
Deep Learning Deepfake Detection

Hlumelo Notshe
Department of Computer Science

Stanford University
no6279@stanford.edu

Hlumelo Notshe
Department of Computer Science

Stanford University
tsvoboda@stanford.edu

Shannon Xiao
Department of Computer Science

Stanford University
sxiao1@stanford.edu

Abstract

In the pursuit of effective deepfake detection, this study
delves into the comparative effectiveness of various deep
learning architectures across multiple levels of granular-
ity—from individual frame analysis to whole-video synthe-
sis. We evaluate a multitude of models including Baseline
2D CNNs, Two-Stream CNNs for both per-frame and whole-
voideo analysis, CNN-RNN hybrids, and 3D CNNs. Our
results highlight the importance of integrating both spatial
and temporal data to enhance detection accuracy. The Two-
Stream models, which concurrently process spatial and tem-
poral features, demonstrate superior performance in iden-
tifying deepfake videos, thereby underscoring the signifi-
cance of temporal dynamics in deepfake detection technol-
ogy.

1. Introduction
Deep Fake images and videos are a technology that uses

advanced algorithms to create convincing, artificial copies
of a person’s likeness. These technologies have improved
drastically over the years, making it nearly impossible for
the human eye to discern a deepfake in some cases. This
technology can harm reputations, raise legal and ethical is-
sues, threaten privacy, and undermine overall trust in in-
formation. Even leveraging modern algorithms, the task of
accurately and quickly identifying deepfakes has become
increasingly challenging. This is particularly true for deep-
fake videos where current deepfake algorithms have found
unique ways of applying deepfake masking on both a frame-
level and/or a whole video level. Detecting deepfake videos
with a high accuracy often requires a lot of time and com-
puting resources. This project focuses on creating a deep-
fake video detection system to help combat this problem.

We will experiment with multiple deep learning model ar-
chitectures as well as various preprocessing methods on our
input dataset.

We hope to evaluate various methods for deepfake video
detection. We are particularly interested in the class of
”overlay” deepfake videos whereby authentic videos are
overlaid with deepfake artifacts. In our research, we found
that the two most effective components in video classifi-
cation, and more specifically deepfake detection, are: 1.
Identifying Spatial Anomalies and 2. Identifying Temporal
Anomalies. We hope to experiment with various architec-
tures that capture these two classes of features in different
ways. Namely, we want to look at models ranging from
ones that do detection on a ”frame-by-frame” level to ones
that look to capture ”whole-video” detection at once. To do
so we explore ”traditional” video classification techniques
that look at spatial and temporal features separately before
combining them for classification (e.g. Multi CNN Archi-
tectures, CNN-RNN Architectures). By comparing these
various architectures, we hope to gain insight into the im-
portance of Spatial and Temporal features in deepfake video
detection and compare the effectiveness of how well tradi-
tional 2D image classification techniques compare with 3D
video classification techniques in this space.

For all of these models, our input will be a set of poten-
tial deepfake videos split into frames. We’ll then use varia-
tions of a CNN model to output a predicted score between
0 (Real) and 1(Fake), which we will then binarize to inter-
pret as a prediction of a real or fake video. In our frame-
by-frame models, this prediction is done at a frame-level,
where we’ll then use thresholding to determine the ultimate
prediction for the entire video. For our whole-video model,
there is single prediction assigned to the entire video at one
time.

1



2. Related Works
To start, we referred to a recent survey by Rehman et

al. [6] that provided a comprehensive review of deep learn-
ing approaches applied to video classification, covering key
architecture and methodologies that have been tested. The
paper emphasized the importance of processing both spatial
and temporal video information to learn robust video de-
tection models. The different categories of approaches pre-
sented include 2D image-based models that involve frame
level feature extraction with CNNs and classification mod-
els like SVM; 3D CNNs that expand a 2D image classifi-
cation account for time; spatiotemporal convolutional net-
works that use convolution and pooling layer to aggregate
temporal and spatial information; recurrent spatial networks
(i.e. RNNs such as LSTM or GRU); two/multi-stream net-
works that use layered optical flow to identify movements
in addition to the context frames; mixed convolutional mod-
els utilize 3D convolution in the bottom or top layers but 2D
elsewhere; and hybrid approaches that are a combination of
CNN and RNN architectures. The paper also discussed fu-
sion strategies such as concatenation, product, summation,
maximum, and weights for combining features from differ-
ent models or feature sets.

