
Dancing in Style: Classifying Dance Videos By Style

Esteban Nathan Guzman
Stanford University
nate18@stanford.edu

Han Dao
Stanford University
handao@stanford.edu

Sophie Wu
Stanford University
swulee@stanford.edu

Abstract

The task of classifying human actions in videos has been
a significant area of computer vision research, with dance
being a culturally rich and stylistically diverse subset. In
this paper, we present a novel approach to classify dance
videos by style using an enhanced Two-Stream Inflated 3D
ConvNet (I3D) model. We leverage the Kinetics-700 and
Let’s Dance datasets, combining them to create a robust
dataset for training and evaluation. Our method and ex-
perimentation involve extensive hyperparameter tuning to
improve the model performance. Additionally, we experi-
mented with transfer learning by fine-tuning two different
existing I3D models, originally based on the ResNet50 and
the ResNet50 (NonLocal Dot Product) backbones, on our
dance-focused dataset. Experimental results demonstrate
the effectiveness of our approach, achieving accuracy in
classifying various dance styles. This work not only aids
in the preservation and study of dance but also provides
insights into the distinguishing features of different dance
styles.

1. Introduction
The task of classifying human action in videos has long

since been a major area of computer vision research. While
there exists many frameworks and models aimed at recog-
nizing human action in general, we aim to focus in on a
narrower subset: learning to recognize different styles of
dance. Dance is an integral part of cultures all around the
world, and each style of it is a product of unique regional,
historical, and social influences. Being able to automati-
cally and systematically classify these different forms of
dance would not only help in the preservation and further
study of them, but potentially also reveal new insights on
what aspects make each dance style its own.

1.1. Problem Statement

More precisely, the problem we aim to address is as fol-
lows: given a set of unique video clips, each depicting hu-
man subjects performing a specific style of dance, how to

best train and fine-tune an action recognition model to cat-
egorize these videos into the correct styles of dance with
as high accuracy as possible. For each video clip input,
our model outputs a label corresponding to a specific dance
style that it believes the video to be of. The baseline accu-
racy we will compare our model to is one that has only been
trained on a general human action dataset.

1.2. Literature Review

One of the most foundational papers in the area of hu-
man action recognition is “Two-Stream Convolutional Net-
works for Action Recognition in Videos” by Simonyan and
Zisserman [8]. In it, Simonyan and Zisserman explore an
extension to deep CNNs for still images in order to per-
form action recognition in videos. One of the key ideas is
to have decompose the videos into two separate ”streams”:
the spatial and the temporal. Each stream would then be
learned by a separate deep ConvNet, which would then re-
turn separate scores that are combined by late fusion. This
method was able to obtain impressive accuracy on the UCF-
101 and HMDB-51 video datasets, achieving roughly 88%
and 59.4% respectively.

This idea of Two-Stream ConvNets has also been applied
and evaluated on the more specific task of classifying dance
videos. In “Let’s Dance: Learning from Online Dance
Videos” [4], Castro et al. introduce a 1000 video dataset
comprised of multiple dance styles, then compare the per-
formance of a several state-of-the-art action recognition
models on this new dataset. While the Two-Stream Con-
vNet models perform well on the original UCF-101 dataset,
the performance is rather lower on the Castro et al.’s “Let’s
Dance” dataset, achieving roughly 69% accuracy. In their
work, they also propose a Three-Stream CNN—in which
the temporal stream is further split into two, one that works
based off of optical flow, and one that is derived from skele-
tal pose estimation. This model also also achieves roughly
69% accuracy on the “Let’s Dance” dataset.

