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Abstract

Rain significantly degrades the quality of images cap-
tured in outdoor environments, posing challenges for var-
ious computer vision applications. In this project, we ex-
plore multiple advanced techniques for rain removal from
natural scenes, with a strong focus on the generative and
denoising power of diffusion models. Our initial approach
combines the segmentation capabilities of a fine-tuned U-
Net with conditional diffusion models. By fine-tuning the
U-Net to accurately segment rain-affected regions, we ap-
ply the conditional diffusion model exclusively to these lo-
calized areas to remove rain artifacts while preserving the
underlying scene details.

We also explore end-to-end image translation for derain-
ing using a fine-tuned diffusion model and a GAN-based
Pix2Pix model. We further experiment with data-efficient
approaches using style transfer techniques based on both
VGG and CycleGAN architectures. For training and eval-
uation, we utilize datasets provided in the WeatherDiffu-
sion repository repository and synthetic dataset for low-
cost model training. To compare the performance of each
technique, we benchmark them using the PSNR and SSIM
metrics. The results are promising, with the best result ob-
tained using a fine-tuned diffusion model which generates
de-rained images that closely match the ground truth im-
ages in terms of visual quality. Our comprehensive com-
parative analysis highlights the tradeoffs in terms of com-
putational complexity, data efficiency, and output quality.

1. Introduction
Rain is a common weather phenomenon that signifi-

cantly affects the quality of images captured in outdoor
environments. This degradation can pose substantial chal-
lenges in various computer vision applications such as au-
tonomous driving, surveillance, and outdoor scene analysis.
In recent times, Diffusion models have gained success in a
wide variety of image generation tasks such as image edit-
ing, denoising, and conditional generation. In this project,

we study the efficacy of diffusion models for de-raining im-
ages in addition to adjacent generative modeling techniques
such as GANs. We carry out this study systematically to
understand performance trade-offs while sequentially using
models of increasing computation intensity.

In this project, there are three distinct approaches that we
use. The first is the use of stable diffusion’s [9] in-painting
capability to form a baseline. The second is the use of style
transfer, and the third is the use of a custom pre-trained dif-
fusion model. A U-Net-based segmentation model is also
employed in an attempt to accelerate diffusion inference.
This segmentation model is also used to generate the base-
line stable diffusion outputs.

The inputs are the datasets containing scenes that have
rain and the corresponding ground truth scenes under non-
rainy conditions. The expected output is a de-rained ver-
sion (without rain drops) of the rainy image. It is to be
noted that it is often quite hard to collect real-world data of
such pairs and therefore, we present a discussion on using
a synthetic dataset. We also examine the efficacy of style
transfer techniques of different types, to understand if it can
be used to drive data efficiency fpr. The models will be built
and primarily evaluated on the PSNR (Peak Signal-to-Noise
Ratio)[5] and SSIM (Structural Similarity Index)[10] met-
rics apart from analyzing the overall visual quality.

This approach for de-raining using diffusion models
finds high utility for diverse applications, such as in improv-
ing the road visibility for autonomous vehicles, improving
the clarity of images taken under rainy conditions, or even
creating datasets for training weather simulation models.

In conclusion, the technical contributions of this work
are the following:

• Benchmarking of various generative approaches for
deraining applications.

• Develop techniques to accelerate inference of
diffusion-based de-raining to improve compute
efficiency.

• Examine methods to enable data efficiency while de-
raining.
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2. Related Work
Early approaches for rain simulation in images focused

on physical models to simulate rain streaks or utilized tra-
ditional image processing techniques. These methods of-
ten utilized temporal and spatial information to identify and
remove rain streaks. For instance, [2] Garg and Nayar
proposed a method that models rain streaks as noise and
employs spatio-temporal smoothing to remove them from
video sequences. While we believe in their effectiveness
for certain scenarios, these methods struggle with complex
backgrounds and varying rain intensities, often leading to
artifacts and loss of image details. With the advent of ma-
chine learning, more sophisticated approaches were intro-
duced. One notable method is the work by [7] Kang et al.,
which utilized sparse coding to separate rain streaks from
the background. This approach improved over traditional
methods by learning a dictionary of rain streaks, allowing
for better rain removal. However, it still faced limitations in
handling diverse rain patterns and intensities.

