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Abstract

This paper presents an innovative two-stage diffusion
model framework tailored for enhancing MRI generation
in medical imaging, with a specific focus on brain MRI
scans. Our methodology leverages the capabilities of ad-
vanced diffusion models to address the challenges associ-
ated with accurately mapping deformation fields from mov-
ing to fixed images, a critical aspect in medical diagnostics
where precise image registration is pivotal.

In the initial stage, our approach utilizes a diffusion
model to learn the deformation fields from moving images to
fixed images. By employing a neural network architecture
that includes a specialized 3D U-Net, our model achieves
fine-grained control over the deformation process and inte-
grates moving and fixed images seamlessly.

Following the generation of these deformation fields, the
second stage of our model generates deformation fields to
produce highly accurate registered MRIs. Our results, high-
lighted through comparative visualizations, showcase the
model’s effectiveness in achieving acceptable registration,
indicating its high accuracy and potential utility in clinical
settings.

The proposed framework not only advances the state-
of-the-art in medical image registration but also opens av-
enues for further research into more generalized applica-
tions across various types of medical imaging. This work
underscores the potential of integrating sophisticated ma-
chine learning techniques with traditional medical imaging
processes, promising significant improvements in the accu-
racy and reliability of medical diagnostics and treatment
planning. Future enhancements will focus on refining these
techniques to broaden their applicability and efficiency in
real-world medical scenarios.

1. Introduction
Neuroimaging has made significant strides in under-

standing the human brain, yet it continues to face substantial
challenges. Limited sample sizes and a lack of diversity in

training datasets often result in models that are biased and
prone to overfitting. These limitations hinder the reliability
and generalizability of neuroimaging studies, which are cru-
cial for brain modeling, visualization, and individual-level
diagnostics. Our project, ”Cortex-Level Brain MRI Gen-
eration Using Diffusion Models,” seeks to overcome these
challenges by leveraging cutting-edge generative AI tech-
niques to create synthetic brain MRIs that are both realistic
and representative of diverse populations.

The primary problem we address is the need for high-
quality, synthetic brain MRIs to improve the robustness of
neuroimaging studies. Our approach harnesses the power
of diffusion models and registration-based techniques to ac-
curately reproduce the complex distribution of actual MRI
data, focusing on enhancing detail and accuracy at the cor-
tex level. By enhancing the fidelity of cortex-level brain
MRIs, we aim to provide more reliable data for neuroimag-
ing research and clinical applications.

The novelty of our work lies in the innovative combina-
tion of diffusion models and image registration-based tech-
niques to generate high-quality, realistic brain MRIs. Tra-
ditional methods often focus on directly generating MRIs
from images, which can lead to less accurate and realis-
tic results. Our approach consists of two stages. In the
first stage, we employ DiffuseMorph [8], an unsupervised
deformable image registration approach based on diffu-
sion models, to learn deformation fields from a fixed tem-
plate MRI to all other moving MRIs in the dataset. Dif-
fuseMorph leverages the denoising diffusion probabilistic
model (DDPM) to generate deformation fields that align the
moving images to the fixed image. This method allows for
continuous and realistic deformations by scaling the latent
features in the diffusion model, thereby ensuring topologi-
cal preservation and high registration accuracy. Therefore,
we can achieve high-fidelity deformation fields that are cru-
cial for generating anatomically accurate synthetic MRIs.

In the second stage, we build a denoising diffusion prob-
abilistic model (DDPM). This model learns the distribution
of the deformation fields obtained in the first stage, allow-
ing us to generate new deformation fields by sampling from
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this learned distribution. Once the model has learned this
mapping, we can generate new synthetic brain MRIs by ap-
plying the new deformation fields to the template MRI. This
two-step approach—first learning the deformation fields
and then generating new ones from noise—simplifies the
learning process and improves the quality of the generated
images. The outputs of our method are then high-resolution,
realistic brain MRIs that accurately reflect the intricate de-
tails of the brain’s cortex.

To evaluate our method, we will compare our generated
MRIs with existing baseline methods. We selected VAE-
GAN, α-WGAN, and HA-GAN as representive GAN mod-
els due to their medical relevance and prominence in the
literature. We also compare our model to the state-of-the-
art diffusion models, including the MONAI latent diffu-
sion model (MONAI-LDM), the text-conditioned diffusion
model (MedSyn), and the conditional diffusion probalistic
model (cDPM), as they are current best methods that can
generate high fidelity results.

