers
and batch size 4. Finally, for U-Net we used the smaller
model (5 layers) with batch normalization.

In the spirit of the literature of nuclei segmentation
models and building upon the NuInsSeg publication, we
next compared the performance of our best-performing
YOLOv8 and Mask R-CNN models to U-Net. To find the
best score threshold to use for inference, we performed a
metric sweep from 0.1 to 0.5 on the validation set. We re-
port metrics on both the validation and test sets using the
best threshold (0.2 for YOLO, 0.5 for Mask R-CNN and
U-Net). Somewhat to our surprise, our two suggested mod-
els perform quite well as compared to U-Net, with Mask
R-CNN having much better performance than U-Net on the
validation set 3. Furthermore, the results on the held-out
kidney test set show Mask R-CNN’s consistent performance
on data from a different domain. These results validate the
decision to apply larger models (with pre-trained weights)
to the problem of nuclei segmentation and allowed us to
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Figure 1. Loss curves for each final model, comparing the loss on the training and validation datasets.

YOLO Mask R-CNN
mAP AP50 mAP AP50

Backbone Small 0.425 0.784 0.456 0.682
Large 0.428 0.785 0.447 0.680

Frozen
Layers

0 0.428 0.785 0.451 0.668
5/2 0.402 0.771 0.439 0.679

10/3 0.400 0.752 0.447 0.680
20/4 0.181 0.410 0.393 0.599

Batch Size 1/4 0.428 0.785 0.447 0.680
8/16 0.410 0.771 0.427 0.663

Table 1. Ablation tests for YOLO and Mask R-CNN, testing var-
ious architecture hyperparameters. The small and large backbone
sizes correspond to 261/401 layers for YOLO and ResNet50/101
for Mask R-CNN. The frozen layers parameter corresponds to the
number of layer groups frozen, groupings which differ between
the two architectures. The batch size differs between the two ar-
chitectures only due to computational constraints.

5 Layers 7 Layers
DICE AJI DICE AJI

Batch Norm 0.565 0.259 0.551 0.220
No Batch Norm 0.458 0.166 0.393 0.129

Table 2. Ablation test for the U-Net model, including model size
(either the standard 5 layers or larger 7 layer model) and including
or excluding a batch normalization layer.

U-Net YOLOv8 Mask R-CNN
DICE AJI DICE AJI DICE AJI

Val 0.565 0.259 0.621 0.542 0.760 0.546
Test 0.688 0.407 0.596 0.427 0.768 0.590

Table 3. Comparison of the three models on their best runs, fol-
lowing the ablation study of the hyperparameter choices. The per-
formance on both the validation and test set are compared over the
DICE and AJI metrics.

further experiment with confidence in our model. See 2 for
an example from the test set of the predictions from each
model.

Since Mask R-CNN exhibited the best performance in
the segmentation task, we chose to use it primarily to test
the utilization of ambiguous region annotations. First, we
analyzed the change in model performance when remov-
ing the ambiguous nuclei from the training set altogether.

These results were inconclusive, with similar but improved
performance on the validation set as compared to using all
nuclei for training. Qualitatively, the training loss was much
lower with the ambiguous nuclei removed. This is expected
when removing the most difficult to segment nuclei (with
associated noisy ground truth labels). However, this perfor-
mance gain in the combined loss is not maintained when
applying the trained model to the validation set. Nonethe-
less, the validation metrics do show slight improvements
over the course of training, with very small but noticable
gains in AJI and APm. Overall, these experiments display
the benefits of having clean annotations and warrant fur-
ther experimentation with these ambiguous masks; perhaps
instead of removing the ambiguous nuclei, they could be
down-weighted in the loss calculations.

