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Abstract

In this paper we introduce the development of WaldoNet,
which involves the use of small object detection meth-
ods for finding Waldo (1-class small object detection) and
other characters (4-class small object detection) within the
”Where’s Waldo” series of picture books. Specifically, this
study conducts small object detection through a YOLOv9
(You Only Look Once) model, which is the latest iteration of
a popular real time object detection algorithm [14]. For our
baseline, we utilized existing publicly available pre-labeled
images to train the YOLOv9 model, which had test accu-
racies of 43.7% and 40.6% for 1-class and 4-class small-
object detection respectively. For our implementation, we
focused on improving the dataset that is used to train the
YOLOv9 model, leads to improved test accuracies of 54.1%
and 82.8% for both 1-class and 4-class scenarios respec-
tively.

1. Introduction

Distinguishing between objects in our surroundings
based on their semantic importance is critical to survival and
all aspects of human life, whether it means locating food,
avoiding predators, or looking for your car in a crowded
parking lot. Due to this paramount importance, object de-
tection is one of the main problems that need to be solved
in computer vision. Prominent object detection applications
include: determining proper mask usage, being able to dis-
cern between various objects, and locating objects from im-
ages and videos[17]. For this study, we aim to develop Wal-
doNet, a convolutional neural network trained to aid hu-
mans in locating the cartoon character Waldo in a given
static image. This project aims to serve as an amusing
and child-friendly illustration of the capabilities of small-
object detection models. Each book in the Where’s Waldo
series consists of a series of large, complex drawing where
the player is tasked with locating Waldo despite the many
present distractions.

Unlike some other object detection problems, finding
Waldo in a given image involves solving a small-object de-
tection problem. Small object detection is a more difficult

problem than detecting objects that are proportionally larger
compared to their background. Three key issues are: 1)
small objects tend to have less information to distinguish
them from the background or similar categories than larger
objects, 2) the precision needed to locate small objects is
higher, and 3) there are more established models for de-
tecting medium and large objects (models for small-object
detection are relatively scarce) [18]. Figure 1 shows an ex-
ample of the difficult problem posed by Where’s Waldo.

Figure 1. Example of the Where’s Waldo challenge. Can you find
Waldo without the use of WaldoNet? If you want unleash the
power of WaldoNet, please refer to Figure 8.

2. Related work
Overview of Object Detection: Variations of object

detection that have been previously implemented fall into
two general groups: (1) Two-stage detectors (utilizing pro-
posal based regions), and (2) one-stage detectors (free of
proposal-based regions).

Two stage detectors:
R-CNN detectors: R-CNN uses a two-stage approach

of separate region proposal and object classification. A
4096 dimensional vector is extracted, by feeding each re-
gion proposal into a deep CNN [12, 5]. R-CNN and its
variants all use region proposals instead of sliding windows
to find objects in images [19]. In the case for R-CNN, se-
lective search is used to generate potential bounding boxes,
with multiples stages following. This results in a system
that is very slow that takes up to 40 seconds per image at
test time [14].
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Improvements to R-CNN detectors: Improvements
have been made to R-CNN in the form of Fast R-CNN [4]
and Faster R-CNN [16], but they all still divide the detec-
tion problem into two stages: the region proposal stage and
the detection stage [12]. Fast R-CNN and Faster R-CNN
offer speed and accuracy improvements over R-CNN by us-
ing neural networks to generate proposed regions instead
of the selective search algorithm[4, 16] and are much faster
at test time (only about 200 milliseconds per image). R-
CNN series (R-CNN, Fast R-CNN, and Faster R-CNN) has
been successfully implemented in object detection prob-
lems ranging from: identifying traffic signs, PASCAL VOC
2012, and vehicle detection [2, 26, 8].

Feature pyramid network (FPN): FPN utilized the hi-
erarchy of a CNN network that first passed an input image
through a CNN before using a pooling layer to shrink the
size of the feature maps. The shrunk feature maps are then
up-sampled to the same size as the input image [9]. The
generated FPN feature maps were shown to have positive
impacts on detection accuracy, specifically with a more dra-
matic improvement for detecting small objects.

