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1. Abstract
The classification of animal species from images is cru-

cial for wildlife conservation, biodiversity studies, and au-
tomated monitoring systems. Accurate image classification
quickens species identification, enhancing the efficiency
and accuracy of ecological studies. In this study, we ad-
dress this problem by employing four convolutional neu-
ral networks (CNNs): EfficientNetB7, ResNet, Inception
V3, and DenseNet, to classify images depicting ten animal
categories. Through comparative analysis, our goal is to
identify the most effective architecture for this classification
task. We build upon foundational insights from previous re-
search in animal image classification and leverage transfer
learning to develop accurate classifiers, even with limited
datasets. Our experiments demonstrate that EfficientNetB7
outperforms ResNet and DenseNet, achieving the highest
accuracy while maintaining computational efficiency. This
underscores the effectiveness of transfer learning in enhanc-
ing classification accuracy and highlights the potential of
deep learning techniques for biodiversity conservation and
wildlife monitoring. Our findings provide valuable insights
for future research in optimizing deep learning models for
real-world applications, such as wildlife trapcams, and con-
tribute to the preservation of global biodiversity.

2. Introduction
The classification of animal species from images is

a significant problem with implications for wildlife con-
servation, biodiversity studies, and automated monitoring
systems [9]. Accurate image classification facilitates re-
searchers in swiftly identifying and cataloging species,
thereby enhancing the efficiency and accuracy of ecologi-
cal studies [8]. This problem is important as it can greatly
aid conservation efforts and scientific research by providing
reliable data on species distribution and population by us-
ing the Shanon Index to verify biodiversity once we have
the classification and count of species [16].

The input to the algorithm developed in this study is a
set of images, each depicting a few animals in one image

from one of ten categories: dog, cat, horse, spider, butter-
fly, chicken, sheep, cow, squirrel, and elephant. To achieve
the classification, three different convolutional neural net-
works (CNNs) were employed: EfficientNetB7, ResNet,
and DenseNet. The output of the algorithm is the predicted
animal category for each input image. By comparing these
models, the goal was to identify the most effective archi-
tecture for this classification task. The effectiveness of the
models will be identified by comparing their F1 scores and
top-1 test accuracies.

.

3. Related Work

The current literature provided a strong foundation for
us when utilizing deep learning techniques in animal im-
age classification. One article in particular, titled ”Ani-
mal image identification and classification using deep neu-
ral networks techniques” (2023) presented a broad review
of various neural networks, such as CNNs and their appli-
cations in animal image classification, establishing the gen-
eral landscape and challenges of this task [1]. Similarly,
”Experimental Evaluation of Systematic Animal Classifi-
cation System using Advanced Deep Learning Principle”
(2024) and ”Insights and approaches using deep learning to
classify wildlife” (2019) discuss models like VGG, ResNet,
and generic CNNs [10][6]. These articles provide historical
perspectives on the evolution of these models and detailed
evaluation metrics, such as precision, recall, and F1-score,
that are crucial for benchmarking and understanding model
performance in animal classification tasks. Our approach
for metric analysis parallels this, as we also use F1-score,
precision and recall.

For our Inception V3 and DenseNet models, we acquired
code from the Szegedy et al. and Huang et al. arxiv
papers, respectively, that first introduced this architecture.
However, we took a much different approach then the one
specified in each paper. The Inception V3 model used by
Szegedy et al. was trained with stochastic gradient utiliz-
ing the TensorFlow distributed machine with batch size 32
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for 100 epochs. Their earlier experiments used momentum
with a decay of 0.9, and their best models used RMSProp
with decay of 0.9 and ϵ = 0.1. They used a learning rate of
0.045, decayed every two epoch using an exponential rate of
0.94. In addition, gradient clipping with threshold 2.0 was
found to be useful to stabilize the training. Finally, their
model evaluations were performed using a running average
of the parameters computed over time [12].

For the DenseNet models trained by Huang et al., on CI-
FAR and SVHN they trained using batch size 64 for 300 and
40 epochs, respectively. The initial learning rate is set to
0.1, and is divided by 10 at 50% and 75% of the total num-
ber of training epochs. On ImageNet, they trained models
for 90 epochs with a batch size of 256. The learning rate is
set to 0.1 initially, and is lowered by 10 times at epoch 30
and 60 [3].