In light of this, we decided to build upon a different
method extending Two-Stream ConvNets for dance recog-
nition. In their work, “Quo Vadis, Action Recognition? A
New Model and the Kinetics Dataset” [2], Carreira and Zis-

1



serman propose a Two-Stream Inflated 3D ConvNets (I3D),
where ”filters and pooling kernels of very deep image clas-
sification ConvNets are inflated into 3D”. This allows for
the model be ”very deep, naturally spatio-temporal clas-
sifiers”. The I3D models were able to outperform practi-
cally all other state-of-the-art action recognition models, in-
cluding on the much larger and more challenging Kinetics
dataset. Thus, we hope to leverage I3D model’s architecture
and apply it to our more specific task of classifying dance
videos.

2. Related Work
In this section, we review existing literature on ac-

tion recognition in videos, categorizing the approaches into
three main categories: shallow high-dimensional encod-
ings, two-stream convolutional networks, and 3D convolu-
tional networks. We discuss the strengths and weaknesses
of representative methods in each category and highlight the
state-of-the-art techniques.

2.1. Shallow High-Dimensional Encodings

Shallow high-dimensional encoding methods have been
widely used in early video action recognition research.
These methods typically involve extracting local spatio-
temporal features, such as Histogram of Oriented Gradients
(HOG) and Histogram of Optical Flow (HOF), and encod-
ing them using techniques like Bag of Features (BoF) or
Fisher Vectors (FV).

Improved Dense Trajectories (IDT) by Wang and
Schmid (2013) represents a significant advancement in this
category. IDT extracts dense trajectories from videos and
computes several descriptors, including HOG, HOF, and
Motion Boundary Histograms (MBH), along the trajecto-
ries. These descriptors are encoded using Fisher Vectors
to create a high-dimensional representation of the video.
The method achieves impressive results on benchmarks like
UCF-101 and HMDB-51 by compensating for camera mo-
tion and integrating multiple descriptors [10, 6]. However,
the reliance on hand-crafted features and the computational
cost of dense trajectory extraction are notable limitations.

2.2. Two-Stream Convolutional Networks

Two-stream convolutional networks, introduced by Si-
monyan and Zisserman (2014), leverage both spatial and
temporal information from videos. The spatial stream pro-
cesses individual video frames to capture appearance infor-
mation, while the temporal stream uses dense optical flow
to capture motion information. The outputs of both streams
are combined, typically using late fusion, to recognize ac-
tions.

Two-Stream ConvNet is a pioneering approach in this
category. It demonstrated that combining spatial and tem-
poral streams significantly improves performance compared

to using either stream alone. This architecture was competi-
tive with state-of-the-art hand-crafted features on UCF-101
and HMDB-51 [8]. However, training two separate net-
works and computing optical flow for the entire dataset can
be resource-intensive.

2.3. 3D Convolutional Networks

3D convolutional networks extend 2D convolutional net-
works by adding a temporal dimension to the convolutional
filters, allowing the network to learn spatio-temporal fea-
tures directly from raw video frames. This approach avoids
the need for pre-computed optical flow and can potentially
capture more complex motion patterns.

C3D by Tran et al. (2015) is a notable example of a
3D ConvNet. It applies 3D convolutions over 16-frame
video clips, capturing both spatial and temporal informa-
tion. The model achieved state-of-the-art performance on
several benchmarks, including Sports-1M and UCF-101,
and showed that 3D ConvNets can learn powerful spatio-
temporal features without relying on hand-crafted descrip-
tors [9]. The main challenge with 3D ConvNets is the sig-
nificantly larger computational cost and the need for large-
scale annotated video datasets for training.

I3D (Inflated 3D ConvNet) by Carreira and Zisserman
(2018) further advances 3D ConvNets by inflating the filters
of a 2D ConvNet pre-trained on ImageNet into 3D. This
approach leverages the successful architecture design and
learned parameters of 2D ConvNets, making it possible to
train very deep spatio-temporal networks. Pre-training on
the large-scale Kinetics dataset and fine-tuning on smaller
benchmarks resulted in substantial performance improve-
ments, achieving state-of-the-art results on UCF-101 and
HMDB-51 [2].