The introduction of deep learning revolutionized the
field, leading to significant advancements in rain removal
techniques. [1] Fu et al. proposed a deep convolutional
neural network (CNN) to directly learn the mapping from
rainy images to clean images. Their model, called De-
rainNet, demonstrated superior performance over the tra-
ditional methods. However, CNNs often struggle with gen-
erating high-quality, realistic images as evident with the ob-
served outputs that weren’t smooth. This limitation arises
because CNNs are primarily discriminative models that ex-
cel in feature extraction but lack the sophisticated genera-
tive capabilities. Another particularly clever approach was
proposed by [8] Li et al., who introduced a recurrent neural
network (RNN) based model that iteratively removes rain
streaks. This model was able to handle varying rain den-
sities and patterns by progressively refining the output im-
age over a number of timesteps. However, RNNs can be
computationally expensive and slow during both training
and inference and often struggle with modeling long-term
dependencies. This makes them less suitable for real-time
applications where quick processing is required. Recently,
conditional generative adversarial networks (CGANs) have
been introduced for De-raining images. For instance, [12]
and [13] proposed a CGAN-based method for De-raining
which incorporates architectural novelties in the generator-
discriminator pair as well as constraints on the loss function
for optimizing the visual quality. We believe these meth-
ods are state-of-the art and the above works are directly rel-
evant to our project as they highlight the effectiveness of
adversarial training in image restoration as well as provide
a foundational understanding of how to incorporate com-
plex loss functions to achieve high-quality outputs. More-
over, Diffusion models have also gained popularity for im-
age restoration tasks in recent times, and these operate by

iteratively diffusing information across image pixels to re-
move noise or artifacts. [?] Section et al. proposed a patch-
based restoration algorithm that employs a conditional de-
noising process on diffusion models, specifically focusing
on localized patches to address weather-induced distortions,
which aligns closely with our approach of targeted rain re-
moval. [4]Ho et al. also utilized a stochastic process to
iteratively refine the image, synthesizing high quality im-
ages using diffusion probabilistic models. These works are
particularly clever in their approach and are directly rele-
vant to our project as they demonstrate both the potential
and the requisite methodology of utilizing diffusion mod-
els for restoring images affected by specific weather con-
ditions, while providing a basis for our targeted de-raining
strategy.

[3] Gatys et al., introduces the concept of using deep
convolutional neural networks for style transfer. The
methodology involves separating and recombining the con-
tent and style of images, which can be applied to tasks such
as rain removal by treating the non-rainy image as the style.
Style-transfer techniques such as [6] have also utilized con-
ditional adversarial networks for image-to image translation
where the authors have developed the Pix2Pix framework,
that can be adapted for various image translation tasks, in-
cluding weather condition changes by learning the mapping
between paired datasets of different styles. These works are
relevant to our project as similar style-transfer techniques
can be adapted to our use-case by transferring style from
sunny to rainy weather conditions, highlighting the poten-
tial for enhancing realism of de-rained images by leveraging
domain-specific knowledge.

In our project, we aim to use Conditional Diffusion Mod-
els to address the problem of removing rain artifacts and to
enhance the image clarity. Moreover, in order to optimize
the computational efficiency and ensure faster training, we
fine-tune a Pre-trained U-Net model to identify and segment
regions in the image affected by rain. With the segmented
rain-affected regions identified, we apply the output of the
diffusion models to only these localized areas to remove
the rain artifacts, while preserving the rest of the image
regions. We compare this approach to a baseline method,
where we use Stable Diffusion’s Inpainting to fill in the re-
gions (marked by the masks obtained from U-Net) using
surrounding pixel values. We also compare our de-rained
output to the output obtained from using only the diffusion
model (without U-Net).

Subsequently, we explore alternate approaches using
GANs and style transfer. We also attempt to further fine-
tune the diffusion model in order to improve performance.
Each of these approaches presents a different set of trade-
offs in terms of computational intensity, visual quality, and
scalability.
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Figure 1. Flowchart indicating the methodology of our De-Raining Model: Diffusion Model + Pre-Trained U-Net

3. Methodology

3.1. Baseline Method: Inpainting

To establish a baseline method, we consider stable
diffusion-based inpainting where regions having raindrops
are first identified, masked out, and then filled using inpaint-
ing based on information from the surrounding pixels. To
generate masks corresponding to regions having raindrops,
we use a UNet model that we further describe in Section
3.3. The text prompt that is used to guide the model is ”Fill
in with the environment without rain”. However, this base-
line method might struggle with highly complex or textured
regions, where surrounding pixel values alone become in-
sufficient for realistic inpainting.