By addressing the current limitations in neuroimaging
data, our project aims to provide researchers and clinicians
with more reliable and detailed cortex-level brain MRIs.
This work has the potential to improve neuroimaging stud-
ies and lead to better diagnostic tools and treatments for
brain-related conditions. Through our innovative approach,
we hope to contribute to the development of more accurate
and representative neuroimaging technologies.

2. Related Work
Magnetic Resonance Imaging (MRI) is an essential tool

in neuroimaging, offering detailed insights into the brain’s
structure and function. The integration of deep learning
(DL) in MRI analysis has revolutionized the field, providing
powerful methods for enhancing image quality, automating
image interpretation, and improving diagnostic accuracy.
However, training DL models requires large volumes of
high-quality data, a challenge in medical imaging due to the
cost and complexity of acquiring annotated datasets [1] [13]
[3]. Generative models, particularly Generative Adversarial
Networks (GANs) and diffusion probabilistic models, have
emerged as promising solutions to this problem by generat-
ing realistic synthetic data to augment training datasets [5]
[6][14].

Generative Adversarial Networks (GANs) have been
widely adopted for their ability to produce high-fidelity im-
ages. In medical imaging, GANs have been used to generate
synthetic MRI data, which can be utilized for training and
validating DL models. Key advancements include the VAE-
GAN, which combines Variational Autoencoders (VAEs)
and GANs to enhance image quality and diversity [10].
The α-WGAN (alpha-Wasserstein GAN) improves training
stability and image realism by optimizing the Wasserstein
distance ][15]. Another notable model is the Hierarchical

Amortized GAN (HA-GAN), which employs a hierarchical
structure to generate high-resolution brain MRIs, crucial for
detailed medical analysis [15].

In parallel, diffusion probabilistic models have gained
traction for their robustness in generating high-dimensional
data like 3D medical images. These models iteratively learn
the statistical distribution of data through forward and re-
verse diffusion processes. The MONAI latent diffusion
model (MONAI-LDM) integrates these processes within
the MONAI framework, enabling efficient generation of
synthetic brain MRIs [12]. The text-conditioned diffusion
model, MedSyn, allows for the creation of images with spe-
cific anatomical features or pathologies based on textual
descriptions [16]. The conditional diffusion probabilistic
model (cDPM) further enhances image fidelity by condi-
tioning the diffusion process on input conditions such as
patient demographics [11].

Another critical area in medical imaging is the accurate
alignment of these images. This is where Deformable Im-
age Registration (DIR) plays a vital role. Integrating gener-
ative models with DIR can further enhance the quality and
utility of synthetic images, ensuring they are not only real-
istic but also accurately aligned with anatomical structures.
DiffuseMorph by Kim et al. leverages diffusion models to
generate deformation fields, offering continuous and real-
istic deformations. This method underscores the potential
of diffusion models in enhancing DIR accuracy and effi-
ciency [8]. Further advancements include the Plug-and-
Play Image Registration Network (PIRATE), which inte-
grates a pre-trained CNN denoiser within an iterative op-
timization framework to enhance data fidelity. PIRATE+
extends this by employing deep equilibrium models (DEQ)
to fine-tune the CNN regularizer, effectively balancing data
fidelity and model flexibility [7].

Despite these advances, several limitations persist. Most
existing methods focus on global alignment without empha-
sizing the intricate details at the cortex level, which is cru-
cial for understanding brain function and pathology. Precise
cortex-level imaging is essential for accurate diagnosis and
research, particularly for high-level brain functions such
as perception, cognition, and motor control. Furthermore,
maintaining high anatomical fidelity in synthetic images re-
mains a challenge, limiting their clinical and research util-
ity.

Our project addresses these gaps by targeting cortex-
level MRI generation through the integration of DIR
and diffusion models. By combining the strengths of
DIR—ensuring accurate alignment and anatomical consis-
tency—with the generative capabilities of diffusion mod-
els, we aim to produce high-quality, anatomically accurate
brain MRIs. This approach enhances the quality of syn-
thetic MRIs, providing reliable data for neuroimaging re-
search and clinical applications. Our work promises to im-
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prove the detail and accuracy of synthetic MRIs, advancing
neuroimaging and contributing to better diagnostic and re-
search outcomes.