Quo Vadis, Action Recognition? by Carreira and Zis-
serman (2018) introduces a new model, Two-Stream In-
flated 3D ConvNet (I3D), based on 2D ConvNet inflation.
This model expands filters and pooling kernels of deep
image classification ConvNets into 3D, enabling seamless
spatio-temporal feature extraction from videos while lever-
aging successful ImageNet architectures and parameters.
Pre-training on Kinetics significantly boosts performance
on smaller benchmarks [2].

Rethinking Spatiotemporal Feature Learning:
Speed-Accuracy Trade-offs in Video Classification by
Feichtenhofer et al. (2019) explores various architectures
for balancing speed and accuracy in video classification.
They highlight the potential of mixed Convolutional Neural
Networks (CNNs) that combine 2D and 3D convolutions
to achieve state-of-the-art performance with optimized
computational efficiency [5].



2.4. State-of-the-Art and Future Directions

The current state-of-the-art in action recognition is dom-
inated by deep learning approaches, particularly two-stream
and 3D convolutional networks. The introduction of large-
scale video datasets like Kinetics has enabled the training of
more complex models, leading to significant performance
gains. However, the computational cost and the need for
extensive annotated data remain challenges.

In summary, two-stream and 3D ConvNets represent the
most promising directions for action recognition in videos.
The use of pre-trained 2D ConvNets as a starting point for
3D models, as seen in I3D, is a particularly clever approach
that leverages existing image classification knowledge. Fu-
ture research may focus on optimizing these models for effi-
ciency and exploring new ways to capture and utilize spatio-
temporal information in videos.

3. Dataset/Features
3.1. Creating the Datasets

To develop a comprehensive dataset for dance video
classification, we utilized two primary sources: the
Kinetics-700 dataset and the Let’s Dance dataset. The fol-
lowing steps outline the process of creating and refining our
dataset:

3.1.1 Filtering Kinetics-700

We began by filtering the Kinetics-700 dataset to extract
videos specifically related to dance. This involved identify-
ing and selecting videos labeled with dance-related actions.
The identified dance categories included 19 unique labels.

3.1.2 Combining with Let’s Dance Dataset

Next, we incorporated the Let’s Dance dataset, which con-
tains detailed annotations for various dance styles. We
mapped the dance labels from Let’s Dance to align with
those from Kinetics-700, ensuring consistency across our
combined dataset.

3.1.3 Data Augmentation

To increase the size and variability of our dataset, we ap-
plied several data augmentation techniques to the training
split. These techniques included:

• Horizontal Flip: Mirroring the video frames horizon-
tally.

• Vertical Flip: Mirroring the video frames vertically.

• Color Jitter: Randomly adjusting the brightness and
saturation of the frames.

• Noise Addition: Adding random noise to the frames
to simulate different video qualities.

These augmentations could potentially enhance the model’s
ability to generalize to various real-world scenarios.

3.1.4 Splitting the Dataset

The final merged dataset was split into three sets:

• Training Set (90%)

• Validation Set (5%)

• Test Set (5%)

This split ensured a sufficient amount of data for training
while maintaining separate sets for validation and testing to
evaluate the model’s performance.

For the purpose of transfer learning and finetuning, we
also created smaller subsets of the dance videos filtered out
solely from the Kinetics-700. The following subsets for
finetuning were created as follows, where each video in the
original dataset had an equal probability of being present in
the subset. Hyperparameter tuning was not performed for
our experiments with transfer learning, so the subsets are
split solely into training and test, and are as follows.

Subset 1 (1500 Videos)

• Training Set (93%)

• Test Set (7%)

Subset 2 (525 Videos)

• Training Set (90%)

• Test Set (10%)

The two subsets differ in size in an effort to experiment
with the tradeoff between training time, epochs, and mem-
ory constraints.

3.1.5 Annotations

We generated annotation files for each split, listing the
video names and their corresponding integer-encoded la-
bels. This step was impoertant for the MMAction2 pipeline
to process and classify the videos accurately.

