
Diagnosis of Alzheimer’s Disease Using 3D and 2D Convolutional Neural
Networks

Siya Goel
Stanford University

siyagoel@stanford.edu

Nikhil Sharma
Stanford University

sharmnik@stanford.edu

Zhi Zheng
Stanford University

zzheng88@stanford.edu

Abstract

Alzheimer’s Disease (AD), the most common type
of dementia, significantly impacts millions and compli-
cates early diagnosis. This project employs advanced
2D and 3D convolutional neural networks (CNNs) to en-
hance early AD detection by analyzing MRI images from
the OASIS-1 dataset. We evaluate these models along-
side benchmarks such as BrainNet2D and BrainNet3D,
focusing on accurate AD stage detection. Initial findings
indicate that models pretrained on ImageNet, like Incep-
tionV3 and VGG16, surpass custom models including
BrainNet2D. Hybrid CNN-LSTM models and innovative
3D-CNNs like 3D-DenseNet and modified BrainNet3D
demonstrate strong potential in detecting all AD stages.
Future efforts will concentrate on refining models and
expanding datasets to improve diagnostic precision and
address MRI data analysis challenges.

1. Introduction

Alzheimer’s Disease (AD) affects over 6.7 million
people in the US and 35 million people worldwide. Ef-
fective treatments are scarce, partly because interven-
tions often start too late in the disease’s progression.
This delay leads to the failure of many clinical trials and
underscores the urgent need for early diagnosis to im-
prove treatment outcomes [6]. Currently, only 5% of
early-stage AD cases are diagnosed promptly ([10]).

This project aims to develop and evaluate deep learn-
ing models for early AD detection using MRI images
from the OASIS-1 dataset as inputs. We employ a
range of models, including custom and standard 2D
and 3D CNNs, to output the AD stage of each im-
age—very mild, moderate/mild, or healthy. Our goal
is to assess these models’ effectiveness against bench-
marks like BrainNet2D and BrainNet3D by measuring
accuracy, sensitivity, specificity, balanced accuracy, and

ROC, therefore enhancing early-stage diagnostic accu-
racy and addressing challenges in MRI data analysis.

2. Related Work
AD is primarily diagnosed manually by doctors us-

ing CT and MRI scans, with concerns about false pos-
itives limiting the use of machine learning (ML). Al-
though ML is underutilized in AD diagnosis due to ac-
curacy issues, ongoing research aims to enhance its effi-
cacy [16]. Studies using the OASIS dataset have mainly
employed traditional ML techniques like SVM, decision
trees, and logistic regression, achieving 78%-86% accu-
racy [3]. These methods often fail to fully capture the
complex patterns and spatial diversity of the images.

Recent studies on the OASIS dataset have primar-
ily utilized ResNet and Inception-ResNet architectures,
achieving 95% accuracy with ResNet-50 and Inception-
ResNet-v2 on the OASIS-3 dataset [14] [7]. These mod-
els leverage ResNet’s skip connections for simpler train-
ing and Inception-ResNet’s design for enhanced effi-
ciency and complexity management. Despite their suc-
cess, ResNet faces issues with complexity and general-
ization, and the Inception architecture’s performance on
OASIS-1 is untested, although it’s used widely in medi-
cal contexts [5]. Additionally, DenseNet-121 and VGG-
16 have been explored, reaching 91% and 96% accuracy
respectively on OASIS-3, but their efficacy on OASIS-1
remains unknown [12] [8].

Custom 2D CNN models like BrainNet2D have suc-
cessfully diagnosed AD using OASIS datasets, with
93% accuracy in AD prediction and 88% in stage dif-
ferentiation across OASIS-1 and OASIS-2 [13].. These
models are efficient, using only five convolutional
blocks. Meanwhile, larger, more computationally in-
tensive hybrid models combining EfficientNetB5 and
Inception-ResNet-v2 achieved similar precision and re-
call scores of around 0.96 on OASIS-1 [11]. Addition-
ally, RNNs/LSTMs, which excel at sequential data pro-
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cessing, reached 96% accuracy on OASIS-3 [4]. How-
ever, no CNN-RNN hybrids have been tested on OASIS-
1, which could potentially enhance feature extraction
and sequential analysis for better results.