In comparison, when we trained our DenseNet models,
we started with a learning rate of 0.00001 for training and
tuning, but ultimately changed it to 0.001 for better results.
We trained for 10 and 50 epochs and tuned for 25 and 50
epochs, for a total of 4 combinations. In our training setup,
we employed a dynamic learning rate adjustment strategy
using the ReduceLROnPlateau callback. This method re-
duces the learning rate by a factor of 0.2 if there is no
improvement in the validation loss for three consecutive
epochs, with the learning rate never going below a mini-
mum threshold of 1e-6. This approach helps in fine-tuning
the model more effectively by making smaller updates to
the weights when progress in loss reduction stalls, thereby
aiding in achieving a more precise convergence.

Focusing on the other models, ”Animal Classification
and Recognition Using Deep Learning EfficientNetB4”
(2023) highlights the efficiency and accuracy of the Effi-
cientNet family, particularly EfficientNetB4, in classifying
animal images [5]. The study demonstrates the model’s
capability to achieve high accuracy with fewer parameters
compared to traditional models, though it does not pro-
vide a direct comparison with other advanced architectures
like ResNet and DenseNet. On the other hand, ”AnimNet:
An Animal Classification Network using Deep Learning”
(2021) introduces a custom network tailored specifically for
animal classification, showcasing how specialized architec-
tures can be optimized for this domain to improve accuracy
and efficiency [2]. However, these studies often lack com-
prehensive comparisons with other advanced models, which
limits their ability to provide a complete performance as-
sessment.

Comparative analyses and the use of transfer learning
are well-covered in several studies. ”Improving the Accu-
racy of Animal Species Classification in Camera Trap Im-
ages Using Transfer Learning” (2024) conducts a thorough
comparison of models including ResNet, DenseNet, and
others using transfer learning techniques[17]. This study

provides robust performance analyses, demonstrating how
transfer learning can significantly enhance model accuracy
on camera trap images by leveraging pre-trained weights.
Similarly, ”Animal Species Recognition with Deep Convo-
lutional Neural Networks from Ecological Camera Trap Im-
ages” (2023) evaluates VGG, ResNet, and generic CNNs,
offering detailed evaluation metrics such as confusion ma-
trices and ROC curves to assess model performance[7].
Furthermore, ”Identifying animal species in camera trap im-
ages using deep learning and citizen science” (2018) and
”Automated Recognition of Wild Animal Species in Cam-
era Trap Images Using Deep Learning Models” (2023) em-
phasize the importance of transfer learning in improving
model generalization and provide technical insights into
model architecture and training processes[14][?]. These ar-
ticles highlight the strengths and weaknesses of different
models, the significance of transfer learning, and the neces-
sity of using appropriate metrics, making them highly rel-
evant for your project comparing EfficientNetB7, ResNet,
and DenseNet for animal image classification.

4. Methods

To determine the most effective model for animal image
classification, multiple pre-trained models were used from
Keras to train an overarching transfer learning model. Af-
terwards, the transfer learning models were tested on a test
set and the accuracies of each model were compared.

4.1. Loss Function

A softmax loss function was used during training. Soft-
max loss converts the raw output scores of a neural network
into probability distributions over the class labels. This
helps in clearly distinguishing between multiple classes by
assigning higher probabilities to the correct class and lower
probabilities to the incorrect ones. It also reacts effectively
to blurry or distorted images. This quality makes softmax
loss ideal for image classifying since raw image data is not
typically consistent in resolution or quality.