To tackle this challenge, we explore end-to-end mod-
els trained explicitly on a dataset of rainy and derained
images in the next section. We further consider ways to
improve computational efficiency and reduce demand for
paired rainy and derained images which are difficult to ob-
tain.

3.2. End-to-end models with paired, real-world data

1. Pix2Pix GAN: Pix2Pix uses a conditional GAN
to perform image translation and has been successful at a
wide variety of tasks such as translating sketches to natural-
looking images, satellite images to street maps, grayscale
images to RGB images, etc. Hence, we explore the use of
Pix2Pix for the deraining task. Given a reference image x
and a noise vector z, the GAN generates an image G(x, z)
that is expected to resemble the ground truth y which is a
translated version of x. Pix2Pix uses a combination of two
loss functions. The GAN minimax loss (LcGAN ) jointly

trains the generator and discriminator with the discrimina-
tor conditioned on the reference image x to encourage the
generated images to align with the structure of the reference
image:

LcGAN (G,D) = Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z))] (1)

It also uses an L1 loss (LL1) that encourages closeness be-
tween the generated image and ground truth:

LL1(G) = Ex,y,z[∥y −G(x, z)∥] (2)

The overall objective is given by:

G = argmin
G

max
D

LcGAN (G,D) + λLL1(G) (3)

We adapt this framework to train Pix2Pix on 200 pairs of
rainy and derained images of the same scene where x is the
rainy image and y is the derained image.

2. Patch-wise Conditional Diffusion Model We use a
conditional diffusion model that takes a rainy image as in-
put and predicts a de-rained version of the image. Diffusion
models iteratively transform a noisy input into a clean out-
put through a series of denoising steps, effectively remov-
ing noise and artifacts. Our initial approach is to train the
model on pairs of rainy and de-rained images of the same
scene. The forward process of the diffusion model will be
a fixed Markov chain that iteratively adds Gaussian noise
to the rainy image. The reverse process will iteratively de-
noise the image by predicting the mean, µθ, of the Gaussian
transitions conditioned on the original rainy image, given
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by:

pθ (x0:T ) = p (xT )

T∏
t=1

pθ (xt−1 | xt) ,

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))

(4)

The last stage of the denoising process will generate the
de-rained version (x0). The WeatherDiffusion repository
implements conditional diffusion, and we have adapted it
to our use-case. Specifically, when using conditional dif-
fusion, we condition the reverse process on the reference
image x, which in this use case is the rainy image.

pθ (x0:T | x) = p (xT )

T∏
t=1

pθ (xt−1 | xt, x) (5)

The reverse probability distribution is modeled using the
noise estimator network ϵθ (xt, x, t), which has an encoder-
decoder structure. The reverse sampling process can be car-
ried out as follows,

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱt · ϵθ (xt, x, t)√

ᾱt

)
+
√
1− ᾱt−1 · ϵθ (xt, x, t)

where α is a cumulative parameter. The authors of [?]
provide a diffusion model that is pretrained on multiple
weather removal tasks, including de-raining, de-hazing, and
de-snowing. The pretrained model serves as an excellent
starting point. However, we also fine-tune the model on
our paired deraining dataset and analyze the improvement
in results. This fine-tuning is performed for 100 epochs on
a H100 GPU. A pertinent challenge with the large diffu-
sion model is the high computation complexity and storage
space required for deployment on edge devices.

3.3. Improving compute efficiency with rain patch
detection

The diffusion model discussed above poses two key chal-
lenges. Firstly, it splits the image into patches and runs each
patch separately through the diffusion model. This leads to
each patch having slightly different contrasts, making the
overall image look unnatural, as seen in Figure 3 (middle).
Secondly, running every patch through the diffusion model
is computationally inefficient as some patches may not have
raindrops in them and therefore do not need to be derained.