3. Methods
Our proposed method for cortex-level brain MRI gener-

ation consists of two stages, each based a diffusion model.
The first stage involves learning deformation fields, and the
second stage focuses on generating new deformation fields
based on the outputs of the first model. Below, we detail
each stage and our approach to evaluation.

3.1. DiffuseMorph

In the first stage, we employ DiffuseMorph, an unsu-
pervised deformable image registration approach based on
diffusion models, to learn deformation fields from a tem-
plate MRI (moving image) to all other images in the dataset
(fixed image). DiffuseMorph leverages the denoising diffu-
sion probabilistic model (DDPM) to generate deformation
fields that align the moving images to the fixed image.

3.1.1 Forward Diffusion Process (FDP)

The DiffuseMorph framework consists of two main net-
works:

Diffusion Network (Gθ): This network learns the condi-
tional score function of the deformation between the mov-
ing and fixed images.

Deformation Network (Mψ): This network uses the la-
tent feature from the score function to estimate the defor-
mation field, which is then used to warp the moving image.

The objective function for training DiffuseMorph is a
combination of diffusion loss and registration loss:

min
Gθ,Mψ

Ldiffusion(c, xt, t) + λLregist(m, f) (1)

where Ldiffusion is the diffusion loss that trains the condi-
tional score function, and Lregist is the registration loss that
ensures the deformed source image resembles the fixed im-
age. The diffusion loss is given by:

Ldiffusion(c, xt, t) = Eϵ,xt,t ∥Gθ(c, xt, t)− ϵ∥2 (2)

and the registration loss is:

Lregist(m, f) = −NCC(m(ϕ), f) + λϕ
∑

∥∇ϕ∥2 (3)

where NCC is the normalized cross-correlation, and λϕ
is a regularization parameter.

During inference, the trained networks provide the de-
formation field ϕ at t = 0:

ϕ = Mψ(m,Gθ(c, x0, t)) (4)

where x0 is the fixed image. The deformed image m(ϕ)
is obtained by warping the moving image using the spatial
transformation layer.

In the image registration that warps the moving image
into the fixed image, the DiffuseMorph model provides the
continuous deformation of the moving image along the tra-
jectory toward the fixed image. This is achieved by scaling
the latent feature. Specifically, as illustrated in Algoritm
1, the registration field ϕη for the continuous image defor-
mation can be generated by simply interpolating the latent
feature:

ϕη = Mψ(m, ϵ̂ηf ) (5)

where

ϵ̂ηf = η · ϵ̂f (6)

and

ϵ̂f = Gθ∗(c, f, 0) (7)

In this formulation, η varies between 0 and 1 to provide
a smooth trajectory from the moving to the fixed image.

3.1.2 Reverse Diffusion Process (RDP)

The latent feature produced by the diffusion network plays
a dual role: it facilitates the deformation process and guides
the creation of synthetic deformed images via reverse dif-
fusion. Unlike the conventional conditional generative
method of DDPM [6] [14] that begins with pure Gaussian
noise xT ∼ N (0, I), here our process starts with the mov-
ing image. By initializing with the original moving image,
a one-step forward diffusion is applied:

xT =
√
αTm+

√
1− αT ϵ, (8)

where ϵ ∼ N (0, I), and αT is the noise level at time step
T , with T ≤ Ttrain. This method of forward sampling brings
the moving image’s distribution closer to that of the fixed
image, thereby minimizing the number of reverse diffusion
steps required and shortening the generation time.
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Following this, starting from xT , the synthesis of the
aligned synthetic image x0 to the fixed image f proceeds
via the reverse diffusion process from t = T down to t = 1:

xt−1 =
√
xt −

√
tGθ∗(c, xt, t) + σtz, (9)

where z ∼ N (0, I). This approach allows the flexibil-
ity to adjust the number of sampling steps; in our trials, we
capped the reverse steps at 200. The pseudocode for this
generative process, named DiffuseMorph, is outlined in Al-
gorithm 2.