3D architectures have seen limited exploration on the
OASIS datasets compared to 2D models. For exam-
ple, a 3D VGG model only achieved 69.9% accuracy on
OASIS-1 [17]. While 3D ResNet and 3D DenseNet have
shown promise in extracting spatial-temporal informa-
tion and offering parameter efficiency in other medical
contexts like CT colonographies, they remain untested
on OASIS [15]. Moreover, custom models like Brain-
Net3D, a 3D adaptation of BrainNet2D, exist but re-
quire further investigation to enhance diagnostic accu-
racy [13].

3. Dataset

3.1. Overview

The project utilizes the OASIS dataset from OASIS
Brains (wustl.edu), featuring MRI brain scans from 416
individuals aged 18-96. This dataset includes 100 sub-
jects with AD and 316 without, grouped under OASIS-1.
It provides demographic and clinical data such as age,
gender, education, and mini-mental state examination
scores, stored across 12 TAR files containing 3-D data.
A primary challenge in data pre-processing is the im-
balance in the dataset, with 316 cognitive normal cases
and fewer cases of very-mild (70 instances), mild (28
instances), and moderate dementia (2 instances). We
merged the mild and moderate categories to address this.

3.2. 2D CNN Dataset Modifications

Figure 1: Original Image vs Data Augmented Image

We extracted 2-D slices from indexes 60-80 and 100-
120 of each TAR file in the OASIS1 dataset, converting
them to JPG format for analysis. To avoid data leakage,
we used a subject-level split, ensuring slices from each
patient were only in the training/validation or test set,

crucial for preventing overinflated accuracy metrics due
to the high correlation between adjacent MRI slices [18].

From these slices, we generated 86,437 JPG images,
resized to 224x224 pixels for compatibility with most
2D CNN models, except InceptionV3, which required
299x299 pixels (Figure 1). To address class imbalance,
we enhanced underrepresented categories through aug-
mentation techniques such as random rotations, horizon-
tal flips, and resized crops.

After data augmentation, the training dataset in-
cluded approximately 47,336 healthy, 12,000 very mild,
and 12,000 mild/moderate samples. The validation
set comprised 13,298 healthy, 3,050 very mild, and
1,159 mild/moderate samples. The testing dataset con-
tained about 6,588 healthy, 1,220 very mild, and 488
mild/moderate samples.

3.3. 2D Custom CNN Dataset Modifications

The dataset for the 2D Custom models was sourced
from the 2D-processed OASIS-1 Collection [1]. It orig-
inally transformed from 3D to 2D images along the
coronal plane. To combat data imbalance in multi-
classification, the mild and moderate classes were com-
bined, resulting in a total of 15,057 non-demented,
13,725 very mild, and 5,429 combined mild and mod-
erate samples. These were divided into training, vali-
dation, and test sets in a 0.6, 0.2, and 0.2 ratio, leading
to sizes of 20,564, 6,854, and 6,864, respectively. Mea-
sures were taken to maintain consistent class distribu-
tions across these sets to address data imbalance. Ad-
ditionally, each image slice was resized to 128x128 and
reordered to (channel, height, width) format to stream-
line processing and enhance model compatibility.

3.4. 3D CNN Dataset Modifications

Figure 2: Images of the Right Hippocampus for OASIS
Sample 1

The 3D data was extracted from TAR files using Clin-
ica, a widely-used platform in neuroimaging studies.