To solve this, we develop a UNet-based binary segmen-
tation model that predicts regions having raindrops in the
image. U-Net is a convolutional neural network architec-
ture designed for image segmentation tasks. It consists
of an encoder-decoder structure with skip connections that
preserve spatial information across layers. The encoder
captures contextual information by downsampling the in-
put image, while the decoder reconstructs the segmentation

map by upsampling. To prepare training data for the UNet
model, we take each rainy image x and its corresponding
ground truth image y from our paired dataset. The mask is
then obtained as Mask(x, y) = 1(x ̸= y). This means that
the mask takes on a value of 1 where the rainy and ground
truth images show a mismatch indicating the presence of
raindrops, and 0 at other pixels.

We then take a pretrained U-Net model and fine-tuned it
on the dataset to detect and segment rain-affected regions
in images. After exploring various hyperparameter and ar-
chitecture options, we obtained the best results when using
resnet50 as the backbone network and AdamW as the opti-
mizer with learning rate of 1e-3. The Dice Loss function is
used for training. Once the binary segmentation masks are
obtained, as shown in Figure 1, the patches in the original
rainy image which are found to contain raindrops are passed
through the diffusion model. The corresponding derained
outputs are used to replace these patches in the rainy im-
age while the remaining patches stay intact. This step min-
imizes the patch artifacts introduced from using all patch-
wise outputs from the diffusion model and preserves infor-
mation from the original image. Moreover, the UNet and
diffusion model can be run independently and in parallel,
thus reducing latency.

3.4. Improving data efficiency with Style Transfer
& Synthetic Data

3.4.1 Style Transfer using VGG:

Our approach leverages the neural style transfer algorithm
introduced by [3] Gatys et al., which uses convolutional
neural networks to transfer the style of one image onto the
content of another. The algorithm can be summarized in
the following steps:
Feature Extraction: We use a pre-trained VGG19 network
to extract high-level features from both the content (rainy)
and style (non-rainy) images.
Gram Matrix Calculation: We compute the Gram matrices
for the style features to capture the correlations between
different filter responses.
Loss Functions: We define the content and style loss
functions to measure the differences between the target
image and the content/style images.
Optimization: We use gradient descent to iteratively update
the target image to minimize the total content/style loss.We
represent the rainy image as Ic, the non-rainy style image
as Is, and the target derained image as It.

Feature Extraction: Let Fl(x) be the feature maps
of layer l in the VGG19 network for image x. For the
content image Ic, we denote its feature maps as Fl(Ic).
For the style image Is, we denote its feature maps as Fl(Is).

Gram Matrix: The Gram matrix Gl(x) for the fea-
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ture maps Fl(x) is defined as:

Gl(x) = Fl(x)Fl(x)
T

Loss Functions
Content Loss: Measures the difference between the target
image It and the content image Ic at a specific layer l:

Lcontent =
1

2

∑
i,j

(Fl(It)ij − Fl(Ic)ij)
2

Style Loss: Measures the difference between the Gram ma-
trices of the target image It and the style image Is across
multiple layers:

Lstyle =
∑
l

wl ·
1

4N2
l M

2
l

∑
i,j

(Gl(It)ij −Gl(Is)ij)
2

Here, wl is the weight for layer l, Nl is the number of
feature maps in layer l, and Ml is the size of each feature
map.
Total Loss: The total loss is a weighted sum of the content
and style losses:

Ltotal = α · Lcontent + β · Lstyle

We set α = 1 and β = 1 × 106 to emphasize the style
transfer while preserving the content structure.

Optimization: We use the Adam optimizer to mini-
mize the total loss Ltotal by updating the target image It.
The optimization process iteratively adjusts the pixels of It
to reduce the difference between its content and the content
image Ic, and its style and the style image Is.

Implementation Details: We utilized a pre-trained
VGG19 model from PyTorch’s torchvision.models
module for feature extraction. The layers used for com-
puting the content and style losses were selected based on
their effectiveness in capturing high-level representations
(conv4 2 for content and conv1 1, conv2 1, conv3 1,
conv4 1, conv5 1 for style). We built our implementation
on top of existing PyTorch code for neural style transfer.
Specifically, we used the pre-trained VGG19 model from
PyTorch’s torchvision library. A dataset class to load and
transform pairs of rainy and non-rainy images and the
implementation of the style transfer training loop, includ-
ing the computation of content and style losses, and the
optimization process are custom-written. The existing code
provided utilities for loading pre-trained models and basic
image transformation functions. Our custom implementa-
tion extended this with specific logic for handling paired
image inputs and performing style transfer for de-raining
tasks. For our style transfer experiments, we selected the
following hyperparameters based on preliminary trials and