One-stage detectors:
Single shot detector (SSD): The SSD is a single shot

detector, that does not include the use of a regional pro-
posal network. This method is similar to the faster R-CNN
method, with the primary difference being that SSD per-
formed multiple feature layers to perform detection. How-
ever, SSD performs poorly on small object detection prob-
lems due to using shallow layers without deep semantic rel-
evance [11, 12].

RetinaNet: The development of RetinaNet was inspired
by the need to have a one-stage object detector with fast de-
tection time while also reducing the accuracy gap with two-
stage detectors [10]. The accuracy gap between one-stage
and two-stage detectors was primarily due to the high im-
balance in the numbers of positive and negative examples,
as well as an imbalance in the number of ”easy” and ”hard”
examples used in training. By having too many easy exam-
ples in training, the loss function will become dominated by
these examples, resulting in a degenerated model. To help
tackle this issue, RetinaNet utilizes the focal loss function,
which adaptively reduces the weights of easy examples.

YOLO: the YOLO (You Only Look Once) model, has
superior performance to other convolutional networks [21,
13]. This is because YOLO performs real-time object detec-
tion through a single pass in a neural network, which con-
tributes to its greater speed and efficiency than traditional
CNNs. The original YOLO model is a series of 24 convolu-
tional layers (with a3 few maxpool layers) before two fully
connected layers (see appendix Fig 11) [15]. Additionally,
a precedent exists for using YOLO models in solving the
Where’s Waldo problem, making it a good starting point for
our project [23].

3. Methods

In both 1-class and 4-class small object detection, our
objective is to detect Waldo (and other characters) on an im-
age and draw a bounding box around them using the YOLO
model, specifically the newest available version YOLOv9.
YOLOv9 introduces some upgrades to the system includ-
ing programmable gradient information (PGI) and a gener-
alized efficient layer aggregation network (GELAN) with
convolutional layers as its architecture [22].

PGI is introduced as a method of auxiliary supervision
during training that is intended to aid convergence for both
large, deep networks and lightweight, shallower models
[22]. In addition to a main branch, PGI has an ”auxiliary re-
versible branch” to provide gradient information to the main
branch when deep features of the data would have been
otherwise lost due to an information bottleneck as well as
”multi-level auxiliary information”, which places an ”inte-
gration network between the feature pyramid hierarchy lay-
ers of auxiliary supervision and the main branch, and then
uses it to combine returned gradients from different predic-
tion heads” to update the parameters without running into
the broken information problem that often occurs during
deep supervision (see appendix Fig 12) [22].

GELAN, which combines ELAN (efficient layer aggre-
gation network) and CSPNet (cross stage partial network)
[22]. ELAN can only use stacking of convolutional lay-
ers, but GELAN is generalized to work with any type of
layer by including the additional transition stage of CSPNet.
By employing a GELAN architecture that solely uses stan-
dard convolutional layers, the designers of YOLOv9 were
able to achieve higher parameter usage, speed, and accu-
racy than models using depthwise convolution. In contrast
with the original YOLO architecture which is a simpler se-
ries of convolutional layers, the GELAN architecture both
feeds the output of each convolutional layer forward to the
next while also combining each layer’s output (see appendix
Fig 13) [22].

To determine the performance of these models we will
be producing loss curves to track the overall loss during
training and validation (per epoch). Equation 1 shows the
breakdown of the YOLO loss function, with the main loss
being broken down into localization loss, confidence loss
(objectness), confidence loss for non-objects, and classifi-
cation loss [14].

General YOLO loss function:
Ltotal = Llocalization + Lconfidence,obj + Lconfidence,non−obj

+ Lclassification

Ltotal = λcoord
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Where S represents the number of grid cells in the image;
B represents the number of bounding boxes predicted by
each grid cell; λcoord and λnoobj are hyparameters controlling
the importance of classification and confidence terms in the
loss equation; xi and yi are the center coordinates of the
predicted bounding box; wi and hi are the width and height
of the predicted bounding box; Ci represents the confidence
score of the presence of an object in the box; pi represents
the predicted probability of each class for the object within
the predicted bounding box; and 1obj and 1noobj are indicator
functions that equal 1 if an object appears in cell i and if the
cell doesn’t contain an object, respectively, and 0 otherwise.