Finally, we took advantage of the multi-class instance
segmentation capabilities of Mask R-CNN by training the
model to segment nuclei and classify them into two classes:
ambiguous or non-ambiguous. Our interest in this task was
two-fold. First, we wondered if the model could learn fea-
tures that correlated with a human annotation of ambigu-
ous, thereby enabling binary classification of nuclei with a
notion of confidence. This differs from the instance confi-
dence scores output from the model in that it is learned from
the human ambiguity annotations and therefore maps more
cleanly to established slide annotation processes. Second,
we wondered if this classification task along with the in-
herent class imbalance would serve to downweight the loss
from these ambiguous regions. We knew that the training
loss would take a significant hit due to the addition of a new
class, not to mention a class that is difficult to distinguish
from the original nuclei class; however, we hoped that the
resulting model would be robust to difficult regions and per-
form better on a wide variety of samples.

The evaluation metrics did identify many false nega-
tives and positives, nuclei that were likely misclassified as
ambiguous (the segmentation APm was 24.52 vs. 44.13).
However, this strict metric does not fully represent the mod-
els performance. Taken together, the two classes do predict
the nuclei mask very well (the DICE score collapsed over
the classes is comparable and the AJI is even higher). Fur-
thermore, the nuclei labelled as ambiguous do seem to occur
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Figure 2. A human kidney image with its ground truth segmentation mask, followed by the predictions from the three models with the
optimal hyperparameters: U-Net (green), YOLOv8 (red), and Mask R-CNN (blue).

Figure 3. The same human kidney image mask with the Mask R-CNN prediction (threshold=0.2) from the ambiguous classification run.
The dark green instances mark the nuclei classified as ambiguous by the model. All nuclei are also labeled by their confidence. The final
mask shows the ground truth ambiguous regions.

often in the difficult regions 3. In future studies, we may
explore further uses of the ambiguous masks, specifically
interrogating the model’s confidence levels in different re-
gions and potentially modifying the loss function further to
accommodate this added information. Overall, we want to
work towards models that systematically take in and output
uncertainty values for more robust interpretation and usage.

6. Conclusion

In this study, we compared different models for nucleic
segmentation, specifically evaluating the performance of U-
net, YOLO and Mask R-CNN. Our experiments aimed to
provide a fair comparison by using appropriate metrics and
hyperparameter settings for each model. We evaluated seg-
mentation quality using the DICE score and Aggregated
Jaccard Index and assessed instance segmentation perfor-
mance with Average Precision (AP50 and APm).

Our findings indicate that Mask R-CNN outperformed
U-Net and YOLO in both segmentation quality and instance
segmentation metrics. Notably, Mask R-CNN demonstrated
robust performance across different dataset partitions, in-
cluding a held-out kidney test set, highlighting its ability to
generalize well to new tissue types that it hadn’t seen dur-
ing training and validation. YOLO also showed competi-

tive results but was slightly behind Mask R-CNN in terms
of overall performance.

Our final set of experiments included using the ambigu-
ous nuclei annotation during model training. Since Mask
R-CNN exhibited the best performance in the segmentation
task, we chose to use it for this task. Removing ambigu-
ous nuclei from the training set yielded inconclusive results.
While it slightly improved validation performance and re-
duced training loss, the validation metrics showed only mi-
nor improvements in AJI and APm, suggesting potential
benefits of clean annotations.

Future studies may explore further uses of ambiguous
masks, specifically interrogating the models’ confidence
levels in different regions and potentially modifying the loss
function to accommodate this added information. Another
interesting future direction to pursue would be to use ad-
vanced data augmentation techniques, such as generative
adversarial networks (GANs), to create synthetic training
data, enhancing model robustness to variability in tissue im-
ages.

7. Contributions & Acknowledgements

C.M. implemented Mask R-CNN and conducted corre-
sponding experiments for this model. R.K. implemented
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U-Net and conducted corresponding experiments for this
model. S.B. implemented YOLO and conducted corre-
sponding experiments for this model. C.M., R.K., and
S.B. wrote the paper. Publicly available model code used
throughout experimentation are credited in the footnotes.
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