Another survey was conducted on current deepfake gen-
eration and detection methods [8]. By highlighting various
deepfake video use cases, this paper helped us find the scope
of our project, i.e. it outlined that the most common deep-
fake method is an “overlay” method where existing authen-
tic videos are overlaid with deepfake artifacts. Furthermore,
this article outlined 5 general methods used for deepfake
detection: General Network-Based methods (frame-level
classification task), Temporal Consistency-based methods
(finds inconsistencies between adjacent frames), Visual
Artifacts-based methods:(Use CNN-based methods to iden-
tify artifacts left behind in the blending operation done
during deepfake generation), Camera Fingerprints-Based
methods, Biological Signals-Based methods. Due to the re-
sults discussed in this paper, we choose to focus on compar-
ing the effectiveness of the first two methods – i.e. General
Network-Based Methods and Temporal Consistency- Based
Methods.

Al-Dhabi and Zhang [3] looked into a deepfake detection
algorithm that uses CNNs and RNNs using the Resnext50
model for feature extraction, as well as LSTM nets for find-
ing temporal anomalies. The researchers tested their model
on multiple deepfake datasets, which tests the adaptability
of their model. This hybrid model showed a superior perfor-
mance when compared to solo CNN/RNN models. In par-
ticular, we see that FP and FN were greatly reduced when
compared to standalone models. The combined approach
identified deepfakes with an accuracy rate of around 95%,
which is a significant improvement over previous mod-
els, which found 80%-90% accuracies. This shows that a

merged CNN-RNN model have a very high potential for
countering deepfakes.

Another way to detect deepfakes uses a Multi-modal
Multi-scale Transformer (M2TR) [7]. This model is de-
signed to capture perceptually convincing forgeries at mul-
tiple scales by combining transformer models, frequency
filters, and cross modality fusion blocks. This multi-
dimensional method aims to address the limitations of pre-
vious models that primarily detected inconsistencies in im-
ages at only one scale or modality. By focusing on both spa-
tial and frequency domains, M2TR enhances the robustness
of deepfake detection, which is much better than prior meth-
ods which operate on just RGB color data and tend to over-
look subtle forgery artifacts in the frequency domain. The
results presented in the paper showcase the effectiveness of
M2TR, particularly highlighting its superior performance
across several datasets. M2TR achieved a 99.9% detec-
tion accuracy on the Celeb-DF dataset and 90.5% on their
SR-DF dataset, showing a strong performance in both con-
trolled and more challenging real-world scenarios. M2TR
also does better than existing deepfake detection methods
like the F3-Net, by noticeable margins, such as a 1.92%
higher accuracy in low-quality settings of the FF++ dataset.
These evaluations demonstrate the potential of M2TR in
significantly advancing the field of deepfake detection tech-
nology.

3. Dataset and Features
We are using the Kaggle Deepfake Detection Challenge

dataset as the source for our project’s training, validation
and testing data [1]. The original dataset contained 471.84
GB of labeled .mp4 videos. Some videos were labeled as
”FAKE”, representing deepfake AI generated videos, and
others ”REAL”, which represent unaltered videos recorded
with real-life subjects. Since the original dataset size was
too large, we downloaded a subset of the data for our
project. The sample we selected includes 825 10-second
video clips. The original dataset included videos in both
a horizontal and vertical format. We choose only to select
the horizontal videos which have dimensions of 1080x1920.
Once we downloaded our set of videos, we discretized our
data by using the OpenCV library [4] to cut each video into
16 equally spaced out frames, which were saved and ex-
ported to .jpg files. The original videos’ labels (0/1 for
REAL/FAKE) were then attached to the frames of each
video and exported to a .json file. The 13,200 jpg files and
the labels json file were then uploaded to Google Drive for
it to be accessible by our models, which were implemented
on Google Collab.