Since the game of Where’s Waldo is centered upon find-
ing the titular character, Waldo, within the scene of each
two-page spread, we began by training the YOLOv9 model
with a 1-class object detection task (finding Waldo against
the chaotic background). Because the books have additional
characters to find in order to give the player a longer, more
challenging experience, we also trained YOLOv9 for a 4-
class version of the task in order to detect not only Waldo
but the three additional main characters. We expected that
a dedicated 1-class version would have higher accuracy for
finding Waldo that might make it more useful for players
that are focused on finding Waldo alone, which is what most
players do. The 4-class version was intended to be more
broadly useful while anticipating that the accuracy for find-
ing any of the individual characters in the final version may
be lower than that of the 1-class model due to us training on
fewer images per character for the latter method (we used
a separate dataset of the same size (2,075 images) for the
1-class and 4-class tasks).

3.1. Baseline Model: Using pre-existing Waldo data

Before preparing our own custom datasets for the 1-class
and 4-class tasks, we used pre-existing datasets posted to
the Roboflow imageset repository. The imageset we used
for each was fairly small (only a few hundred total images,
see Table 1). During our initial attempts for 1-class and
4-class small-object detection of Waldo characters, we no-
ticed that the accuracy of the Waldo models were highly

dependent on the manner of how the bounding boxes were
drawn. For instance, if bounding boxes for input data were
always drawn over the entirety of the body of the Waldo
characters, it resulted in the YOLOv9 model having al-
most 0% accuracy. Therefore, for the baseline model we
trained our YOLOv9 model on existing data that had bound-
ing boxes primarily drawn over the face of each character.
Later to further improve upon the performance of the base-
line model, we focused on drawing bounding boxes exclu-
sively on the face of the character.

3.2. Our Model: Using processed Waldo data

In order to achieve higher detection accuracy, we sought
to increase the size of the datasets for both the 1-class and
4-class object detection tasks by at least an order of magni-
tude while decreasing the fraction of images that were back-
ground (not featuring a labeled character). To do this, we
took images of the original book pages and cropped them
into grids of 128x128 pixel images and superimposed the
face of one character onto each of the images (except for a
small portion of images that we left as background). The
documentation for YOLOv9 suggests having a background
image fraction between 1 and 10%, so we chose to have this
fraction as 2% [20].

The baseline image sets (for both 1-class and 4-class
classification tasks) we found and labeled with Roboflow
had a very small number of total images, and this appears
to be the norm for past attempts at developing image classi-
fiers for solving the Where’s Waldo game. The primary is-
sue leading to the dearth of available images is the fact that
within each large two-page spread, Waldo and each of the
other characters only occur once. With each book having
around a dozen spreads, that’s only twelve images of each
of the characters per book! Not wanting to spend money on
purchasing additional books, we found photographic scans
of the original four books, which still only amounts to 48
instances of each class.

It is recommended that for YOLO models in their offi-
cial documentation that between 1 and 10% of images in
the dataset should be background images in order to mini-
mize the number of false positives [20]. Cropping each two-
page spread into 128x128 pixel squares resulted in around
140 images per spread. For the 4-class problem, this means
97% of images are background and for the 1-class prob-
lem, over 99% of images are background. The only ways
to decrease the fraction of background images in the dataset
are to remove background images (which would result in a
very small overall dataset) or to add more images containing
Waldo and the other characters.

Our chosen solution was to produce synthetic images
of the characters by randomly superimposing their faces
on background images. First, for each original two-
page spread, we located the four characters and manually
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cropped their faces out. Second, we manually erased the
background of each face image using an image editing ap-
plication (see Fig 3). Third, we ran a script that iterated
through all of the automatically cropped 128 by 128 images
from each two-page spread and superimposed one of the
faces on each at a random location to create a new image.
Finally, our script would stop superimposing faces when it
reached the number of images determined for the labeled
fraction (in our case 98%), leaving the remaining fraction
as unmodified background images (in our case 2%).To stay
consistent with color and contrast, all of the images orig-
inating from the same two-page spread would only have
faces superimposed that were originally taken from that
same two-page spread.