The class labels were mapped to the following dance
styles:

• 0: belly dancing

• 1: breakdancing

• 2: country line dancing



• 3: cumbia

• 4: dancing ballet

• 5: dancing charleston

• 6: dancing gangnam style

• 7: dancing macarena

• 8: jumpstyle dancing

• 9: krumping

• 10: moon walking

• 11: mosh pit dancing

• 12: robot dancing

• 13: salsa dancing

• 14: square dancing

• 15: swing dancing

• 16: tango dancing

• 17: tap dancing

• 18: zumba

Dataset Year Actions Clips Total Videos
Kinetics-600 2018 600 min 600 492,000 492,000
Kinetics-700 2019 700 min 700 650,000 650,000
Let’s Dance 2020 20 avg 100 10,000 10,000

Table 1. Details of the datasets used in our research.

4. Methods

4.1. Overview

In this section, we describe the learning algorithms and
the proposed model utilized in our study. Our primary
model, the Two-Stream Inflated 3D ConvNet (I3D), builds
on state-of-the-art image classification architectures by ex-
tending them into the spatio-temporal domain. This section
includes the mathematical formulations of our input, out-
put, and loss functions, and details the modifications made
to existing models to enhance performance on action recog-
nition tasks.

4.2. Input and Output

The input to our model consists of video frames sampled
at a rate of 25 frames per second. For the RGB stream, we
use 64-frame snippets of size 224× 224 pixels. For the op-
tical flow stream, we compute flow fields for 64 consecutive
frames.

We used the K700-2020 dataset, which includes 700 hu-
man action classes, each with at least 700 video clips from
different YouTube videos. Each clip is approximately 10
seconds long. For our study, we filtered out only the dance
videos from this dataset [3, 1]. Additionally, we incorpo-
rated the Let’s Dance dataset, which contains detailed an-
notations for various dance styles. We mapped the dance
labels from Let’s Dance to align with those from Kinetics-
700, ensuring consistency across our combined dataset.

The output is a probability distribution over the selected
action classes, computed by applying a softmax activation
to the final layer of the network.

4.3. Two-Stream Inflated 3D ConvNet (I3D)

The I3D model inflates 2D ConvNet filters and pool-
ing kernels into 3D, enabling the network to learn spatio-
temporal features directly from video data. The architecture
is based on the Inception-v1 network, which we extend by
converting 2D filters N×N into 3D filters N×N×N . The
model comprises two parallel streams: one for RGB frames
and one for optical flow.

Mathematical Formulation: Let x(t) denote the input
frame at time t. The convolution operation for a 3D filter
W is defined as:

y(t) =

k∑
i=1

k∑
j=1

k∑
l=1

Wijlx
(t+i)
p+j,q+l

where k is the kernel size, and (p, q) denotes the spatial
dimensions.

The pooling operation for a 3D kernel is defined simi-
larly:

y
(t)
pool = max

i,j,l

(
x
(t+i)
p+j,q+l

)
Loss Function: The loss function used is the cross-

entropy loss, defined as:

L = −
C∑
i=1

yi log(ŷi)

where C is the number of classes, yi is the ground truth
label, and ŷi is the predicted probability.

4.4. Training Procedure

We train the I3D model on the K700-2020 dataset, focus-
ing specifically on dance videos. To implement our training



Figure 1. Diagram of the I3D architecture.

Figure 2. Detailed view of the inception submodule within the I3D
architecture.

procedures, we built on top of MMAction2 [7], an open-
source toolbox for video understanding based on PyTorch.
More specifically, we utilized some of their modules and
API calls to augment videos and create and modify new lay-
ers to our models.