3.1. Preprocessing

After reading in the image files, we preprocessed the im-
ages before feeding the data into our spatial and temporal

2

https://www.kaggle.com/c/deepfake-detection-challenge/data
https://www.kaggle.com/c/deepfake-detection-challenge/data


models.
For the majority of our models, we compressed the

images by cutting the dimensions of the height and width
by 10 for more efficient model training; the final resolution
of each image was 108x192 with 3 RGB channels. For our
3D CNN, due to the constraints of the pre-trained model in
the first layer, we resized our image to size 224x224. We
then normalized the input tensors for all the video frames.
For the input of our Two-Stream CNN, we also took the
batch of frames for each video to calculate optical flow to
represent the temporal features of the input video. We used
the OpenCV library to extract the optical flow between
consecutive frames in each video and used the flow graphs
as inputs to represent the temporal information of the video.
Since we are looking at pairs of frames to calculate optical
flow this means for every batch of 16 frames we get 15
flow graphs. We decided to duplicate the first flow graph
to thus ensure the input pairs of ”spatial” frames and flow
graphs matched. An example of the video frames our input
training dataset and the generated optical flow graph used
in the Two-Stream CNN model is shown here:

Figure 1: Visualized example input data and temporal
feature extraction between two consecutive frames using
optical flow

The inputs were then randomized and split into three
subsets: 80% was used for the training set, 10% split for
the validation set, and the last 10% split was used for test-
ing. In our final split, we had 660 videos (10560 frames) in
the training set, 82 videos (1,312 frames) in the validation
set, and 83 videos (1,328 frames) in our test set.

For our local frame-by-frame models (e.g. baseline) we
treated our resulting dataset as a ”bag of frames” and shuf-
fled the data at a frame level. For our two-stream per frame
model, we paired a ”spatial” frame with its corresponding
”temporal” flow graph and then treated the resulting dataset
as a ”bag of spatial-flow pairs” and shuffled the data at a
pair level. For our whole-video models (e.g. 3D CNN), we
kept the batches of frames from the same video together and

shuffled the batches on a batch level.

4. Methods
As discussed in our introduction, we wanted to compare

several models that work on different levels of locality–
from frame-by-frame analysis to whole video detectionz–
and capture the spatial and temporal features of the videos
in various ways. We used four different model architectures
to experiment with different localities and on various gran-
ularities to yield 5 separate detection models. A summary
of the detection models is consolidated in table 1 below.

4.1. Models

All of these architectures look to capture and combine
spatial and temporal information in various ways.

As our baseline, we implemented one 2D CNN which
solely extracts spatial features from the input frames. This
model was intended to observe if high-accuracy local spa-
tial detection abstracts well to whole video classification.
Taking in an input video split into 16 frames, the baseline
model then makes a prediction on each frame. We then aver-
age the predictions across frames to classify the entire video
as deepfake or not. Table 2 summarizes the input and output
details of the different layers of the baseline model.

The Two-Stream networks extract spatial and temporal
features before concatenating the learned features for clas-
sification. We offer two approaches – one where this con-
catenation is done at a frame level and another where this
concatenation is done on a whole video level. The Two-
Steam per Frame model is fed a pair of spatial-temporal
pairs with each frame of the video being paired with an op-
tical flow graph. The spatial CNN looks at the individual
frames in isolation and extracts spatial features. The second
CNN takes temporal consistency data to separately extract
temporal features. These features are then concatenated and
pushed through a linear classifier for classification. On the
other hand, the Two-Steam per Video model will take in
the entire set of frames from a given video and correspond-
ing set of optical flows. The first CNN looks at individual
frames in isolation, extracts spatial features, then stacks the
spatial features of the video batch. The second CNN ex-
tracts temporal consistency features from each optical flow
graph and then stacks these temporal features for the video
batch. These stacked spatial and temporal features are then
concatenated and pushed through a linear classifier for clas-
sification. Table 3 and 4 describes the details of the layers
of the three parts of the two-stream per frame model and the
two-stream per video model, respectively.

The Sequential CNN-RNN network first extracts 2D spa-
tial features from each frame and stacks the features. The
model then pushes the stacked features through an RNN to
deepen spatial feature extraction and build up temporal de-
pendencies. Table 5 summarizes the input and output details

3



Table 1. Summary of our tested deepfake detection models.

Model Name Architecture Locality Granularity

Baseline 2D CNN Spatial Frame-by-Frame

Two-Stream by Frame CNN-CNN Spatial-Temporal Frame-by-Frame

Two-Stream by Video CNN-CNN Spatial-Temporal Whole-Video

Sequential CNN-RNN Spatial-Temporal Whole-Video

3D CNN CNN Spatial-Temporal Whole-Video

Table 2. Baseline model layer specifications

Layer Input Output

ResNet50 (108,192,3) (7, 7, 2048)

GlobalAveragePool (7, 7, 2048) (1, 2048)

Linear Layers (1, 2048) 0/1

Table 3. Two-Stream by Fram model layer specifications

Layer Input Output

Spatial Stream

ResNet50 (108, 192, 3) (7, 7, 2048)