Figure 2. Top: 128 by 128 pixel cropping grid for original two-
page spread. Left: Individual cropped image. Right: Cropped
image with Waldo face superimposed at random location (boxed
in black outline)

Figure 3. The isolated faces of each character used to create the
superimposed images. One face was used from each original two-
page spread from the books.

We chose 2% as the fraction of background images to
use, close to the recommended lower bound for YOLO
models. Accordingly, once our script had iterated through
98% of the cropped images for a particular two-page spread,

it left the remaining portion unmodified. To make the
dataset for training and evaluating the 1-class version of our
model, we only superimposed faces of Waldo on the 98% of
modified images. For the 4-class dataset, we superimposed
an equal portion of the 98% with each of the four characters,
one of each per image (25.4% of the images for each char-
acter). On the occasion that an image contained the original
location of a character on the two-page spread, we labeled
that as well, so a few images out of the 2,075 images in each
dataset have two labelled faces (Table 1).

4. Dataset
All images in the data sets used originally derive from

the Where’s Waldo books, which each consist of series of
two-page spreads. Each two-page spread features a large,
complex cartoon drawing of hundreds of people, animals,
and other objects with Waldo located in a different loca-
tion within each spread, along with additional characters
like Wenda, Odlaw, and Wizard Whitebeard. For reference,
Wenda is a female counterpart to Waldo who dresses very
similarly, Odlaw is an evil counterpart to Waldo with black
and yellow striped clothing instead of red and white stripes,
and Wizard Whitebeard is a wizard that helps Waldo on his
adventures. See Figure 2 in the appendix for a visual com-
parison of the characters.

Images of Waldo are available in two relevant forms
online: (1) Original two-page spreads from the Where’s
Waldo book series, and (2) smaller cropped images of these
books in public datasets (256x256, 128x128, and 64x64)[1].
Cropping the large, two-page spreads into smaller square
images is helpful for increasing the number of total im-
ages, but also for limiting each image to a more manage-
able size for training. For the YOLOv9 models, prelimi-
nary runs were made on both publicly available sources of
Waldo images with pre-drawn bounding boxes and on im-
ages that we manually labelled. For the pre-labelled data,
they were obtained on Roboflow (76 for 1-class and 313
for 4-class) for 1-class classification scenarios (Waldo vs.
background) and 4-class scenarios using the expanded list
of characters (Waldo, Wenda, Odlaw, Wizard Whitebeard,
and background)[24, 3, 7].

4.1. Labeling Waldo

While in some images Waldo’s body and entire outfit are
clearly visible, in some images only Waldo’s head is visi-
ble with other people and objects occluding him. This is a
choice by the illustrator to increase the challenge of find-
ing him. The only part of Waldo guaranteed to be visible
in every image from the books is his face. Accordingly,
bounding boxes around Waldo’s entire body will frequently
include non-Waldo occluding objects. If a model is trained
with these (often occluded) full-body bounding boxes, the
model will be searching for features of Waldo that are often
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absent or features that don’t even have a semantic connec-
tion to the proper Waldo class. Hence, for the final set of
custom images, we ran the model of our study on images
with bounding boxes only around the face of the characters.

To prepare our cropped images for object detection, the
images were manually labelled using Roboflow. Initial at-
tempts (not shown here) involved two types of bounded
boxes: (1) surrounding Waldo’s entire body and (2) sur-
rounding only Waldo’s face (Figure 14). The YOLOv9
model was unable to identify Waldo in any instance (0%
validation accuracy) when trained with strategy 1, while the
model trained on just Waldo’s face was able to achieve our
initial reported accuracy in section 5 (87% test accuracy).
This difference is likely caused by occlusion, as explained
in the previous paragraph.