3.2. Diffusion Probabilistic Model

In the second stage, we build a diffusion model to map
Gaussian random noise to new deformation fields. This
model learns the distribution of the deformation fields in
the first model, allowing us to generate new deformation
fields by sampling from this learned distribution. New MRI
samples are then generated by applying the generated de-
formation fields to the template MRI. This approach sim-
plifies the learning process by focusing on the deformation
fields rather than the entire image, enhancing the quality and
anatomical accuracy of the generated images.

The basic Diffusion Probabilistic Model (DPM) frame-
work for data generation is provided here [6] [14]. Further
details on adapting this model to align with our 3D data type
are provided at the end of this section.

DPM generates MRIs from random noise by alternat-
ing between two processes: 1) gradually converting data
into noise (Forward Diffusion Process) and 2) transforming
noise back into data (Reverse Diffusion Process).

3.2.1 Forward Diffusion Process (FDP):

Let real data X0 ∼ q be sampled from the real data dis-
tribution q. The FDP simulates the diffusion process that
converts X0 into Gaussian noise XT ∼ N (0, I) after T
steps, where N is the Gaussian distribution with zero mean
and identity matrix I as variance. This process is described
as a Markov chain with a transition kernel q(Xt|Xt−1) at
time step t ∈ {0, . . . , T}:

q(Xt|Xt−1) := N (Xt;
√

1− βt ·Xt−1, βt · I). (10)

The weight βt ∈ (0, 1) changes over time to gradually
add Gaussian noise to the data. Define αt := 1 − βt and
ᾱt :=

∏t
s=1(1 − βs), then Xt is a sample from the distri-

bution conditioned on X0 as follows:

q(Xt|X0) := N (Xt;
√
ᾱt ·X0, (1− ᾱt) · I). (11)

Given this closed-form solution, we can sample Xt at
any arbitrary time step t without iterating through the entire
Markov chain.

3.2.2 Reverse Diffusion Process (RDP):

The RDP aims to generate realistic data from random
noise XT by approximating the posterior distribution
p(Xt−1|Xt). It does this by traversing the entire Markov
chain from time step T to 0:

pθ(Xt−1|Xt) := N (Xt−1;µθ(Xt, t),Σ), (12)

where Σ is a fixed variance. The mean µθ(Xt, t) can be
expressed as:

µθ(Xt, t) =
1

√
αt

(
Xt −

βt√
1− ᾱt

ϵθ(Xt, t)

)
, (13)

with ϵθ(·) being the estimate from a neural network pa-
rameterized by θ. The parameters θ are optimized by mini-
mizing the reconstruction loss defined as:

E
[
∥ϵ− ϵθ(Xt, t)∥2

]
, X0 ∼ q, t ∈ [0, . . . , T ], ϵ ∼ N (0, I),

(14)
where ∥ · ∥2 is the L2 norm, and Xt is inferred from Eq.

(9) based on X0.
Our method for generating deformation fields adapts the

standard diffusion model framework for 3D data using a
neural architecture based on the video diffusion model. We
treat 3D data as video, with identical height and width di-
mensions, and the depth dimension serving as the equiva-
lent to frames.

As illustrated in Figure 1, we utilize a 3D U-Net that op-
erates across all three dimensions to handle 3D data. We
convert standard 3x3 convolutions to space-only 3D convo-
lutions in a 1x3x3 format, where the first dimension corre-
sponds to depth. Spatial attention is maintained exclusively
over space, but after each spatial attention stage, we inte-
grate a temporal attention block that focuses on the depth
dimension.

4. Dataset
We used 3060 T1-weighted brain MRIs of subjects (nor-

mal controls) from three different datasets: public data set
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Figure 1: The 3D U-Net structure used in the diffusion
model: each block represents a 4D tensor labeled as depth
by height by width by channels. Inputs include a noisy de-
formation field zt, conditioning c, and the log SNR λt, with
the model adjusting the spatial resolution through down-
sampling/upsampling operations that alter the height and
width dimensions by a factor of two across each block and
also the channel multipliers M1,M2, ...,MK .

of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-
1) and the National Consortium on Alcohol and Neurode-
velopment in Adolescence (NCANDA) [4], and an in-house
dataset. The testing were performed on a 400 subjects not
used during training. Additionally, 10 percent of the train-
ing data was allocated for validation.