Due to the dataset’s small size, Clinica applied non-
linear regression, segmented grey matter, and converted
the data into tensor format [2]. We trained and tested the
3D architectures exclusively using the right hippocam-
pus to mitigate overfitting. This choice is informed by
research indicating that the right hippocampus, which
plays a crucial role in processing spatial information, is
frequently affected in the early stages of AD [9]. Thus,
the resulting image size was reduced to 30 × 40 × 30
from the original 121 × 45 × 121. A sample image is
shown in Figure 2.

We allocated 80% of the data for training and val-
idation, and 20% for testing, using 300 samples (242
healthy, 37 very mild, 21 mild/moderate) for the for-
mer and 77 samples (62 healthy, 8 very mild, 7
mild/moderate) for the latter. We ensured an even dis-
tribution of age, gender, and diagnosis between groups.

4. Methods
4.1. 2D CNN Models

4.1.1 BrainNet2D

Our baseline models, binary and multiclass BrainNet2D
architectures referenced from Saratxaga et al. [13], are
re-implemented with our preprocessing methods for di-
rect comparison on OASIS datasets. BrainNet2D con-
sists of five Convolutional Blocks, each with a layer se-
quence of convolution, batch normalization, ReLU acti-
vation, and max pooling, with channel outputs increas-
ing from 8 to 128. The architecture concludes with a
global average pooling layer and a dense layer, compris-
ing 522 thousand trainable parameters and a total size of
2.09 MB.

BrainNet2D’s block structure enhances its efficiency
in feature extraction and training. The early blocks fo-
cus on simple features such as edges, with deeper blocks
handling complex patterns crucial for specific medical
diagnoses. This modular design facilitates easy modi-
fications, promotes faster convergence with stable gra-
dients, and improves generalization to new data, thus
boosting diagnostic accuracy. However, BrainNet2D
has limitations. The Global Average Pooling (GAP)
and Dense Layers may cause loss of crucial spatial de-
tails and reduce feature distinction, essential for accurate
neurological assessments. Dense layers also risk overfit-
ting and pose scalability issues with larger datasets. In-
sufficient convolutional blocks might limit the model’s
ability to learn detailed patterns, affecting performance
and generalization. These factors highlight the need for
a balanced network design in critical applications like
medical imaging.

4.1.2 Pre-Trained 2D CNN Models

After benchmarking BrainNet2D, we assessed the capa-
bilities of popular 2D CNN frameworks—DenseNet121,
InceptionV3, and VGG16—using the OASIS-1 dataset
for AD diagnosis. These models were selected for their
diverse layer depths, kernel sizes, and connectivity, of-
fering thorough evaluations for MRI brain scan process-
ing. We adapted each model by replacing the original
final fully connected layer with a linear layer designed
to fit the required number of classes. Our approach in-
cluded both binary models, which determined the pres-
ence or absence of AD, and multi-class models, which
categorized stages to enhance early-stage detection ac-
curacy.

We modified the DenseNet121 architecture for AD
classification by implementing a two-stage linear trans-
formation in its classifier, which first halves feature di-
mensions using a ReLU activation and then maps these
to disease classes. This adaptation maintains dense con-
nectivity and deep supervision, improves gradient flow
and feature reuse, and keeps a low parameter count at
526 thousand trainable of 7.5 million total, with a model
size of about 30 MB.

InceptionV3 was optimized for medical imaging with
a dual-stage linear transformation in its classifier, reduc-
ing dimensions by a third for better feature discrimina-
tion and adjusting classifiers to enhance gradient flow
and stability. Designed for a 299x299 pixel input, it in-
cludes 25.9 million total parameters, 1.6 million train-
able, and is 103.761 MB in size.

VGG16 was optimized for AD detection by adding
two linear layers in the final classification stage, halving
and then mapping output dimensions to enhance feature
extraction. The final model includes 142 million total
parameters, 8.4 million trainable, and is approximately
570.629 MB in size.