For the final implementation of the model, we cropped
individual images from photographs of the original two-
page spreads from the first two Where’s Waldo books (the
original Where’s Waldo? (1987) and its sequel Where’s
Waldo Now? (1988)), with twelve spreads from the first
book and seven spreads from the second book. A python
script automatically cropped each of the spreads into a grid
of 128x128 pixel images (with zero padding to fill in any
overhangs of the 128x128 pixel cropping window, causing
a few of the images to have a black border on one or two
sides). This resulted in 2,075 total cropped images, with an
average of approximately 109 images per spread.

Baseline Model
Scenario: train/ val/ detect
1-class 159, 15, 8 → obtained from [7]
4-class 396, 56, 32 → obtained from [24]

Our Implementation

Scenario:
train/ val/ detect

&
num per class [train]

1-class
1453, 415, 207

2022, 42

4-class
1453, 415, 207,

526, 520, 504, 513, 45

Table 1. Breakdown of image data used to train baseline and our
model of WaldoNet for 1-class (Waldo, Background) and 4-class
(Waldo, Wenda, Odlaw, Wizard, Background) detection. Note the
table numbers are in the order shown in this caption.

We found images of two-page spreads from the first four
Where’s Waldo books and initially cropped all of them, but
we only manually labeled the first 2,075 images for both
the 1-class and 4-class datasets due to the significant labor
time required for labeling. For the 1-class dataset, it only
took about five hours to label all of the images because there

was only one class to choose from. For the 4-class dataset,
labelling took over twice as long (over ten hours) because
of the need to alternate between labeling different classes
prevented us from simply hitting the same combination of
buttons in the Roboflow labeling application over and over.
It was also harder to find multiple characters than the same
character over and over due to the increased variety each
time. While labeling both datasets, it would often take sev-
eral seconds to locate the character’s face, as the face is still
a fairly small object to find, even within a 128x128 pixel
square, and some would require much longer when they
stood out less against the background.

5. Experiments
For this study we developed a method to solve Where’s

Waldo using the latest iteration of YOLO models —
YOLOv9 — for 1-class and 4-class small object detection
problems. We leverage a pre-trained YOLOv9 model on the
MS COCO object dataset (classes = 80), and retrained the
model on 1-class and 4-class Where’s Waldo images labeled
using Roboflow. In these scenarios we used the weights
and cfg file defined in yolov9-e.pt and yolov9-e.yaml due to
their speed in training and performing inference [25]. For
our initial attempts at hyperparameter tuning we changed
the parameters defined in the ”hyp.scratch-high.yaml” file,
as discussed later.

5.1. Evaluation Benchmark

Several evaluation metrics were used to evaluate the per-
formance of the baseline model and WaldoNet on 1-class
and 4-class ”Where’s Waldo” detection. In this study, we
put more emphasis on metrics related to the classification
ability of our models, as the accuracy of the bounding box is
of lesser importance compared to the correct identification
of a character. Confusion matrices, showing the classifica-
tion performance were developed for the baseline and Wal-
doNet models. From the confusion matrices, we calculated
the precision, recall, and F1 score of the models. Typically,
models with high recall and high precision will have a large
area under the precision-recall curve. High precision is in-
dicative of low false positive rates and high recall means the
model has a low false negative rate. In terms of evaluating
the test accuracy of the models we make use of Equation 2.

Accuracy =
Count of images with correct classification

Total images
(2)

5.2. Hyperparameter Tuning

To help determine the optimal set of hyper-parameters to
use for our baseline and final model, we changed the ini-
tial learning rate, initial batch size, and number of training
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epochs. Table 2 shows selected hyper-parameters that de-
viate from the ones used in a typical YOLOv9 model. The
rationale for these choices is summarized below.