insights from existing literature on neural style transfer: We
used a learning rate of 0.003 for the Adam optimizer. This
choice balances between convergence speed and stability.
Higher learning rates led to divergence, while lower ones
resulted in slow convergence. A mini-batch size of 1 was
used, which is standard practice in style transfer tasks
where each image pair (rainy and non-rainy) is processed
independently. This ensures that the style transfer process
is fine-tuned for each pair without averaging out the
specific features. Each style transfer operation was run
for 2000 steps, as this provided sufficient time for the
generated image to converge towards the desired style
while preventing overfitting. We set the content weight
to 1 and the style weight to 1×10e6, prioritizing style
transfer while maintaining content structure. We did not
employ cross-validation for this task as neural style transfer
typically focuses on qualitative results. Instead, we tested
the model on various pairs from our dataset to ensure
robustness and consistency.

3.4.2 Style Transfer using CycleGAN:

A disadvantage with the previously presented Pix2Pix GAN
model is that it requires pairs of rainy and corresponding
derained images. CycleGAN addresses this issue by using
a large collection of images to learn representations from
unpaired collections of rainy images (X) and non-rainy im-
ages (Y ). This allows us to use a larger dataset for train-
ing since perfect correspondences are not necessary. The
minimax loss for the transformation G that maps rainy to
non-rainy images is given by:

LcGAN2(G,DY , X, Y ) = Ey[logDY (y)]+

Ex[log(1−DY (G(x))] (6)

LcGAN2(F,DX , Y,X) is similarly defined where F is a
transformation that maps non-rainy to rainy images.

However, an issue with only using the minimax loss is
that if for a given rainy image, the generator generates a
natural-looking non-rainy image of a different location, the
loss will still be low. To enforce consistency between the
rainy and non-rainy images, a cycle consistency loss is also
introduced which imposes the constraint that F (G(x)) must
resemble the rainy image x and F (G(x)) must resemble the
non-rainy image y. This loss is given by:

Lcyc(G,F ) = Ex[∥F (G(x))−x∥1]+Ey[∥G(F (y))−y∥1]
(7)

The overall objective is given by:

G∗, F∗ = argmin
G,F

max
DX ,DY

LcGAN2(G,DY , X, Y )

+ LcGAN2(F,DX , Y,X) + λLcyc(G,F ) (8)

Once the model is learnt, a given rainy image x can be
converted to it’s derained version by computing G(x).
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3.4.3 Using larger synthetic dataset

Another option we explored is to use a larger synthetic
dataset having pairs of rainy images and their correspond-
ing derained images. The Rain100H dataset provides such
a synthetically generated dataset. However, the images look
less natural and have rain streaks instead of raindrops that
are seen in our test set. We trained the previously intro-
duced Pix2Pix model using this synthetic dataset and report
the comparison between using real and synthetic training
data in Section 5.2.

In conclusion, the following distinct approaches are used
in this project:

• Stable Diffusion Inpainting (Baseline)

• Diffusion Model and UNet-based segmentation.

• Pix2Pix

• Cycle GAN and Style Transfer

• Pix2Pix GAN with synthetic data

• Fine-tuned Diffusion Model

4. Datasets and Features
The datasets used for both our model and the baseline

model involve the input of scenes that have rain and corre-
sponding ground truth scenes under non-rainy conditions.
It is challenging to collect real-world data, given that the
images must be captured with minimal structural changes
to the background. For our project, we have utilized the
datasets provided in WeatherDiffusion repository. We use
1000 training samples, 20 validation samples and 249 test
samples. Figure 3 3 shows a sample rainy image and Figure
4 4 shows a sample ground truth image. The diverse rain
patterns and intensities in these datasets provide a robust
foundation for training and evaluating our models. For data
pre-processing, we normalize the images and resize them
to 224x224 pixels. For style transfer using a pre-trained
VGG19 network (19-layer deep convolutional neural net-
work), early layers capture low-level features like edges
and textures, while deeper layers capture high-level features
like object parts and entire objects. Feature maps are ex-
tracted from these specific layers of the pretrained VGG19
network. Secondly, gram matrices are computed from the
feature maps to capture the style information. The primary
features for all other methods are the pixel intensities of the
raw images themselves. For Pix2Pix GAN with synthetic
data, we use 100 synthetic training images containing rain
streaks instead of raindrops (synthetic datasets used are the
Rain 100H) [11].