σ(zi) =
ezi∑K
j=1 e

zj
(1)

4.2. Transfer Learning

Transfer learning involves training a network on a base
dataset , then transferring those features to a second network
to be trained on a different dataset. Due to the vast compu-
tational and time resources needed to train a convolutional
neural network from scratch, a transfer learning model was
used for this image classifier. In this experiment, all mod-
els had been pre-trained with the ImageNet dataset. Af-
ter a pre-trained model had been loaded into the classifier,
all layers except for the input layer were frozen. VGG-16,



VGG-19, and Xception are typical pre-trained models used
for image classifiers, however, the merits of EfficientNet-
B7, ResNet152-V2, and DenseNet121 as pre-trained mod-
els in a transfer learning model were tested for this classifier.
For all three models we attempted to set up Early Stopping,
Learning Rate Reduction, and Model Checkpoint callbacks
to monitor the training process and save the best model
weights. After the pre-trained models were used to trans-
fer their features in the initial training process, the model
was fine-tuned with another training run in which the layers
were unfrozen.

4.3. Models

4.3.1 EfficientNet B7

EfficientNet-B7 was used as a pre-trained model in training
the image classifier. EfficientNet is a convolutional neural
network architecture that uniformly scales depth, width, and
resolution using a compound scaling method, as opposed to
the typical approach of arbitrarily modifying network prop-
erties [[13]]. EfficientNet-B7, specifically, improves upon
the complexity of the base EfficientNet-B0 by adding more
layers. It’s used in image classification because of its high
accuracy without compromising computational efficiency.
Figure 1 shows the architecture of EfficientNet-B7.

Figure 1. EfficientNet-B7 model architecture

4.3.2 ResNet152-V2

ResNet152V2 is one of the pre-trained convolutional neu-
ral network models we used for classifying the images and
finding the best models. This model had several parame-
ters, including the inclusion of the top fully connected layer,
pre-trained weights from the ImageNet dataset, and an input
shape. The architecture comprises multiple residual blocks
that are organized into four main stages. Each stage of
ResNet is responsible for processing specific spatial dimen-
sions of the input image as seen in Figure 2. [4]

Figure 2. ResNet152-V2 Architecture

Each residual block features convolutional layers, batch
normalization, and ReLU activations, enhanced by short-
cut connections that ensure efficient gradient flow and mit-
igate the vanishing gradient problem. The network con-
cludes with a global average pooling layer followed by a
fully connected layer with a softmax activation function,
which is particularly effective for classification tasks. For
this model we compiled the model with sparse categorical
cross-entropy as the loss function and used Adam optimizer.

4.4. DenseNets

The Dense Convolutional Network (DenseNet) enhances
traditional convolutional networks by establishing direct
connections from each layer to every other layer in a feed-
forward manner. DenseNet’s structure, with L(L+1)/2 con-
nections mitigates the vanishing-gradient issue, boosts fea-
ture propagation, fosters feature reuse, and reduces the
overall number of parameters. DenseNet eliminates the
vanishing-gradient problem, as each layer has direct access
to the gradients from the loss function and the original in-
put signal. It is remarkably efficient, too. DenseNet also
integrates features through transition layers that consist of
batch normalization, a 1x1 convolution, and a 2x2 average
pooling operation, which help in managing the feature map
sizes and improving the computational efficiency. [3]

Figure 3. DenseNet 121 Architecture

DenseNet-121, DenseNet-169, and DenseNet-201, dif-
fer mainly in their depth, with 121, 169, and 201 layers,



respectively. Each variant is designed to handle increas-
ingly complex image recognition tasks: DenseNet-121 of-
fers a balance between efficiency and performance for sim-
pler applications, DenseNet-169 provides enhanced accu-
racy for more complex tasks with its additional layers, and
DenseNet-201, the deepest model, is best suited for highly
detailed and nuanced tasks such as advanced medical imag-
ing due to its superior feature extraction capabilities. We
tested all three types.

5. Dataset

5.1. Dataset Description

The dataset utilized for this project comprises approxi-
mately 28,000 (224 x 224 pixel) images, each categorized
into one of the ten specified animal classes as seen in Fig-
ure 5. These images were sourced from Google Images and
verified to ensure quality by Corrado Alessio. To simulate
real-world conditions, the dataset includes some erroneous
data, representing images that users of an application might
take. We had to identify the erroneous data to run our mod-
els appropriately.

Figure 4. Classification of Dataset and Labels

The data is organized into a main directory with subfold-
ers for each animal category, with the number of images per
category ranging from 2,000 to 5,000, however, there was a
greater amount of images for butterfly, spider, and dog than
for the other classes which is seen in Figure 14 in the Ap-
pendix. This diverse collection includes variations in light-
ing, background, and pose, providing a robust foundation
for training and evaluating image classification models.