Parameter Baseline WaldoNet
Initial learning rate 0.01 0.01
optimizer SGD SGD
Momentum 0.973 0.973
Batch size 1-class 32 25
Batch size 4-class 32 16
Epochs 50 100

Table 2. Select hyper-parameters used for YOLOv9 in Baseline
and WaldoNet models

Learning rate: In the YOLOv9 model there are two
learning rate parameters: (1) initial learning rate and (2)
final learning rate. For the purposes of this study we only
adjusted the initial learning rate, and kept the final learning
rate at the default of 0.01. Models that had a lower learn-
ing rate (0.001 or the default 0.01) typically had lower fi-
nal training and validation errors, while models that used a
higher initial learning rate had greater final losses. We can
see that the YOLO model is sensitive to changes in the ini-
tial learning rate (LR) on the training and validation loss, as
a LR of 0.1 results in overstepping as shown by the drastic
increase in the training loss after a few epochs (other losses
spiked, so they are not shown there). However, a smaller
learning rate seems to help improve the generalizability of
the YOLO model, as it has a slightly lower validation loss
in comparison to the other models.

Batch Size: We used varying batch sizes of 8, 16, and 32
to train the baseline model. The models were trained locally
using an NVIDIA RTX 3060 GPU. For the final model, we
used batch sizes of 8, 16, and 25, due to memory limits with
the local GPU. Figure 4 shows some of the experiments us-
ing different batch sizes, revealing that models with larger
batch sizes (either 16 or 25/32) had lower final training and
validation errors.

Number of Epochs: From Figure 4 Initially, the de-
fault YOLOv9 model starts with 25 epochs. However, af-
ter plotting the loss curves, it was evident that the losses
were still decreasing. Hence, we increased the number of
epochs to 50 to help further reduce the validation loss of the
model. When we were initially training the baseline models
we used 50 epochs, and looked at the loss curves to see if
our model was potentially over-fitting. Although our train-
ing loss for box and class is still decreasing, we see that
the validation loss has mostly leveled off at the end of the
50 epochs. If we were to continue to train the model in
this scenario, we might see further reductions in the train-
ing loss, but we would potentially be over-fitting our data.
We accordingly used 50 epochs to train the models. In the
case of the final model, the validation loss was still notice-

ably decreasing at 50 epochs, so we continued running those
models for a total of 100 epochs.

5.3. Baseline model

For the baseline model we used the publicly sourced
data from Roboflow as summarized in Table 1. The im-
ages obtained from Roboflow were split into separate fold-
ers for training, validation, and testing and a .yaml file
which is needed for YOLOv9. Upon obtaining the data, the
YOLOv9 model is retrained on the Where’s Waldo images.

Figure 4. Training and validation loss curves for baseline model.

After performing hyperparameter tuning, we ran the
model on the tuned parameters to get the final accuracies
for the 1-class and 4-class tasks for the baseline model us-
ing pre-existing data. Table 3 shows the obtained accuracies
and F1 score for both detection scenarios. Figure 5 shows
the confusion matrix of the model predictions.

Figure 5. Confusion matrix of Baseline Model on 1-class and 4-
class detection of Where’s Waldo characters using YOLOv9.

5.4. Our Implementation: WaldoNet

After training the YOLOv9 model on our custom dataset
and the tuned parameters, we obtained substantially lower
losses (Figure 6) than those of the baseline model (Figure
4).

From the loss curves depicted in Figure 6, the training
loss generally decreases for the box during the entire du-
ration of 100 epochs. However, the training classification
errors and the validation errors (both classification and box)
level off after 20 epochs. In this case the model is not
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Figure 6. Training and validation loss curves for drawing bounded
box around characters and classes for 50 epochs.

overfitting too much, as the training and validation errors
level off at around 0.3-0.4 loss for both box and classifica-
tion losses. If we wanted to further reduce the loss of the
model, it would be more prudent to implement the meth-
ods described later in section 6. The confusion matrix from
WaldoNet validation is shown in Figure 7.

Figure 7. Confusion matrix of WaldoNet Model on 1-class and 4-
class detection of Where’s Waldo characters using YOLOv9.

Baseline WaldoNet
Classes Accuracy F1 Score Accuracy F1 Score

1-Class detection
Waldo 43.7% 0.304 54.1% 0.481

4-Class detection
Overall 40.6% 0.454 82.8% 0.772
Waldo 76.7% 0.647 81.3% 0.897
Wenda 41.8% 0.335 81.3% 0.897
Odlaw 41.9% 0.429 91.7% 0.957
Wizard 100% 0.857 76.3% 0.865

Table 3. Accuracy and F1 score of baseline and WaldoNet model.