4.2. Custom Model of 2D CNN and RNN

CNNs excel in image data processing and multiclass
classification due to their ability to capture spatial fea-
tures, while RNNs are preferred for sequential tasks like
time-series analysis. Although 3D CNNs are suited for
3D medical images, their complexity and high param-
eter count pose training challenges. In our study, we
integrate 2D CNNs with RNNs by segmenting 3D MRI
data along the coronal plane, using 2D CNNs to extract
features from each slice, which are then sequentially an-
alyzed by an RNN. This approach is compared to a cus-
tom 2D CNN model.



4.2.1 Custom 2D CNN Architectures

The custom 12-layer CNN (Figure 3) is tailored for ex-
tracting features from 2D MRI slices for AD analysis.
It begins with convolutional layers using 3-sized ker-
nels for initial feature extraction, followed by pooling
layers that downsample feature maps to reduce spatial
dimensions while retaining critical features. ReLU acti-
vation enhances non-linearity and is followed by batch
normalization to stabilize activations and expedite train-
ing. To mitigate overfitting, a dropout layer with a 0.25
probability is applied after normalization. The data is
then flattened and directed to a fully connected layer for
multiclass classification, enabling the model to learn and
capture complex AD-related patterns.

Figure 3: Custom 2D CNN

4.2.2 Custom 2D CNN and RNN Architecture

Figure 4: Custom 2D CNN and LSTM

Building on the 2D CNN architecture, we aim to im-
prove the model’s capability to interpret temporal dy-
namics in MRI slices by incorporating Long Short-Term
Memory (LSTM) units. After the CNN layers extract

features from the MRI data, these feature maps are re-
shaped and fed into the LSTM layer. We treat individual
slices from segmented 3D MRI volumes as sequential
data instances, which the LSTM processes to create a
consolidated output. This output is then refined through
a fully connected layer before moving to the final multi-
class classification stage (Figure 4).

4.3. 3D CNN Architectures

4.3.1 BrainNet3D Architecture

Figure 5: Architecture for BrainNet3D

The baseline for the 3D-CNN models is a binary class
BrainNet3D, as shown in Figure 5. Note that this ar-
chitecture is exactly the same as the BrainNet2D archi-
tecture but extends to 3D. Thus, BrainNet3D also bene-
fits from the Convolutional Blocks because of their com-
plexity and faces drawbacks due to choices with model
architecture.

4.3.2 Modified BrainNet3D Architecture

Figure 6: Architecture of Modified Neural Network
(More Detailed Architecture in Appendix)

The BrainNet3D architecture was refined to the Modi-
fied BrainNet3D to address performance and robustness,
selecting binary over multiclass models due to class im-
balances (Figure 6). Modifications included replacing
GAP and Dense Layers with a Dropout Layer, adding
three pairs of Linear and ReLU Layers, and an extra Lin-
ear Layer to enhance complexity and nonlinearity, align-
ing with standard neural network practices for improved
efficacy.



(a) Convolutional Block (b) Modified Convolutional Block

Figure 7: Changes Between the Two Blocks

Further enhancements to the Convolutional Block
aimed at optimizing performance and reducing overfit-
ting involved removing ReLU layers, simplifying the
block, and substituting the standard MaxPool Layer with
a CustomMaxPool Layer for 3D max pooling. This al-
lowed for dynamic padding to better process varying in-
put dimensions (Figure 7).

The final key enhancement was increasing the num-
ber of Convolutional Blocks in the model from five to
seven, enhancing feature extraction and learning capac-
ity through more parameters and deeper architecture.
The optimal setup now includes seven layers with pro-
gressively increasing channel sizes: 8, 16, 32, 64, 128,
256, and 512, each using a convolution filter size of 3
for refined feature extraction at each stage.

4.4. 3D ResNet and 3D DenseNet

Binary class 3D ResNet and 3D DenseNet architec-
tures were explored due to their common use in MRI
scan diagnosis studies.