5.2. Data Preprocessing

Several preprocessing steps were applied to the data be-
fore training the models. Images were synthesized into a
dataframe and split into training and test sets using an 80-
20 ratio. The ImageDataGenerator from Keras was utilized
for data augmentation and preprocessing, including split-
ting the data into training, validation, and test subsets. The
data generator also facilitated the splitting of the dataset
into training and validation sets, with 20% of the data re-
served for validation. For the test data, we used a sepa-
rate generator. Each model took in its own preprocess in-
put. We initially usde the ‘train test split’ function from
‘sklearn.model selection’ to split the data into training and
test datasets. The train dataframe contains 80% of the data
and is used for both training and validation. The test data
frame contains the remaining 20% of the data and is used
for testing. From the training dataframe, it futher split, 80%
for the training, and 20% for the validation. We load the
data into the model using the flow from dataframe method.
This validation split was critical for monitoring the model’s
performance on unseen data during training and ensuring
that the model did not overfit.

5.3. Data Augmentation

To further enhance the training process, data augmen-
tation techniques were employed as part of the data pre-
processing. For this project, the ‘ImageDataGenerator‘
class from Keras was employed to apply a series of im-
age augmentations. The augmentations applied included re-
scaling, horizontal flipping, vertical flipping, and rotation.
Specifically, re-scaling was performed by normalizing pixel
values to the [0, 1] range, which aids in faster training and
better performance. Additionally, images were randomly
rotated within a 20-degree range to enhance the model’s ro-
bustness to rotational variations as seen in the Appendix in
Figure 15.

6. Experimental Results and Discussion

6.1. Result Metrics

Top-1 accuracy was used as the metric when training the
model and during testing. Top-1 accuracy score refers to the
percent of images for which the correct class was within the
top-1 predicted scores.

The F1 score is a metric commonly used in classification
tasks, particularly when dealing with imbalanced datasets
where the class distribution is uneven. It combines preci-
sion and recall into a single value, providing a balanced as-
sessment of a classifier’s performance.

Precision measures the proportion of true positive pre-
dictions (correctly classified instances) out of all positive
predictions made by the model. It is calculated as:



Precision =
True Positives

True Positives + False Positives

Recall, also known as sensitivity or true positive rate,
measures the proportion of true positive predictions out of
all actual positive instances in the dataset. It is calculated
as:

Recall =
True Positives

True Positives + False Negatives

The F1 score is the harmonic mean of precision and re-
call, given by:

F1 = 2× Precision × Recall
Precision + Recall

The F1 score considers both false positives and false neg-
atives, making it particularly useful when the cost of mis-
classification is high or when there is an imbalance between
classes. It provides a single metric that balances the trade-
off between precision and recall, offering a more compre-
hensive evaluation of a classifier’s performance compared
to accuracy alone.

In a confusion matrix, the rows represent the instances
belonging to the actual classes, while the columns represent
the instances assigned to the predicted classes. A very ac-
curate model will have a saturated matrix diagonal.

6.2. Hyperparameters

A learning rate of 0.00001 was used during the transfer
learning and model fine-tuning steps. This learning rate was
chosen because the pre-trained models are already loaded
with useful features, thus a small learning rate was cho-
sen to avoid disrupting the features. A learning rate re-
duction callback was also used in both the transfer learn-
ing and the model fine-tuning steps. This allowed for dy-
namic changing of the learning rate if the validation losses
were to plateau. For the optimizer, the adam optimizer was
used. The mini-batch size was chosen to be 32. This size
achieves a balance between computational efficiency and
stable gradient estimates, allowing for more efficient use
of GPU memory and computational resources. Lastly, no
cross-validation was performed, as it was deemed too com-
putationally expensive for this model. However, for all three
DenseNet models, a learning rate of 0.001 was used during
the transfer learning while a 0.00001 learning rate was used
for the model fine-tuning steps. This achieved higher test
accuracy results for all three models. Also, for the Incep-
tion V3, learning rates of 0.00001, 0.0001, 0.001, and 0.002
were all tried for the transfer step but all failed to produce
accurate results.