Algorithm Steps:

1. Initialization: Inflate 2D filters from a pre-trained
Inception-v1 model into 3D filters.

2. Data Augmentation: Apply random cropping, resiz-
ing, and flipping to the input frames.

3. Forward Pass: Compute the spatio-temporal features
using 3D convolutions and pooling.

4. Loss Computation: Calculate the cross-entropy loss
between the predicted and true labels.

5. Backpropagation: Update the network weights using
gradient descent with momentum.

6. Testing: Evaluate the model on test sets by averaging
predictions across video frames.

In addition to this training procedure, we performed hy-
perparameter tuning using Optuna to identify the optimal
learning rate, dropout rate, and optimizer for our model.
The hyperparameter tuning process involved running 4 tri-
als, with each trial executing for 10 epochs. We used a train-
validation split to evaluate model performance and selected
the best model based on the top-1 accuracy on the validation
set.

We also further experimented with transfer learning,
which involved finetuning on existing I3D models from the
work done in “Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset” [2] and ”Non-Local Neu-
ral Networks” [11]—which both utilize a ResNet50 based
backbone for feature extraction, ImageNet for pretraining,
and Kinetics-400 as its main train set—on a small subset of
our dance-focused dataset. Here we utilized MMAction2,
modifying and building on top of their existing configura-
tion files in order to create training and testing pipelines
similar to those used by Carreira and Zisserman in [2] and
Wang et al. in ” [11].

Taking those pipelines as a base, we then followed the
same training procedure as stated above in Section 4.4, with
the exception of step 1. Initialization. Rather, in order to
leverage transfer learning, initialization was performed as
follows:

1. Initialization: Load in pre-trained weights from an
existing I3D model. Freeze the lower layers, and re-
initialize the final classification layer to output classi-
fications for our custom dance-specific dataset.

From there, training proceeded as previously stated.

5. Experiments and Results
5.1. Evaluation Metrics

We primarily used the following metric to evaluate our
model’s performance:

• Accuracy: The proportion of correct predictions out
of the total number of predictions.

Accuracy =
Number of correct predictions
Total number of predictions

5.2. Hyperparameter Tuning

We performed hyperparameter tuning using Optuna to
identify the optimal learning rate, dropout rate, and opti-
mizer for our model. The hyperparameters were chosen
based on the following considerations:

• Learning rate (lr): We searched in the range of 1 ×
10−5 to 1× 10−2 on a logarithmic scale to balance the
speed of convergence and the stability of training.

• Dropout rate (dropout): We varied the dropout rate
between 0.2 and 0.7 to prevent overfitting while ensur-
ing sufficient model capacity.

• Optimizer: We evaluated both Adam and SGD opti-
mizers to determine the best optimization strategy for
our model.



The hyperparameter tuning process involved running 4
trials, with each trial executing for 10 epochs. We used a
train-validation split to evaluate model performance and se-
lected the best model based on the top-1 accuracy on the
validation set.

The best performing hyperparameters were:

• Learning rate: 7.87× 10−4

• Dropout rate: 0.2966

• Optimizer: SGD

5.2.1 Hyperparameter Tuning Results

Table 2 summarizes the training and validation losses, as
well as the validation accuracy over 10 epochs:

Epoch Training
Loss

Validation
Loss

Validation
Accuracy
(%)

1 2.90550 2.81120 15.32
2 2.88860 2.79430 15.47
3 2.87170 2.77740 15.41
4 2.85480 2.76050 15.48
5 2.83790 2.74360 15.44
6 2.82100 2.72670 15.45
7 2.80420 2.70980 15.46
8 2.78730 2.69300 15.43
9 2.77040 2.67600 15.49
10 2.75350 2.65910 15.45

Table 2. Training and Validation Losses and Accuracy over 10
Epochs

Figure 3. Training and Validation Loss

The training and validation losses exhibit a decreasing
trend, indicating that the model is learning effectively. The
validation accuracy starts at 12.73% and increases gradu-
ally, suggesting that the model is improving its ability to
generalize to unseen data.