5. Results and Discussion
Evaluation To evaluate the performance of our proposed

methods and compare with the baseline method, we use

both qualitative and quantitative metrics:
Qualitative Evaluation: Visual inspection of the de-rained
images will be conducted to assess the visual quality. We
will compare the output of our method against the ground
truth images and the output images of the baseline methods
to ensure the visual fidelity of the results.
Quantitative Evaluation: We will employ several standard
metrics to quantitatively evaluate the performance such as:
1. Peak Signal-to-Noise Ratio (PSNR) which measures the
ratio between the maximum possible power of a signal and
the power of corrupting noise, reflecting the quality of the
de-rained image, The PSNR between two images, I and K,
of size M ×N pixels, is given by:

PSNR = 10 · log10
(

MAX2

MSE

)
where MAX = 255 and MSE is the mean squared error
between the two images.

2. Structural Similarity Index (SSIM) assesses the sim-
ilarity between the de-rained image and the ground truth
image, focusing on structural information and perceptual
quality.The SSIM between two images, I and K, is given
by:

SSIM(I,K) =
(2µIµK + c1)(2σIK + c2)

(µ2
I + µ2

K + c1)(σ2
I + σ2

K + c2)

where µI is the average pixel intensity, σ2
I is the variance of

pixel intensity, σIK is the covariance, and c1, c2 are small
constants. Both PSNR and SSIM metrics should be high to
indicate promising results. The results of our experiments
are summarized in Table 1.

5.1. Baseline Method

Firstly, we observe that the baseline approach that uses
Stable Diffusion-based inpainting performs poorly in com-
parison to our other approaches. This is because of two
reasons: When parts of the image are masked out, the dif-
fusion model does not have information about the true con-
tent of the rainy image from those areas and simply makes
use of context from the surrounding pixels to fill in. Sec-
ondly, when the segmentation mask does not entirely cover
the rainy regions, the diffusion model fills in the missing
region with raindrops to allow greater continuity which is
contradictory to our goal.

5.2. GAN-based models (Pix2Pix and CycleGAN)

The outputs of the GAN-based models are shown in Fig-
ure 2. In terms of PSNR and SSIM, we obtain the best re-
sults with the Pix2Pix model that is trained on pairs of rainy
and derained images. We observe a PSNR of 70.96 which is
considerably higher in comparison to diffusion models and
SSIM of 0.83. We attribute this to the fact that the objec-
tive for Pix2Pix is highly aligned with the goal of achieving
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Model type Model PSNR (dB) SSIM

Baseline Stable Diffusion Inpainting 10.73 0.20

Compute-efficient model Diffusion + UNet 21.74 0.78

Data-efficient models
VGG Style Transfer 60.19 0.70

CycleGAN Style Transfer 70.17 0.83
Pix2Pix with Synthetic data 69.53 0.78

End-to-end models (paired data)
Pix2Pix GAN 70.96 0.83

Diffusion Model (w/o fine-tuning) 19.87 0.78
Diffusion Model (with fine-tuning) 24.51 0.80

Table 1. SSIM and PSNR of various image deraining approaches

Figure 2. The original rainy image, the output of Pix2Pix trained on paired real-world data, on synthetic data, output of CycleGAN

high PSNR. The L1 loss in Equation 2 directly optimizes for
lower mean squared error between the ground truth and gen-
erated image which increases PSNR. However, we note that
the images generated by the fine-tuned diffusion model are
of higher quality and appear more natural. When Pix2Pix
the same model is trained with synethetic data, the perfor-
mance is poorer. This is because the synthetic data contains
unnatural rain streaks, leading to poor model generalization
on real-world data having raindrops. The performance of
CycleGAN is close to that of Pix2Pix in terms of SSIM
and PSNR but visual inspection reveals that the raindrops
have not been effectively removed. Since we do not used
paired images, we cannot specify that the model’s task is
deraining. The model may learn styles corresponding to the
colors, textures, shapes, etc. that are common in derained
images and the transformation may introduce these styles
into the rainy image.