6.3. DenseNet Results

All DenseNet models were run with four different epoch
value combinations. Not only would this allow us to de-
termine the optimal values for these parameters, but also
allows for efficient evaluation of the model’s performance
under various training durations, providing insights into the
balance between training complexity and accuracy gains.
This systematic approach ensures that the model is not only
accurate but also optimized for computational efficiency,
preventing overfitting and unnecessary resource expendi-
ture. The results of DenseNet-121 and DenseNet-169 can
be found in the appendix. Here we just focus on DenseNet-
201, the best performing of the trio tested. Before tuning
the model we get a validation loss of 0.274 and a valida-
tion accuracy of 90.41%. The pair consisting of 50 transfer
learning epochs and 25 tuning epochs performed the best
after tuning, with a test accuracy of 94.44%.

Figure 5. Validation and training curves for accuracy (left) and
loss(right) of the DenseNet-201 model

Per usual, the difference between the training and valida-
tion curves indicates a lack of underfiting and overfiting as
a result of this model. With an F1 score of 0.92, it proves to
be a decently reliable image classifier. This accurate model
has, as expected, a clean, colored confusion matrix diago-
nal.



Figure 6. Confusion matrix of the DenseNet-201 model

In this display, we present both the predicted and actual
labels for a randomly selected set of images. All predicted
labels accurately match the actual labels, showcasing the
model’s effectiveness. As we initially hypothesized, the
DenseNet-201 model outperformed other DenseNet vari-
ants. This superior performance can likely be attributed to
its increased number of layers, which allow for deeper and
more detailed processing of features.

Figure 7. Predicted labels of the DenseNet-201 model for a test set

6.4. EfficientNet-B7 Results

The EfficientNet-B7 based model was run with four dif-
ferent epoch value combinations to determine the optimal
values for these parameters. Shown in Table 6 in the ap-
pendix, the pair consisting of 10 transfer learning epochs
and 25 tuning epochs performed the best, with a test accu-
racy of 97.32%.

After the model was run with these hyperparameters, the
plots shown in figure 8 were produced. The plots in figure
8 indicate a healthy difference between the training and val-
idation curves. This means that there is neither underfiting
nor overfiting as a result of this model. Figure 31 in the ap-
pendix shows the classification report for the EfficientNet-
B7 based model. With an F1 score of 0.9645, it proves to
be a very reliable image classifier.

Figure 8. Validation and training curves for accuracy (left) and
loss(right) of the EfficientNet-B7 model

A confusion matrix can help visualize the performance
of a classification model. In Figure 9, the confusion matrix
of the EfficientNet-B7 model shows the frequencies of the
predicted label matching the true label. A very accurate
model will have a colored confusion matrix diagonal.

Figure 9. Confusion matrix of the EfficientNet-B7 model

Figure 10 shows the predicted and the actual labels of a
random set of images. All of the predicted labels are cor-
rect, showing the model’s robustness.



Figure 10. Predicted labels of the EfficientNet-B7 model for a test
set

6.5. ResNet Results

The ResNet-based model was run with four different
epoch value combinations to determine the optimal values
for these parameters. As shown in Table 5 in the Appendix,
the pair consisting of 50 transfer learning epochs and 25
tuning epochs performed the best, with a test accuracy of
95.93

Before tuning the model we get a validation loss of 0.389
and a validation accuracy of 86.71% as seen in Figure 29 in
the appendix. After tuning the model we get a validation
loss of 0.373 and a validation accuracy of 89.25%.

Figure 11. Validation and training curves for accuracy (left) and
loss(right) of the ResNet152-V2 model

We evidently see that after doing hyperparameter tuning
we have an increase in validation accuracy but not to the
same extent that EfficientNet had.

As seen in Figure 30 in the Appendix, the overall F1-
score of the model is 0.948, indicating a high level of ac-
curacy and robustness in classifying images across various
categories. The F1-score, which balances precision and re-
call, demonstrates that the model performs exceptionally
well in differentiating between the classes, even those with
fewer training examples. This can be further seen when we
look at the predicted labels vs. the true labels in Figure 19
below where out of the 15 images one was predicted incor-
rectly.