Table 3 shows the obtained accuracies and F1 score for
both detection scenarios. While Figure 7 shows the con-
fusion matrix of the model predictions. Although it ap-
pears that the test accuracy of WaldoNet on 4-class detec-

tion problem fares better than 1-class detection, this is a lit-
tle misleading. This is because if we looked at the counts
for 1-class detection we will have 201 TP, 6 TN, 0 FN, and
34 FP, which results in a test accuracy of 85.9% for 1-class
detection.

5.5. Prediction Results

Figure 8. Mini image of detection results. For the full-sized image
please refer to Figure 9.

Figure 8 shows the inferences made by WaldoNet for 1-
class and 4-class detection problems. The model is able
to identify the correct location of all characters, but makes
some false identifications. For example, in the top image
(1-Class identification), Waldo can be reasonably identified
(relatively high enough confidence), while the model makes
an incorrect detection by mistaking Wenda as Waldo. It ad-
ditionally mistakes someone with a face with red objects in
their hair as being Waldo. These mistakes make sense, as
one can reasonably think that these characters are Waldo at
first glance based on the limited information provided by
the pixels enclosed within the bounding box.

Similarly, for the bottom image in Figure 8, WaldoNet
is able to identify correctly all characters from the Where’s
Waldo series correctly, but it makes similar erroneous clas-
sifications. However, most of these errors are made with
a much lower confidence than the correct identifications of
the characters. In the example image shown, the highest
confidence prediction made for each class is consistent with
the ground truth.

6. Future Work

• Limit number of Waldo boxes drawn per image:
From Figure 15 we can see instances where more than
one box for Waldo is drawn in a given image. To
help reduce these cases, we can potentially modify the
model such that the number of bounded boxes that it
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can draw per image is equal to the number of classes.
Given that all true background images were correctly
identified as such and that true positive rate for each
model is close to 100%, this simple change should ide-
ally lower the false positive rate from approximately
85% to zero.

• Optimize the proportion of background images: It
is recommended that 0-10% of images in the dataset
should be background images help reduce the occur-
rence of false positive predictions. Since our dataset
has 2% background images currently, we could see if
raising this amount closer to 10% is beneficial. [6].

• Find Waldo in real life: An expansion we may pur-
sue would be to take Waldo’s head/body and randomly
insert him into real life backgrounds. In this case we
can expand the model to finding him when he is beside
real life objects (real life background).

7. Discussion
Training the YOLOv9 model on our dataset of synthetic,

superimposed images allowed us to substantially improve
the true positive detection rate for finding Waldo in the 1-
class task and finding all four characters in the 4-class de-
tection task. There was also substantial improvement in the
false positive detection rates when compared to the base-
line versions. The official documentation for YOLOv9 rec-
ommends having a fairly small fraction of unlabeled back-
ground images in the dataset in order to minimize the false
positive rate, so we followed the recommendation by em-
ploying a background fraction of 2%. This went against our
own intuition that it would be better to have a similar num-
ber of background and character-containing images, but we
acquiesced to the expert advice and indeed lowered the false
positive rate.

We suspect that our false positive rate is still fairly high
(85% for 1-class) with our datasets despite having a very
small background image fraction in large part because of
how chaotic the images are. If a classifier is being trained to
detect a fairly distinct looking object that a person can easily
detect against its background, then fewer pure background
images are likely necessary. However, Where’s Waldo is
different from the usual object detection tasks, both because
it is an example of small object detection where the ob-
ject to be found is much smaller than the overall image and
because the desired objects (Waldo and the other charac-
ters) are intentionally challenging to find, as they are scat-
tered within extremely complex backgrounds with lots of
similar looking drawn features with similar colors and line
weights). Accordingly, we expect that Where’s Waldo sub-
verts the usual rules of thumb for YOLO and would require
a larger than usual fraction of pure background images in
order to decrease the false positive rate.