5.3. Diffusion-based methods

In Figure 3, we first note that when the conditional dif-
fusion model without fine-tuning is run for a limited num-
ber of timesteps, the output contains patch artifacts since
each patch is processed separately leading to contrast vari-
ations. The image on the right of Figure 3 shows the im-
provement in quality that we achieve by using the same dif-
fusion model in conjunction with the segmentation mask
from UNet. Only patches containing rain have been re-

placed while the others are retained from the rainy image.
In Figure 4, we demonstrate that fine-tuning the diffu-

sion model on our dataset and running it for a larger num-
ber of timesteps leads to a very high quality image that
looks very similar to the ground truth image. We notice
that the only deviation from the ground truth lies in the tex-
tural features of the image, such as signage; this trend is
observed throughout the test set. This image also achieves
a higher SSIM of 0.78 and PSNR of 24.51 when compared
against the diffusion model without fine-tuning. Moreover,
the result is much better compared to the stable diffusion in-
painting baseline which highlights the benefit of a diffusion
model that is specialized to the task of deraining.

5.4. Style Transfer

The results of applying the VGG-based style transfer is
shown in Figure 5. The visual results demonstrate that our
style transfer approach removes rain streaks while preserv-
ing important image details. The PSNR value of 60.19 and
SSIM value of 0.7 indicate a decent improvement over the
Baseline and the Diffusion + U-Net models. However, the
de-rained image are not visually very similar to the ground
truth images as style transfer incorporated other distinct
styles as well into the content image. This may have re-
sulted in de-rained images carrying additional stylistic fea-
tures not present in the ground truth, making them visually
distinct.
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Figure 3. The original rainy image, the output of the conditional diffusion model without fine-tuning, the output of our UNet Segmentation
model, and the output of U-Net+Diffusion.

Figure 4. The output from the stable diffusion baseline, from the Diffusion Model after fine-tuning, and the ground truth.

Figure 5. The original rainy image and the output from Style
Transfer using VGG19

5.5. General Analysis

Based on our qualitative and quantitative comparison of
the model results, we observed that the SSIM and PSNR
metrics may not be the most ideal metrics for benchmark-
ing image deraining. As observed in Section 5.2, based
on the PSNR metric, it is observed that the GAN-based
methods significantly outperform the diffusion-based meth-
ods; this is rather surprising given the documented superior
capability of diffusion for denoising. Upon visual exam-
ination of the images, we notice that the fine-tuned diffu-
sion model outperforms the GAN-based approaches signif-
icantly. The optimization of MSE in the loss function leads
to high PSNR for GAN-based models while diffusion-based
methods show better image quality. The discrepancies may
also be linked to the statistical properties that vary as a re-
sult of noising and denoising.

6. Conclusion and Future Work
In our current work, we have explored various ap-

proaches to address the problem of image deraining. The
key methodologies investigated include diffusion models,
style transfer techniques, and generative adversarial net-
works (GANs). It is apparent that finetuned diffusion mod-
els yield the best qualitative result. This is followed by
the GAN-based models. Style transfer produces decent re-
sults but seems to not have the utility of an expected de-
noising application. There are a number of trade-offs that
can be made with respect to performance, such as data and
compute efficiency. It must be noted that fine-tuning the
diffusion model requires powerful GPUs.The use of im-
age segmentation to speed up inference time is an exam-
ple of a compute time tradeoff presented in this project,
and similarly, the use of CycleGAN lends data efficiency.
There are a number of avenues for improvement of results in
the future given more time, resources, and compute power:
Fine-tuning and improving diffusion models with advanced
backbone networks and optimized hyperparameters, using
hybrid models that combine CGAN and diffusion models
together, or expanding/diversifying the dataset with more
challenging rainy conditions.

7. Contributions
All authors have contributed equally to this report and

have participated in conceptualizing and executing individ-
ual methods as described below.

• Emil: UNet+Diffusion model, Pix2Pix (on paired real-
world data and synthetic rain streaks), CycleGAN style
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transfer, Baseline.

• Sneha: Style transfer using pre-trained VGG, Litera-
ture review, Feature Engineering for datasets.

• Sidharth: Adaptions to the Pretrained- Diffusion
Model, UNet, Finetuning the Pretrained Diffusion
Model, Stable Diffusion Baseline.
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