The majority of predictions align correctly along the di-
agonal of the confusion matrix as seen in Figure X, signify-
ing high accuracy. For instance, butterflies, cats, chickens,
cows, and spiders are predominantly classified correctly, re-
flecting the model’s robust feature learning for these cate-
gories. Specific metrics reinforce this, with F1-scores of
0.96 for butterflies, 0.98 for cats, and 0.97 for spiders, un-
derscoring high precision and recall which is seen in Figure
30 in the Appendix.

Figure 12. Confusion Matrix ResNet152-V2 model

However, the confusion matrix as seen in Figure 12
also uncovers some misclassifications. For example, a few
dogs are misclassified as cats, cows, horses, and elephants,
and some spiders are mistaken for butterflies and chickens.
The elephant and squirrel categories show slightly higher
misclassification rates, indicating potential areas for refine-
ment. Elephants, with an F1-score of 0.94, and squirrels,
with an F1-score of 0.92, illustrate these challenges as seen
in Figure 29.



Figure 13. Predicted labels of the ResNet152-V2 model for a test
set

6.6. Comparison of Models

Overall the four models did comparatively well, Effi-
cientNet, ResNet, Inception V3, and DenseNet as expected.
Among the tested models, Inception V3 struggled signifi-
cantly with the complexity of the dataset, likely due to its
architecture not being well-suited for the task. DenseNet
models showed improved performance with increasing
depth, where DenseNet 201 outperformed DenseNet 121
and 169 because of its ability to capture more complex
features. ResNet excelled in capturing complex features
owing to its deep architecture and residual learning mech-
anism. EfficientNet-B7 outperformed all models due to
its balanced scaling of depth, width, and resolution, cap-
turing complex features effectively. In terms of hyperpa-
rameter sensitivity, Inception V3’s performance was signif-
icantly affected by hyperparameter tuning, indicating high
sensitivity. Conversely, DenseNet demonstrated robustness
to different epoch values, with consistent performance im-
provements through tuning. ResNet maintained high per-
formance across various hyperparameter settings, suggest-
ing stable training dynamics. EfficientNet-B7 showed ex-
cellent performance with minimal sensitivity to hyperpa-
rameter changes, indicating robust training dynamics.

Model Test Accuracy (%) F1 Score
DenseNet 121 92.15 0.915
DenseNet 169 93.30 0.913
DenseNet 201 94.44 0.926

ResNet 95.93 0.948
EfficientNet-B7 97.32 0.964

Table 1. Test Accuracy and F1 Scores of Different Models

In terms of accuracy and F1 score, Inception V3 had
the lowest test accuracy and F1 score, indicating overall
poor performance. DenseNet 121 and DenseNet 169 had
similar F1 scores, respectively of 0.9159 and 0.9134 and
highest test accuracy of 92.15% and 93.30%. These were
outperformed by the deeper DenseNet variants, DenseNet

201 achieving a test accuracy of 94.44% and an F1 score
of 0.92. ResNet achieved high accuracy and an F1 score
of 0.948 and highest test accuracy of 95.93%, indicating
better performance than DenseNet. However, EfficientNet-
B7 achieved the highest accuracy and F1 score, with a test
accuracy of 97.32% and an F1 score of 0.9645, demonstrat-
ing the best overall performance. Among the four mod-
els, EfficientNet-B7 stands out as the most effective for this
classification task, followed by ResNet and DenseNet 201.
Inception V3, while architecturally innovative, did not per-
form well due to its sensitivity to image size and hyperpa-
rameters. Both DenseNet and ResNet models demonstrated
strong feature learning capabilities, with EfficientNet-B7’s
balanced scaling providing an edge in handling complex
datasets.