We argue that having a fairly high false positive rate is
not actually important for the intended application of assist-
ing a player with the Where’s Waldo game. In a hypothet-
ical version of Where’s Waldo with some pages that lacked
Waldo and the other characters entirely in order to waste the
player’s time, it would be important to have a very low false
positive rate. However, in real life, every single two-page
spread in each book is guaranteed to have Waldo and the
other characters present. Because of this, it doesn’t matter
if the model will detect Waldo when he isn’t present, so long
as it has a very high true positive rate. Fortunately, this is
indeed the case, and we were able to increase the true posi-
tive rate of our model substantially by moving from baseline
available imagesets to our custom, much larger datasets.
For example, and as previously mentioned, our baseline 1-
class true positive rate for finding Waldo was 87% and this
increased to over 99% with our custom dataset.

While being trained on small, cropped images, our
model still works when fed large images of the entire book
pages. At this scale, it will tend to detect two or three in-
stances of each class with high enough predicted probabil-
ity to draw bounding boxes for them. When testing in this
way, we found that the highest predicted probability always
corresponded with the ground truth, even with book pages
that the model was never trained on. In its current state,
this acts as a means of greatly narrowing down the search
space for a Where’s Waldo player: rather than looking over
the entire complex scene, they only need to look at a few
selected spots and have a guarantee of finding the target
character at one of those spots, so the goal is still accom-
plished of making the Where’s Waldo game much easier
and faster. In the future, we could modify how YOLOv9
draws bounding boxes by having it only draw a bounding
box around the prediction with the highest estimated prob-
ability, as this would ensure that only the correct bounding
boxes are drawn and solve the game directly.

It would still be nice, in abstract, to lower the false posi-
tive rate, and we suspect we could do this by increasing the
resolution of our book images, which are fuzzy, resulting in
many faces of Waldo and other characters being pixelated
and difficult for a human to recognize the features of. We
were surprised how high the true positive rate was despite
this, as it was close to 100% for each character anyway.

8. Conclusion

Our implementation using YOLOv9 and our large, cus-
tom dataset achieved a substantial improvement in true pos-
itive validation and test accuracy over the baseline, publicly
available Where’s Waldo datasets. Where for the implemen-
tation of WaldoNet leads to 54.1% and 82.8% in 1-class and
4-class detection problems.
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Figure 9. Full-sized image of WaldoNet detection on 1-class and 4-class scenarios
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Figure 10. The primary characters for players to find in the
Where’s Waldo books.

Figure 11. Architecture of the original YOLO model.[15]

Figure 12. PGI (auxiliary supervision method used in YOLOv9)
and related methods[22].

Figure 13. GELAN architecture and its inspirations, CSPNet and
ELAN[22].

Figure 14. Examples of Waldo images labelled on Roboflow.

Figure 15. Additional examples of 1-class Waldo detection from
Baseline YOLOv9 model.
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Figure 16. Example of 4-class Waldo detection from Baseline
YOLOv9 model.

Figure 17. Additional examples of 1-class Waldo detection from
WaldoNet YOLOv9 model.

Figure 18. Example of 4-class Waldo detection from WaldoNet
YOLOv9 model.

Figure 19. Distribution of bounded boxes for baseline model. In
this case, the data obtained from Roboflow will typically vary
widely and are inconsistent. For example, the boxes in some im-
ages may cover just the face of the characters, while the boxes in
some other images may cover the entire body, resulting in the wide
distribution in the width and heights of the drawn boxes.
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Figure 20. Distribution of bounded boxes for WaldoNet model
with 1-class. In this case, the generated data will be much more
consistent in comparison to the data obtained from Roboflow, as
the boxes now only cover the faces of the characters.

Figure 21. Distribution of bounded boxes for WaldoNet model
with 4-class. In this case, the generated data will be much more
consistent in comparison to the data obtained from Roboflow, as
the boxes now only cover the faces of the characters.

Figure 22. Precision-Recall curve for 1-class detection using Wal-
doNet.

Figure 23. Precision-Recall curve for 4-class detection using Wal-
doNet.

Figure 24. F1 curve for 1-class detection using WaldoNet.
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Figure 25. F1 curve for 4-class detection using WaldoNet.
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