3D ResNets build on 2D models like ResNet-18, 34,
50, 101, and 152, adapted for volumetric data. These
architectures employ residual blocks with batch nor-
malization and LeakyReLU activation, enhancing gradi-
ent flow and preventing the vanishing gradient problem.
This allows for deeper networks, making them effective
for MRI analysis. The modification to LeakyReLU from
standard ReLU further improves training performance.

3D DenseNets extend from 2D models like
DenseNet-121, 169, 201, and 264, suited for processing
volumetric data. They incorporate dense connections
that enhance feature propagation, crucial for detecting
subtle medical imaging features. The structure features
densely connected blocks interspersed with transition
layers that manage dimensions through convolution and
pooling. Each block uses Batch Normalization, ReLU
activation, and 3x3 Convolution, optimizing parameter
use by concatenating features. Adjustments like dropout
in each DenseBlock layer increase robustness against
overfitting in complex 3D environments.

4.5. Loss Functions

4.5.1 2D CNN and 3D CNN

In our study, 2D CNN pre-trained models employed
a cross-entropy loss function with class weights to
counteract data class imbalances. These weights were
derived from the inverse frequency of classes in the
training data to prevent bias toward more frequent
classes. For 3D-CNN architectures and BrainNet3D,
we used a non-weighted cross-entropy loss function,
which showed significant improvement in validation
loss curves over time, validating our choice.

The loss function is defined as:

L(y, ŷ) = −
C∑
i=1

wi · yi · log(ŷi),

where wi is the class weight for class i, used only for
weighted models.

4.5.2 Custom 2D CNN and RNN

We initially used the Adam optimizer for training our
Custom 2D CNN and RNN models but observed lim-
ited improvement in validation accuracy, despite various
learning rate adjustments. This indicated a possible mis-
match between the optimizer and our model architec-
ture, as Adam may struggle in high-dimensional param-
eter spaces. Consequently, we switched to the simpler
and more robust SGD with momentum set to 0.9, which
significantly improved our models’ performance.

SGD is represented by the equations:

vt+1 = β ·vt+(1−β) ·∇L(θt), θt+1 = θt−α ·vt+1

where vt+1 is the updated momentum vector, β is
the momentum coefficient, ∇L(θt) is the gradient of
the loss function L with respect to the parameters θt at
time t, θt+1 is the updated parameter vector, and α is the
learning rate.

5. Experiments and Results
5.1. Metrics

We used several metrics to evaluate our multiclass 2D
CNN models on validation and test datasets: accuracy,
balanced accuracy, ROC with OVR Accuracy, sensitiv-
ity, and specificity. Balanced accuracy was crucial for
handling varying class sizes, while ROC scores assessed
class discrimination effectiveness. Sensitivity was key
for accurately identifying AD patients, and specificity
ensured the correct identification of healthy individuals.



We used the same metrics for binary 3D CNN mod-
els. Additionally, we assessed the accuracy of specific
AD stages by calculating the ratio of correctly identified
cases within the mild-moderate and very-mild stages,
deriving overall AD accuracy from these stage-specific
accuracies.

5.2. 2D CNN Architectures

5.2.1 Hyperparameter Tuning
Model Learning rate Batch size Beta1 Beta2 Epsilon
VGG16 0.0016 128 0.92 0.999 1e-8
DenseNet121 0.00012 64 0.90 0.992 1e-7
InceptionV3 0.0003 256 0.90 0.999 1e-8

Table 1: Summary of Best Hyperparameter Values for
Pre-Trained 2D CNN Models

We optimized the hyperparameters of pretrained 2D
CNN models using the Optuna framework, specifically
focusing on the Adam optimizer for the VGG16 model.
We tested learning rates from 1e-5 to 1e-2, finding
0.0016 optimal for fast yet stable learning. The best re-
sults came with a batch size of 128 and moment decay
rates (beta1 and beta2) fine-tuned to 0.92 and 0.999, re-
spectively. For details on other models, see Table 1.