7. Conclusion and Future Work
In conclusion, our study comparing the performance of

EfficientNet-B7, ResNet, Inception V3, and DenseNet-121,
169, and 201 for animal image classification resulted in
EfficientNet-B7 producing the most accurate results while
maintaining high computational efficiency. Leveraging
its optimized architecture and compound scaling method,
EfficientNet-B7 demonstrates superior performance in ac-
curately classifying animal images, albeit by a few per-
centage points from DenseNets and Resnet, making it a
promising candidate for scientists who perhaps do not want
to use the ImageNet or CIFAR datasets. Moreover, our
findings underscore the effectiveness of transfer learning
in developing accurate image classifiers, even with limited
datasets. By fine-tuning pre-trained models, we can har-
ness the knowledge learned from large datasets and apply
it to smaller, domain-specific tasks, significantly improving
classification accuracy. Furthermore, we could do this fine-
tuning of the models if we change to torch instead as we
could change the forwards and backward pass where there
was limited work that could be down with Keras. Further-
more, for future work, we plan to ensure an equal number
of images for each class. The current dataset had a signifi-
cantly higher number of images for dogs and spiders com-
pared to the other classes, which may have contributed to
the higher overall accuracy. Equalizing the number of im-
ages across classes will help mitigate this imbalance and
provide a more accurate assessment of model performance.

Future work could explore further optimizations of
EfficientNet-B7 and investigate its performance on larger
and more diverse datasets. Additionally, research efforts
could focus on adapting the model for real-time appli-
cations and deploying it in resource-constrained environ-
ments, such as wildlife trap cameras. The implications of
our results extend beyond the realm of deep learning, of-
fering valuable insights into biodiversity conservation and
wildlife monitoring. Accurate animal classification using



trap camera imagery can provide researchers and conserva-
tionists with invaluable data for assessing biodiversity, un-
derstanding ecosystem dynamics, and informing conserva-
tion strategies. [11] By leveraging advanced deep learn-
ing techniques like EfficientNet-B7 and transfer learning,
we can enhance our ability to monitor and protect wildlife
populations, ultimately contributing to the preservation of
global biodiversity.
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A. Appendix
A.1. Data Representation

Figure 14. Classification of Dataset and Labels

Figure 15. Sample set of data after augmentation

A.2. Inception V3

Inception V3 is a convolutional neural network that has
the factorization of larger convolutions into smaller ones,
which helps reduce the parameter count and computational
expense while maintaining network depth and capability.
The architecture also employs label smoothing as a regu-
larization technique to prevent the model from becoming



overly confident during training—a common cause of over-
fitting. This enhances its ability to generalize. [12]

Figure 16. Inception V3 Architecture

Inception V3 utilizes auxiliary classifiers to assist in
training, stabilizing the training process across the net-
work’s depth. The network’s design structures convolu-
tional filters to minimize redundancy and maximize pro-
cessing speed. This includes the use of 1x1 convolutions
to perform dimension reduction before applying more com-
putationally expensive 3x3 and 5x5 convolutions.

A.2.1 Inception V3 Results

Inception V3 performed the worst out of all tested models.
We hypothesize that this is because it expects a (299, 299)
image size while our images were all of pixel size (224,
224). Inception V3’s architecture may also not align well
with the complexity or scale of features in the dataset. Ad-
ditionally, the model’s sensitivity to hyperparameters such
as learning rate and batch size could be affecting its train-
ing effectiveness. Inception V3 is designed to be a balanced
model in terms of width and depth, and our dataset con-
tains highly complex features that require deeper or wider
networks to capture effectively. Models we tested like
DenseNet-201, which are deeper and allow more complex
feature propagation, performed better. Finally, the architec-
ture of Inception V3, with its mixture of convolutions of
varying sizes at each module, is aimed at capturing infor-
mation at various scales. It is possible that the scale of im-
portant features in the dataset did not align well with these
sizes, resulting in the model struggling to effectively learn
these features.

A.3. DenseNet-121

A.3.1 Results

Table 2. DenseNet-121 Hyperparameter Optimization
Transfer
Learning
Epochs

Tuning
Epochs

Test Accuracy
(%)

10 50 (early stop-
ping at 6)

92.15

50 50 (early stop-
ping at 10)

91.95

10 25 (early stop-
ping at 13)

91.00

50 25 (early stop-
ping at 6)

91.67

Before tuning, the validation accuracy of our DenseNet-121
model was 86.33% with 0.4123 validation loss.