GlobalAveragePool (7, 7, 2048) (1, 2048)

Linear Layers (1, 2048) (1,128)

Temporal Stream

Conv2D Layers (108,192,2) (25, 46, 64)

Flatten Layer (25, 46, 64) (1, 73600)

Linear Layers (1, 73600) (1, 128)

Concatenation

Concatenation ((1, 128), (1, 128)) (1, 256)

Linear Layers (1, 256) 0/1

of the various layers of the sequential model.
Finally, the 3D CNN hopes to capture both spatial and

temporal features at one time. The model adds convolutions
over the time dimension in addition to the spatial dimen-
sions, and it hopes to perform the same function as our pre-
vious recurrent and multi-stream approaches. Table 6 sum-
marizes the details of the different layers of the 3D CNN
model.

We tried to keep the model architectures as similar as
possible in order to make a more fair comparison of our
methods. For example, we used ResNet50 as our base 2D
CNN across all architectures (except for the 3D model) and
we kept the type and dimensions of the added hidden layers

Table 4. Two-Stream by Video model layer specifications

Layer Input Output

Spatial Stream

ResNet50 (16, 108,192,3) (16, 7, 7, 2048)

GlobalAveragePool (16, 7, 7, 2048) (16, 2048)

Linear Layers (16, 2048) (16,128)

Flatten Layers (16, 128) (1,2048)

Linear Layers (1, 2048) (1,512)

Temporal Stream

Conv2D Layers (16, 108,192,2) (16, 25, 46, 64)

Flatten Layer (16, 25, 46, 64) (16, 73600)

Linear Layers (16, 73600) (16, 128)

Flatten Layer (16, 128) (1, 2048)

Linear Layers (1, 2048) (1, 512)

Concatenation

Concatenation ((1, 512), (1, 512)) (1, 1024)

Linear Layers (1, 1024) 0/1

Table 5. Sequential model layer specifications

Layer Input Output

ResNet50 (16, 108, 192, 3) (16, 7, 7, 2048)

GlobalAveragePool (16, 7, 7, 2048) (16, 2048)

Linear Layers (16, 2048) (16, 512)

LSTM Layers (16, 512) (1, 512)

Linear Layers (1, 512) 0/1

in each model similar to each other. This is to keep as many
variables as close as possible.

Our per-frame models take in individual frames (or
frame-graph pairs), whereas our 3D model takes in ”video
chunks” and ultimately all models output a single prediction

4



Table 6. 3D CNN model layer specifications

Layer Input Output

Inflated 3D ConvNet (16, 224, 224, 3) (4, 7, 7, 2048)

GlobalAveragePool3D (4, 7, 7, 2048) (1, 2048)

Linear Layers (1, 2048) 0/1

of REAL (0) or FAKE (1).

4.2. Training

4.2.1 Loss Functions

For our per-frame models we used standard Binary Cross
Entropy Loss, calculated using the following formula (y is
the correct label and p is the predicted output of the model):

LBCE = − (y log(p) + (1− y) log(1− p)) (1)

For our whole-video models, we used a custom loss
function that combines BCE and F1 loss, in order to get
competitive performance. The formula for F1 loss [5] is
given below. Note, precision is the ratio of true positives
over the total number of true and false positive predictions,
and recall is the ratio of true positives over the sum of true
positive and false negative predictions.

F1 =
2 · Precision · Recall
Precision + Recall

(2)

LF1 = 1− F1 (3)

L = αLBCE + βLF1 (4)

We also found our dataset we imbalanced and so we in-
corporate class weighting in our training (using tf.keras [2]
”class weighting” parameter in fit method). This ensured
that the model gave more weighting to the minority class
during training.

4.2.2 Hyperparameters

In optimizing our model configurations, we carefully con-
sidered the batch size and learning parameters to ensure effi-
cient learning and computational feasibility. For frame-by-
frame analysis, we set the batch size to 16. This choice was
driven by the intent to simulate the group dynamics of video
frame batches used in whole video detection, thereby main-
taining consistency in data handling across different model
applications.

For whole-video analysis, we conducted a comprehen-
sive grid search with batch sizes of 4, 16, and 32. Our
findings indicated that processing 16 frames per input led
to computational constraints when using batch sizes larger

than 4. Consequently, we selected a batch size of 4 for
whole-video analysis to balance between computational
load and effective learning.