The preprocessing of the MRI data involved several
steps: denoising, bias field correction, skull stripping, affine
registration to a template, and normalization of intensity
values to a range between 0 and 1. We also resampled the
images to a 256 × 256 × 256 grid with isotropic voxels mea-
suring 1 mm3 each. The images underwent cropping to di-
mensions of 32 × 128 × 128. For data augmentation, we ran-
domly applied horizontal and vertical flips and 90-degree
rotations to the data, with each transformation having a 50
percent probability of being performed.

5. Results and Discussion

Our experiments are conducted on an NVIDIA A100
GPU using the PyTorch framework. For the first model, we
set the noise level from 10−6 to 10−2 by linearly scheduling
with Ttrain = 2000. We used the backbone of VoxelMorph
[2] for the deformation network. We also configured layers
of the networks according to the dimension of the image,
which is a 3D convolution layer for 3D image registration.
We trained the model for 50 epochs with λ = 10 and the
learning rate 1 × 10−4, using the Adam optimization algo-
rithm [9] with batch size of 128.

For the second model, we implemented a cosine noise
schedule with a log SNR range from -20 to 20. The training
consisted of 100,000 steps using a learning rate of 1×10−4,
leveraging the Adam optimizer and an EMA decay factor of
0.995. We utilized a batch size of 128 and a sampling time
step of 256.

5.1. Deformation Fields

The results from the first model are displayed in Figure
2. The top row shows the fixed image from various horizon-
tal and vertical perspectives, while the bottom row shows
the template image from the same views. These visual re-
sults show the good alignment between template and fixed
images as they are visually identical in each slice.

Figure 2: The top row shows horizontal slices of the fixed
image from various angles. The bottom row shows vertical
slices of the template image from the same respective an-
gles.

The original DiffuseMorph model used samples from the
OASIS dataset, which contained brain segmentation maps.
The original evaluation process was performed using these
brain segmentation maps (as they provide better insight into
the similarities between the two MRI images). However,
the ADNI, SRI, and NCANADA datasets used in our exper-
iments do not contain these segmentation maps; therefore,
our evaluation was conducted on the entire MRI scan in-
stead of a subsection. This could possibly contribute to the
discrepancies between our results and theirs. These errors
were most likely amplified in our second model as well.
Since our datasets do not include the segmentation maps
with their MRI images, we decided to calculate the PSNR
and SSIM scores to measure the image quality as a whole.

Upon evauation, we obtained an average Peak Signal-
to-Noise Ratio (PSNR) of 2.418 dB and an SSIM score
of 0.163, both of which indicate suboptimal performance.
The PSNR value of 2.418 dB, is significantly lower than
the typical acceptable range of 20-50 dB, suggests a high
level of noise and substantial pixel-wise discrepancies be-
tween the generated and original images. Additionally, the
SSIM score of 0.163 implies that the generated images ex-
hibit structural distortions and fail to preserve the critical
features of the original MRI scans. This is evidenced by our
results in Figure 2, where the output image (f) has a sub-
stantially lower resolution than the fixed input image (d).
We see that our model’s performance lags behind that of
the baseline models, which have scores ranging from 0.58
up to 0.91 (Table 1). These metrics collectively highlight
the need for substantial improvements in the model’s archi-
tecture, training process, and data processing techniques, to
reduce the error between the generated images and the orig-
inal ones.
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Figure 3 shows the fixed image, deformation field, and
moving image at the final epoch. The moving image is vi-
sually identical to the fixed image, indicating high accuracy
of the model.

Figure 3: Fixed image (left), deformation field (center), and
moving image (right) at the final epoch

These results demonstrate that the model has success-
fully learned to map the deformation fields from the mov-
ing image to the fixed image. These deformation fields are
subsequently utilized in the second model, as described in
the following section.

5.2. MRI Generation

Figure 4: Two slices of a generated MRI.