5.2.2 Model Performance

In the binary classification setting as shown in Table 2,
the BrainNet2D model achieves high accuracy (0.809)
but low sensitivity (0.370) for the demented class, sug-
gesting many mild and very mild cases are misclassified
as healthy. This illustrates the limits of relying solely
on accuracy in cases of class imbalance. In contrast, the
VGG16 model, despite a lower accuracy (0.607), shows
the highest balanced accuracy (0.759) among the mod-
els, emphasizing its reliability.

Model Acc Balanced Acc Area Under ROC Sensitivity Specificity
BrainNet2D 0.809 0.647 0.856 0.370 0.923
DenseNet121 0.812 0.770 0.884 0.697 0.842
InceptionV3 0.808 0.789 0.887 0.579 0.868
VGG16 0.607 0.759 0.777 0.915 0.527

Table 2: Performance of baseline and 2D CNN pre-
trained models in binary classification

Model Acc Balanced Acc Area Under ROC
BrainNet2D 0.739 0.447 0.834
DenseNet121 0.6766 0.549 0.808
InceptionV3 0.534 0.605 0.805
VGG16 0.604 0.723 0.802

Table 3: Performance of Baseline and 2D CNN Pre-
Trained Models in Multiclass Classification

Figure 8: Confusion Matrix of VGG16 Model for Multi-
Class

In multi-class classification, shown in Table 3,
VGG16 achieves the highest balanced accuracy (0.723),
effectively managing inter-class variance and proving
suitable for evenly representing all classes, as further il-
lustrated by its confusion matrix (Figure 8). Meanwhile,
BrainNet2D, with moderate accuracy (0.739), has the
lowest balanced accuracy (0.447), indicating significant
performance disparities across classes.

5.2.3 Qualitative Analysis

(a) Healthy patient (b) Mild/Moderate patient

Figure 9: Comparison of MRI for Healthy and De-
mented Patient

The first image (Figure 9a) shows an MRI slice from a
healthy individual, and the second (Figure 9b) from a pa-
tient with mild/moderate dementia. The VGG16 model
correctly identified both, demonstrating its capability to
distinguish health stages. In contrast, the BrainNet2D
model misclassified both as healthy, reflecting its fre-
quent inability to detect mild/moderate conditions. This
indicates that BrainNet2D may lack the necessary com-
putational sophistication to identify subtle pathological
markers in MRI images. VGG16’s superior performance
is also likely enhanced by its extensive pre-training on



the diverse ImageNet dataset, improving its feature ex-
traction capabilities for better medical image analysis.

5.3. Custom 2D CNN and RNN

5.3.1 Hyperparamters Tuning

Figure 10: Accuracy of Custom 2D CNN and LSTM on
Validation Dataset

In our study, we tested learning rates within the range
[1e-2, 1e-4], finding that approximately 1e-3 produced
optimal results. At this rate, training loss consistently
decreased while validation accuracy steadily increased,
indicating no overfitting on the training set. Addition-
ally, we determined that a momentum parameter of 0.9
in SGD optimizes model performance by enabling faster
convergence and balancing rapid progress with stability.
This value effectively averages gradients over multiple
iterations, enhancing the optimization process (Figure
10).

5.3.2 Model Performance

Metric 2D CNN 2D CNN + LSTM
Accuracy 0.8972 0.9833
ROC OvR Accuracy 0.95543 0.9907
Balanced Accuracy 0.8775 0.9833

Table 4: Performance metrics of Custom 2D CNN vs 2D
CNN and LSTM on Test Dataset

After training for five epochs, we assessed each model’s
performance on the test dataset (Table 4). Adding an
LSTM layer to the 2D CNN significantly improved clas-
sification accuracy, suggesting that the LSTM effec-
tively captured temporal dependencies in the 2D MRI
slices, enhancing predictive accuracy. This enhance-
ment also extended to balanced accuracy, demonstrating
that the combined 2D CNN and LSTM model performs

well in terms of sensitivity and specificity, effectively
handling the imbalanced class distributions in our data.
Both models showed strong ROC accuracy, with the 2D
CNN + LSTM model outperforming the standalone 2D
CNN, indicating robust discrimination capabilities be-
tween the positive class and all other classes across var-
ious thresholds.