Regarding optimization techniques, we employed the
Adam optimizer across our experiments. After experiment-
ing with base learning rates of 10e-3 and 10e-6 through
another grid search, we determined that a learning rate of
10e-3 yielded the most favorable results. This learning rate
facilitated a faster convergence while maintaining stability
in the training process, thereby optimizing the performance
of our models under varying computational and data condi-
tions.

Although we used an optimizer, we were hesitant to
cross-validate because our dataset was imbalanced. Thus,
it was challenging to ensure that we carried enough of the
minority class in each fold.

During testing of our per-frame models on whole video
classification, we use thresholding to determine which per-
centage of frames determines whether or not the entire
video is deepfake. To determine the appropriate threshold
we performed a grid search between 0.3-0.7 incrementing
in steps of 0.1 – only the results from the best performance
(accuracy-wise) are reported below.

5. Experiments/Results/Discussion
To tune our models, we tracked our training and vali-

dation loss and accuracy during model training after each
epoch, and used a test set for final evaluation. We also eval-
uated our results with quantitative metrics such as accuracy,
precision, and recall scores.

5.1. Results

Table 7. Prediction results for frame-level detection
methods

Method Accuracy Precision Recall
Baseline 0.97 0.95 0.97

Two-Stream Per-Frame 0.97 0.91 0.98

Table 8. Prediction results for whole-video detection
methods

Method Accuracy Precision Recall
Baseline 0.60 0.11 0.2
3D CNN 0.62 0.28 1.0

CNN-RNN 0.59 0.36 1.0
Two-Stream Per-Frame 0.83 0.36 0.48

Two-Stream Whole-Video 0.91 0.80 0.94

5.2. Discussion

In our experiments, it became evident that employing a
spatial-only approach allows for effective local detection
of features within individual frames. However, when these
per-frame analyses are aggregated to represent entire video
sequences, we observe a significant drop in accuracy,

5



particularly evident in the baseline models. This decline
underscores the critical need for incorporating temporal
components into our models to enhance overall video
understanding. This assertion is further supported by the
comparative performance of the TwoStream model on
whole-video analysis. Unlike the baseline, the TwoStream
model incorporates both spatial and temporal information,
thereby retaining a degree of temporal continuity across
frames, which likely contributes to its superior performance
in whole-video contexts. The confusion matrices for our
baseline and Two Stream models are shown below:

Figure 2: Confusion matrices for baseline (left) and Two-
Stream whole-video (right) methods

Additionally, our frame-by-frame analysis exposed po-
tential vulnerabilities to overfitting, despite the implemen-
tation of high regularization and dropout layers. The lack
of diversity in our dataset may predispose the models to
learn noise-specific features rather than generalizable pat-
terns. This risk of overfitting highlights the importance of
not only enhancing model architecture with mechanisms
to capture temporal dynamics but also ensuring a diverse
dataset that can challenge the model to learn more robust
and universally applicable features. These insights suggest
that future work should not only explore more sophisticated
temporal integration strategies but also emphasize the ac-
quisition and incorporation of a more varied set of video
data to train our models.

We also noticed that our 3D CNN and CNN-RNN strug-
gled. This is likely due to a relatively small dataset and
dataset imbalance and homogeneity (i.e. needed more di-
versity). We tried to counteract this by using a custom loss
score which optimizes for precision and recall, and also by
incorporating class-weights during training. Unfortunately,
these attempted fixes did not work too well. We got very
low precisions, which suggest that the model didn’t learn-
ing the features. This is further backed by accuracy of these
models sitting at 0.59 and 0.62 which is the rough class split
of the dataset. The high recall we observed can be attributed
to our custom loss function and the use of class weighting.

Compounding these issues, the application of deepfake
video techniques introduces additional complexity. Some
frames are not consistently altered with deepfake masks,
yet are labeled as deepfakes, leading to incorrect training

data. The CNN-RNN model, which processes frames se-
quentially and extracts spatial features before passing them
through the RNN, appears particularly susceptible to this is-
sue. It often misinterprets unaltered frames as deepfakes,
which exacerbates the model’s performance issues. This
highlights the necessity for more sophisticated handling of
data inconsistencies and reinforces the need for a more ro-
bust dataset in training models to detect deepfake videos
effectively.