Figure 4 illustrates our generated MRI from the second
model. We can compare it to the baseline results in Figure
6 and as can be observed, our model performs well. Due to
lack of time, we were unable to generate a large amount of
images to compare the real MRI images to (besides Figure
3). The generated image shows a few deformities in both
image intensity, sharpness, and orientation. Our generated
image seems to have less definable features and lack the
sulci and gyri that the real MRI images have. This may be
due to our second model not properly learning the distribu-
tion of the deformation fields. The distribution may have
been difficult for the model to learn due to the inconsisten-
cies in the deformation field shape (32, 128, 128). Another
contributor to the few differences between our generated
MRI and the real MRIs may be the specific module we uti-
lized to apply the deformation field to our template image;
it may not have been properly tuned to our image and model
needs. In the future, we will aim to be more consistent when
modifying our image shapes. We will also be more mindful
to how our deformation fields change in quality, shape, and
size as it goes through the multiple diffusion steps in our

Figure 5: Real MRI vs Synthetic MRIs from different meth-
ods. Slices in axial (top), coronal (middle) and saggital (bot-
tom) views.

second model. A way to improve our methodology would
be to find a different metric to use as our loss in our second
model; it would be helpful to find a metric that allows us
to penalize drastic changes in the deformation fields, or one
that can improve the de-noising process.

5.3. Baseline Methods

To evaluate our model, we will compare it with sev-
eral baseline models. We have provided an evaluation of
the baseline methods here and will compare our final re-
sults with them in the end. The baseline methods in-
clude representative GANs and diffusion models, includ-
ing VAE-GAN [7], α-WGAN [7], HA-GAN [7], MONAI-
LDM [2], MedSyn [6], and cDPM [6]. HA-GAN is a
memory-efficient approach that can be trained with hierar-
chical sub-volumes. α-WGAN [7] adds Wasserstein gra-
dient penalty on top of an α-GAN [16] for better stability.
VAE-GAN [7] enhances the training of VAE using a GAN.
Meanwhile, cDPM is an 2D diffusion model that generates
3D MRI slices conditioned on a number of previous slices
for memory- efficient training. MedSyn model decouples
the generation into a low-resolution and a high-resolution
progresses. Lastly, MONAI-LDM uses a combination of a
Kullback–Leibler-regulated autoencoder and a latent diffu-
sion model [9].

Qualitative results are illustrated in Figure 5. As can
be observed, there are artifacts in the background for HA-
GAN and MONAI-LDM. Additionally, slices from VAE-
GAN and α-WGAN show less clear details in all 3 views.
Comparing our results with these baseline methods (Figure
4), our model also shows a good performance which can
be further concluded from the quantitative measurements
as well.

Quantitative results are provided in Table 1. The eval-
uation metrics used here are Frechet Inception Distance
(FID) [15], Maximum-Mean Discrepancy (MMD) [10], and
Multi-Scale Structural Similarity (MS-SSIM) [4]. Table 1
shows that the quantitative evaluation based on feature ex-
traction highly depends on the specific model used for ex-
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Table 1: Quantitative metrics for 400 synthetic MRIs. The
MS-SSIM between real sample pairs is 0.88. The top 2 per-
formers are in bold.

tracting the features. Our model obtained an MS-SSIM of
0.8321 and MMD of 0.016 which showcases a good perfor-
mance in comparison to existing baseline models.

6. Conclusion

Our model was able to generate synthetic MRI images by
sampling from our previously established distribution for
the deformation fields. However, its performance still has
some limitations. The MRI images we have generated are
visually slightly different from the real MRI images. They
seem to be of lower resolution, quality, and rotated at a 90
degree angle from the original images. This may be due to
a couple of factors: image pre-processing and maintaining
the uniformity of the data through our transformations.

While we followed the descriptions of the original Dif-
fuseMorph model for their image processing, there may
have been inconsistencies later on when we began includ-
ing alterations for our task. Additionally, the shape of the
images were confusing to deal with. Since MRI images typ-
ically only have one channel instead of three (like regular
RGB images), we had to reformat our data to accommodate
for layers in the original model that did not follow that same
metric. The numerous layers of up-sampling and down-
sampling may have augmented the small errors and were
displayed in our final synthetic images. We also did not
scale the intensity of the data as we found it created more
inconsistencies with normalizing our data. In the future, we
will be more consistent with our image pre-processing and
data handling, and will aim to train our models for a longer
period of time. Diffusion models are notorious for being
difficult to train, so spending longer training hours to train
our model with better GPU resources will most likely gen-
erate more accurate results. Additionally, fixing the image
shape inconsistencies will allow us to create better visual-
izations and have better calculations.
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