5.3.3 Qualitative Analysis

The combined CNN and LSTM model outperforms
standalone CNNs because LSTMs excel in capturing hi-
erarchical features. In our setup, where 2D images are
derived from 3D MRI brain scans, LSTM effectively
recognizes spatial dependencies across slices from the
same original 3D image. By complementing CNN’s
ability to extract spatial features, LSTM enhances the
model’s capability to detect dementia areas in 2D MRI
slices by integrating both spatial and temporal informa-
tion effectively.

5.4. 3D CNN Architectures

5.4.1 Hyperparamter Tuning

Figure 11: Training Loss vs Validation Loss for Base-
line, BrainNet3D, at Optimal Learning Rate

The mini-batch size was set at 4 to manage class imbal-
ance, improve generalization, and increase model stabil-
ity through more frequent weight updates. We chose the
Adam optimizer for its efficiency and robustness, which
calculates exponentially decaying averages of past gra-
dients and squared gradients. The primary hyperparam-
eter tuned was the learning rate, ranging from 1e-3 to 1e-
6. For BrainNet3D, ModifiedBrainNet3D, 3D ResNet-
101 and 3D DenseNet-121, 201, and 264, the optimal
rate was 1e-5. For ResNet-18, 34, 50, and 152 and
DenseNet-169, it was 5e-6, reflecting differences in net-
work size and architecture. At these rates, training loss
decreased while validation loss stabilized, indicating op-
timal performance (Figure 11). The number of epochs



was adjusted based on the validation loss curve to pre-
vent overfitting.

5.4.2 Model Performance
Model Acc. Balanced Acc. Sensitivity Specificity
BrainNet3D 0.883 0.700 0.400 1.000
Modified BrainNet3D 7 Blocks 0.909 0.842 0.733 0.952
Modified BrainNet3D 10 Blocks 0.883 0.776 0.600 0.952
3D ResNet-18 0.857 0.734 0.533 0.935
3D ResNet-34 0.896 0.809 0.666 0.952
3D ResNet-50 0.870 0.869 0.867 0.871
3D ResNet-101 0.896 0.860 0.919 0.800
3D ResNet-152 0.857 0.785 0.667 0.903
3D DenseNet-121 0.909 0.767 0.533 1.000
3D DenseNet-169 0.883 0.826 0.733 0.919
3D DenseNet-201 0.857 0.760 0.600 0.919
3D DenseNet-264 0.883 0.725 0.467 0.984

Table 5: General Performance Metrics of the Models

Model Very-Mild Accuracy Mild-Moderate Accuracy AD Accuracy
BrainNet3D 0.250 0.571 0.411
Modified BrainNet3D 7 Blocks 0.625 0.857 0.741
Modified BrainNet3D 10 Blocks 0.375 0.857 0.616
3D ResNet-18 0.250 0.857 0.554
3D ResNet-34 0.500 0.857 0.679
3D ResNet-50 0.750 1.000 0.875
3D ResNet-101 0.750 0.857 0.804
3D ResNet-152 0.625 0.714 0.670
3D DenseNet-121 0.500 0.857 0.679
3D DenseNet-169 0.625 0.857 0.741
3D DenseNet-201 0.375 0.857 0.616
3D DenseNet-264 0.500 0.857 0.679

Table 6: Specific Stage Accuracies of the Models

The baseline model, BrainNet3D, achieved an 88.30%
accuracy but only a 70% balanced accuracy, indicating
low sensitivity and high specificity, which hindered its
ability to diagnose early stages of AD accurately (Ta-
ble 5). Despite a slight drop in accuracy, models like
some ResNets and DenseNets showed improvements in
sensitivity, balanced accuracy, and stage-specific accura-
cies due to their ability to detect subtle changes, particu-
larly in critical AD areas like the hippocampus (Table 6).
However, these gains in sensitivity typically resulted in
a significant reduction in specificity, a common tradeoff
for higher diagnostic sensitivity.