Figure 17. Validation and training curves before tuning for
DenseNet-121

Shown in the Table, the pair consisting of 50 transfer
learning epochs and 50 tuning epochs performed the best
after tuning, with a test accuracy of 91.95%. This was de-
termined to be the worse performing of all DenseNet mod-
els.

Figure 18. Validation and training curves for accuracy (left) and
loss(right) of DenseNet-121

The difference between the training and validation
curves indicates a lack of both underfiting and overfiting



as a result of this model. After the model was run with
these hyperparameters, the plots shown in these figure were
produced. With an F1 score of 0.9159, it proves to be a de-
cently reliable image classifier. The next figure shows the
classification report for the DenseNet-121 model.

Figure 19. F1 score and classification report for DenseNet-121

Figure 20. Confusion matrix of DenseNet-121

The last figure shows the predicted and the actual labels
of a random set of images. Four of the predicted labels
are incorrect, revealing a weakness in the model’s ability
to generalize.

Figure 21. Predicted labels of DenseNet-121 for a test set

A.4. DenseNet-169

A.4.1 Results

A.4.2 DenseNet 169

Table 3. DenseNet-169 Hyperparameter Optimization
Transfer
Learning
Epochs

Tuning
Epochs

Test Accuracy
(%)

10 50 (early stop-
ping at 11)

90.61

50 50 (early stop-
ping at 12)

93.30

10 25 (early stop-
ping at 7)

92.34

50 25 (early stop-
ping at 9)

90.80

Before tuning the model we get a validation loss of 0.274
and a validation accuracy of 90.41%.

Figure 22. Validation and training curves before tuning

Shown in Table 2, the pair consisting of 50 transfer learn-
ing epochs and 50 tuning epochs performed the best after
tuning, with a test accuracy of 93.30%.



Figure 23. Validation and training curves for accuracy (left) and
loss(right) of the DenseNet-169 model

The close alignment between the training and validation
curves suggests that the model exhibits neither underfitting
nor overfitting.

After executing the model with the specified hyperpa-
rameters, the resulting plots are depicted in the figures be-
low.

With an F1 score of 0.9134, it demonstrates considerable
reliability as an image classifier, and its confusion matrix
validates this.

Figure 15 presents the classification report for the
DenseNet-169 model.

Figure 24. F1 score and classification report for the DenseNet-169
model

Figure 25. Confusion matrix of the DenseNet-169 model

The last figure shows the predicted and the actual labels
of a random set of images. All but two of the predicted
labels are correct, showing the model’s robustness.

Figure 26. Predicted labels of the DenseNet-169 model for a test
set



Table 4. DenseNet 201 Hyperparameter Optimization
Transfer
Learning
Epochs

Tuning
Epochs

Test Accuracy
(%)

10 50 (early stop-
ping at 14)

92.15

50 50 (early stop-
ping at 17)

93.10

10 25 (early stop-
ping at 10)

92.34

50 25 (early stop-
ping at 12)

94.44

H

Figure 28. F1 score and classification report for DenseNet-201

A.5. DenseNet-201

Figure 27. Validation and training curves before tuning for
DenseNet 201

The next figure shows the classification report for the
DenseNet-201 model.

A.6. ResNet

Figure 29. Validation and training curves before tuning

Table 5. ResNet Hyperparameter Optimization
Transfer
Learning
Epochs

Tuning
Epochs

Test Accuracy
(%)

10 50 (early stop-
ping at 28)

92.79

50 50 (early stop-
ping at 17)

94.83

10 25 (early stop-
ping at 18)

93.32

50 25 (early stop-
ping at 14)

95.93

Figure 30. F1 score and classification report



Table 6. EfficientNet Hyperparameter Optimization
Transfer
Learning
Epochs

Tuning
Epochs

Test Accuracy
(%)

10 50 (early stop-
ping at 27)

95.79

50 50 (early stop-
ping at 7)

94.83

10 25 (early stop-
ping at 14)

97.32

50 25 (early stop-
ping at 14)

96.93

A.7. EfficientNet-B7

Figure 31. F1 score and classification report of EfficientNet-B7
model
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