Figure 3 shows that the training loss consistently de-
creases, suggesting that the model is effectively learning
from the training data. Similarly, the validation loss also
decreases, indicating that the model’s performance on un-
seen data is improving. The gap between the training and

validation loss is relatively small, suggesting that there is no
significant overfitting. To prevent overfitting, we employed
dropout regularization with the tuned dropout rate. Addi-
tionally, we monitored the validation loss and accuracy to
detect any signs of overfitting early.

The following table summarizes the different hyperpa-
rameters tried during the hyperparameter tuning process and
their respective accuracies, including the original run before
hyperparameter tuning. These are the hyperparameters tried
other than the one that gave the top accuracies:

Trial Learning
Rate

Dropout
Rate

Optimizer Validation
Accu-
racy
(%)

Original 0.00100 0.50000 Adam 7.42000
0 0.00079 0.29661 SGD 9.61000
1 0.00707 0.53317 Adam 7.85000
2 0.00236 0.21482 SGD 10.84000
3 0.00049 0.66175 SGD 11.87000

Table 3. Hyperparameter Tuning Results

5.3. Transfer Learning and Finetuning

Finetuning was performed by loading pretrained weights
from two different I3D models, referred to as ResNet50 and
ResNet50 (NonLocal Dot Product) from ‘Quo Vadis, Ac-
tion Recognition? A New Model and the Kinetics Dataset”
[2] and ”Non-Local Neural Networks” [11] respectively.
Finetuning for both models followed the same training pro-
cedure and settings for data augmentation. However, ex-
periements were done with the size of the dataset the two
pretrained models were done on, as well as the hyper-
parameters.

The following finetuning was done on the ResNet50 pre-
trained model, using Subset 1 data as described in Section
3. Training was performed with the following settings and
produced the following results:

pretrain lr epochs top1 acc % top5 acc %
ResNet50 1×10−2 3 51.61 82.80

Similarly, the following finetuning was done on the
ResNet50 (NonLocal Dot Product) pre-trained model, us-
ing Subset 2 data (525 videos) as described in Section 3.
Training was performed with the following settings and pro-
duced the following results:

pretrain lr epochs top1 acc % top5 acc %
ResNet50
(NonLocal)

Scheduled 10 48.28 79.31

ResNet50
(NonLocal)

Optimal
7.87×10−4

10 56.90 86.31



For the learning rate, we experimented with two different
variations.

• Scheduled: A multi-step learning rate that started at
1×10−4 in epoch 1 and was multiplicatively decreased
by γ = 0.1 at epochs 4 and 8.

• Optimal: This was the best learning rate (7.87×10−4)
found in the Section 5.2 Hyperparameter Tuning, and
was used in conjunction with the SGD optimizer.

The predictions of the ResNet50 NonLocal model
trained with the optimal hyperparamaters are shown below.
We can see that the most significant confusions are labels
13 (salsa dancing) with 15 (swing dancing) and 16 (tango
dancing). This makes sense, as these three styles are qual-
itatively similar. All three are partner or social dances and
salsa and tango share Latin influences. Similarly, the next
largest source of confusion, label 1 (breakdancing) and la-
bel 9 (krumping), also share some stylistic influences, as
both are styles of street dance that fall under the hip-hop
umbrella.

Figure 4. Confusion Matrix for ResNet50 Nonlocal with Optimal
Hyperparamaters

However, despite these confusions, the models show
promise. We see significant gains in accuracy when fine-
tuning on top of existing I3D models. It also appears that
models trained on smaller datasets can also perform simi-
larly to or even better than those trained on larger datasets,
given more training time and the “correct” hyperparameters.

6. Conclusion and Future Work
In this study, we explored various experimentations, in-

cluding hyperparameter tuning, to improve the performance

of our model. Through extensive experimentation, we iden-
tified optimal hyperparameters that significantly enhanced
model performance. The key hyperparameters included a
learning rate of 7.87 × 10−4, a dropout rate of 0.2966, and
the use of the SGD optimizer.