However, this does not completely rule-out the viability
a 3D CNN or Sequential model. If we look at the below
heat-map looking at the features of the last convolution
layer of our 3D CNN and match it up with the the cor-
responding temporal flow graph shown below – we can
already see that the 3D model is picking up features ex-
tracted from areas of ”high” temporal flow (namely around
the right hand and right shoulder area). This suggests
that these models can extract temporal features alongside
spatial features.Thus we could see improved performance
with more diverse and balanced training data and more
train time.

Figure 3: Visualized optical flow graph example with cor-
responding heat map

On the other hand, we achieved considerable success
with the Two-Stream Whole-Video model, which demon-
strated enhanced resilience to the issues plaguing the other
models. This resilience can be attributed to its ability to
capture temporal dynamics across entire video sequences.
Even if individual frames are not altered with deepfake
masks, the temporal flow component of the Two-Stream
model can still detect anomalies, providing a robust mech-
anism for identifying deepfake content. Analyzing whole
batches of frames allows the model to establish longer-term
dependencies, further improving its capability to discern
genuine sequences from manipulated ones. This approach
not only compensates for sporadic inconsistencies in frame
manipulation but also leverages the inherent temporal con-
tinuity of video to enhance detection accuracy.

6



6. Conclusion/Future Work
Our experiments strongly underscore the critical role

that temporal information plays in the effective detection
of deepfake videos. Our purely local spatial models strug-
gled to work on the whole video level without some tem-
poral component. Our experiments provide several ways
of capturing temporal information. We found that models
that analyze whole videos demonstrate potential but are no-
tably dependent on the availability of extensive and diverse
datasets to accurately capture temporal dependencies. This
dependency becomes particularly significant when these
temporal features are not explicitly extracted through tech-
niques such as optical flow.

For our future work, we would like to train our specif-
ically whole video models (namely 3D CNN, CNN-RNN)
on a bigger more diverse dataset and see if/how much this
improves performance. Furthermore as mentioned in our in-
troduction,we looked specifically at the a particular type of
deepfakes which used ”overlays” over authentic videos. We
would want to test our models on other types of deepfakes
and see how well they generalize. Furthermore, the Two-
Stream CNNs have shown promising results in our study,
indicating that integrating spatial and temporal data streams
effectively enhances model performance. Given the intrin-
sic ability of transformers to handle long-term dependencies
due to their attention mechanisms, it would be intriguing
to investigate the performance of a Two-Stream 2D Trans-
former model in the future. There is already an increasing
trend in using Transformers for vision tasks and such an ex-
ploration could potentially leverage the strengths of trans-
formers to further improve the detection of deepfake videos,
especially in scenarios where temporal continuity and sub-
tle frame-to-frame variations are key indicators of authen-
ticity. This future work could provide valuable insights into
the adaptability and efficiency of advanced model architec-
tures in the ongoing effort to combat deepfake technology.
It would also be interesting to experiment

7. Contributions
All three of us contributed to all parts of the coding and

final project writeup. However, Tycho led the data pre-
processing and sequential model training, Shannon led the
baseline model composition and 3D CNN model construc-
tion and training, and Hlumelo led the two-stream model
creations and worked on model improvements and running
experiments. We all worked on the full video prediction
pipeline.

References
[1] Kaggle deepfake detection challenge.
[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorflow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[3] Y. Al-Dhabi and S. Zhang. Deepfake video detection by com-
bining convolutional neural network (cnn) and recurrent neu-
ral network (rnn). 2021 IEEE International Conference on
Computer Science, Artificial Intelligence and Electronic En-
gineering (CSAIEE), pages 236–241, 2021.

[4] G. Bradski. The opencv library. In Dr. Dobb’s Journal of
Software Tools, 2000.

[5] Z. C. Lipton, C. Elkan, and B. Narayanaswamy. Thresh-
olding classifiers to maximize f1 score. arXiv preprint
arXiv:1402.1892, February 2014. Last revised on 14 May
2014 (this version, v2).

[6] A. ur Rehman, S. B. Belhaouari, M. A. Kabir, and A. Khan.
On the use of deep learning for video classification. Applied
Sciences, 13(3), 2023.

[7] J. Wang, Z. Wu, W. Ouyang, X. Han, J. Chen, Y. Jiang, and
S. Li. M2tr: Multi-modal multi-scale transformers for deep-
fake detection. Association for Computing Machinery, page
615–623, 2022.

[8] P. Yu, Z. Xia, J. Fei, and Y. Lu. A survey on deepfake video
detection. IET Biometrics, 10(6):607–624, 2021.

7