For the Modified BrainNet3D model, reducing the
number of blocks from 10 to 7 improved performance,
likely due to fewer layers minimizing issues like gra-
dient problems and diminishing returns. Similarly,
ResNet-50, ResNet-101, and DenseNet-169 exhibited
better performance in AD detection compared to other
ResNet and DenseNet models, balancing complexity ef-
fectively (Table 6 and Table 5). Among the models,
optimal ResNet configurations outperformed the best
DenseNet and Modified BrainNet3D 7-block models in
stage accuracies, balanced accuracies, and sensitivities,
with similar overall accuracies. ResNet’s skip connec-
tions, which allow bypassing less effective layers, con-

tributed to more efficient training and better generaliza-
tion compared to DenseNet.

5.4.3 Qualitative Analysis

Figure 12: Examples of Healthy Samples, Very-Mild
AD, and Mile-Moderate AD Samples

The models improved AD sample identification over the
baseline, particularly in differentiating disease stages,
yet they showed lower accuracy for very-mild samples
compared to mild-moderate samples (Table 6). This
lower performance for very-mild AD can be linked to
their subtle visual differences from healthy samples,
which often only show minor deformations. In contrast,
mild-moderate AD samples are easier to detect due to
significant hippocampal loss as shown by the indicated
regions in Figure 12. Additionally, the models’ reduced
specificity and accuracy in recognizing healthy samples
suggests that the visual similarities between healthy and
very-mild AD samples contribute to misclassification.

The models accurately identified about 85.7% of
mild-moderate samples, which display more severe de-
formations than very-mild AD. However, their resem-
blance to healthy samples in features and shape made
differentiation challenging, impacting diagnosis accu-
racy.

6. Conclusion and Future Work
The study found that pretrained 2D CNNs like the

BrainNet2D model tended to overfit to the ’Healthy’ la-
bel, whereas InceptionV3 and VGG16, both pretrained



on ImageNet, showed better performance in classifying
multiple stages of AD. Future efforts will focus on fine-
tuning more layers of VGG16 and InceptionV3, utiliz-
ing the OASIS-2 dataset to better represent underrepre-
sented stages.

Additionally, a hybrid model combining CNN and
LSTM outperformed standalone CNNs by utilizing
CNNs for spatial feature extraction and LSTMs for cap-
turing temporal dependencies, improving the detection
of complex dementia patterns in 2D MRI slices. Fu-
ture work will investigate lighter versions of both CNN
and LSTM to enhance model efficiency and reduce com-
plexity. In 3D modeling, ResNet models with skip con-
nections, specifically ResNet-50 and ResNet-101, sur-
passed other models including the Modified BrainNet3D
and DenseNet in detecting AD. Future research should
focus on optimizing these models for improved speci-
ficity and detection of very-mild AD stages.

7. Appendices

Figure 13: Architecture for BrainNet2D

Figure 14: Comparison of Total Model Size for 2D CNN
models

Figure 15: Comparison of Total Model Parameter size
for 2D CNN models



Figure 16: Example of Different Learning Rates Effect-
ing the Shape of the Loss Curve

Figure 17: Validation Loss Curves of BrainNet3D and
Modified BrainNet3D Models

Figure 18: Validation Loss Curves of ResNet Models



Figure 19: Validation Loss Curves of DenseNet Models

Figure 20: Confusion Matrices of BrainNet3D and
Modified BrainNet3D Models

Figure 21: Confusion Matrices of ResNet Models

Figure 22: Confusion Matrices of 3D DenseNet Models



Figure 23: Confusion Matrix of BrainNet2D Model for
Multi-Class
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