The model showed consistent improvement in training
and validation losses, with the validation accuracy fluctuat-
ing around 15.45% over 10 epochs. The results indicate ef-
fective learning and generalization without significant over-
fitting.

Moreover, we also saw that transfer learning is indeed
applicable to this specific domain, and that general action
recognition models can be finetuned with decent success
to classify and recognize more specific variations of ac-
tions—such as styles of dance.

For future work, we would explore the following:

• Data Augmentation: We were in the process of aug-
menting the dataset using techniques such as vertical
flipping and color jittering. However, due to time con-
straints, we were unable to generate the full augmented
dataset and experiment with it. Implementing and ex-
perimenting with these data augmentation techniques
in the future could significantly increase the robustness
and diversity of our dataset, potentially leading to im-
proved model performance.

• Extended Training Time: Increasing the number
of epochs could further enhance the model’s perfor-
mance, allowing it to learn more complex patterns in
the data.

• Larger Hyperparameter Search Space: Conducting
a more extensive search over a broader range of hyper-
parameters could potentially yield better results.

• Ensemble Methods: Combining multiple models
could improve robustness and accuracy, leveraging the
strengths of different algorithms.

• Further Pretraining and Finetuning: More exten-
sive finetuning on top of different pretrained models
that we did not explore here could yield better results.

• Additional Regularization Techniques: Exploring
further regularization methods, such as weight decay
and batch normalization, could further reduce overfit-
ting.

7. Appendices
The two pretrained models used in finetuning and their

descriptions can be found here in the I3D documentation.
The ResNet50 model referred to here is the fourth row of the
table provided in the README; the ResNet50 (NonLocal)
model is the first.



8. Contributions and Acknowledgements
• Sophie: Transfer learning, pretraining and finetuning

explorations; quantitative and qualitative analysis of
final predictions; introduction, literature review, meth-
ods

• Han: Hyperparameter tuning, literature review, meth-
ods, quantitative analysis of results

• Nate: Dataset preparation, processing, and filter-
ing; additional explorations with dataset augmenta-
tion; dataset and features

8.1. Public Code Utilized

We made use of the mmaction2 open-source project
which provided essential tools and frameworks for our work
in action classification and pose estimation.

8.2. Non-CS231N Collaborators

There were no non-CS231N collaborators involved in
this project.

References
[1] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and

A. Zisserman. A short note on the kinetics-700-2020 hu-
man action dataset. arXiv preprint arXiv:2010.10864, 2020.
4

[2] J. Carreira and A. Zisserman. Quo vadis, action recog-
nition? A new model and the kinetics dataset. CoRR,
abs/1705.07750, 2017. 1, 2, 5, 6

[3] J. Carreira and A. Zisserman. Kinetics-700 dataset. arXiv
preprint arXiv:1907.06987, 2019. 4

[4] D. Castro, S. Hickson, P. Sangkloy, B. Mittal, S. Dai, J. Hays,
and I. A. Essa. Let’s dance: Learning from online dance
videos. CoRR, abs/1801.07388, 2018. 1

[5] C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast net-
works for video recognition. IEEE International Conference
on Computer Vision (ICCV), pages 6202–6211, 2019. 2

[6] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with con-
volutional neural networks. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1725–1732,
2014. 2

[7] MMAction2 Contributors. OpenMMLab’s Next Generation
Video Understanding Toolbox and Benchmark, July 2020. 5

[8] K. Simonyan and A. Zisserman. Two-stream convolu-
tional networks for action recognition in videos. CoRR,
abs/1406.2199, 2014. 1, 2

[9] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. IEEE International Conference on Computer Vision
(ICCV), pages 4489–4497, 2015. 2

[10] H. Wang and C. Schmid. Action recognition with improved
trajectories. IEEE International Conference on Computer
Vision (ICCV), pages 3551–3558, 2013. 2

[11] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural
networks. CVPR, 2018. 5, 6

https://github.com/open-mmlab/mmaction2

