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Abstract

Diffusion models have risen to the top in recent years
for image generation tasks with their ability to generate
diverse, high fidelity samples. Traditional diffusion pro-
cesses work over continuous spaces, which makes sense
for modalities like image but fail to generalize to discrete
modalities like language. However, there has been a grow-
ing effort to extend diffusion to discrete spaces, yielding
results comparable to autoregressive models in language
(at GPT-2 scale), for example; in this work, we investi-
gate the efficacy of these discrete approaches on generat-
ing images via tokenization. We show that using score en-
tropy loss — the discrete analogue of score matching —
and a transformer-based architecture with 186M param-
eters, discrete diffusion is capable of generating samples
on ImageNet 256 × 256 that are competitive with con-
tinuous diffusion models and autoregressive models at the
same scale (although far from state-of-the-art results). Our
work demonstrates that “tokenize and diffuse” is a viable
paradigm for image generation and opens the door for fu-
ture work on scaling these discrete diffusion models.

1. Introduction

The field of generative modeling, specifically image gen-
eration, has seen rapid advancement over the past several
years, with many models and architectures vying for dom-
inance, including GANs, variational autoencoders, flow-
based models, and autoregressive models. Recently, the
most promising models to emerge have been diffusion mod-
els, which can generate high quality, diverse samples — un-
like GANs, for example, which suffer from unstable train-
ing and mode collapse — while avoiding the slow inference
speeds of autoregressive models [1, 2, 6, 7].

In image generation, we would like to train a model that
generates images from a data distribution q(x0). Here we
consider class-conditioned generation, where the input is a
noised image (which can mean Gaussian/uniform noise or
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a blank image) along with a class label, and the output is an
image drawn from the data distribution.

Diffusion models rely on a forward Markov process,
where noise is gradually added to the data distribution ac-
cording to a fixed schedule to obtain a sequence of latent
variables q(x1:T |x0), and a reverse process pθ(x0:T ), in
which a parameterized model (usually a neural network)
learns to start from pure noise (plus optionally a class label)
and arrive at the data distribution. In the continuous setting,
the noise is usually Gaussian, and the training objective is
the ELBO on the negative log likelihood [4] (since diffusion
model don’t allow for easy access to actual log likelihoods):

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]

= Eq

log pθ(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)


which can be further rewritten in terms of KL divergences.
Notably, in the continuous setting, the objective can be re-
cast as score matching, i.e. learning the gradient of the log-
likelihood at time t: ∇x log qt [1, 6].

Despite the success of continuous diffusion models,
however, many distributions of interest (e.g. language) are
inherently discrete, which requires a different set of tools
than ones developed for continuous diffusion. While these
domains have historically been dominated by autoregressive
models [1], there has been some promising recent work in
adapting diffusion models to these discrete spaces. These
models come with several benefits, like being able to trade
off compute and sample quality at inference time by chang-
ing the number of sampling steps.

In this work, we investigate the efficacy of this discrete
diffusion paradigm on the task of generating images by
treating images as a sequence of discrete tokens, an ap-
proach that is becoming increasingly favored [11] because it
unlocks the dominance of autoregressive language models.

VQ-VAEs offer an amenable approach to tokenizing im-
ages: an encoder learns to encode images into latent space;
latent embeddings go through a nearest-neighbor lookup to
one of K discrete embeddings; finally, a decoder recon-
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Figure 1. VQGAN architecture. In our approach, we replace the autoregressive transformer with a discrete diffusion model.

structs the image based on the tokens [2, 10]. This reduces
the problem to predicting the tokens in latent space, which
is now a discrete distribution. Here one could use an autore-
gressive model, which leads to ViTs (Vision Transformers
— see Figure 1, taken from VQGAN [10]); we instead pro-
pose using a discrete diffusion model.

2. Related work

The idea of tokenizing images and training a model to
predict tokens is not new, stretching back to the original
VQ-VAE from 2017 [9]. However, while many attempts
have been made to create suitable models to generate image
tokens, few can compete with continuous diffusion models,
which have reigned supreme in image generation for the
past few years.

An early influential work is MaskGIT, introduced by
Chang et al. in 2022 [2]. They observe that existing au-
toregressive approaches still naively view images as flat-
tened sequences of tokens, generating in a left-to-right,
top-to-bottom manner. In their new proposed paradigm, a
transformer is instead trained to predict masked tokens us-
ing bidirectional attention, much like the masked language
modeling objective in BERT. During inference time, they
use a novel parallel decoding method where the model starts
with a blank (masked) image and samples all tokens simul-
taneously, keeping the most confident ones and masking the
rest, until no more masked tokens remain. The training pro-
cedure — where the model learns to “denoise” masked to-
kens — and sampling procedures — where the image starts
off fully masked/noised and is gradually coaxed into a re-
alistic image — are very similar in nature to diffusion, and
both MaskGIT and our proposed model share the same to-
kenization step (essentially using a pretrained VQ-VAE),

making it a good baseline.
Recent work by Yu et al. [11] has showed that even under

the autoregressive paradigm, the power of LLMs is enough
to beat diffusion with a good enough tokenizer. Notably,
using some newer quantization techniques, they train a to-
kenizer for both videos and images (which outperforms the
best existing tokenizers in compression) using a vocabulary
size of 218 ≈ 262, 000, a huge increase over MaskGIT
(vocab size 1024). Their model, MAGVIT-v2, achieves
SoTA results in several standard video and image bench-
marks (ImageNet and Kinetics).

Turning to discrete diffusion, Austin et al. [1] were
among the first to demonstrate the potential of discrete dif-
fusion processes. They generalize earlier results in discrete
diffusion by introducing structured ways to corrupt the data
in the forward process, which essentially correspond to dif-
ferent Markov transition matrices (Gaussian, uniform, ab-
sorbing). Additionally, they introduce better noise sched-
ules and a new hybrid loss that combines ELBO with cross-
entropy that helps stabilize training. Empirically, however,
their methods still lag considerably behind transformers on
text generation (even on the relatively small text8 dataset)
and continuous diffusion models on image generation on
CIFAR-10.

More recently, Lou et al. [6] bridges the gap between
discrete diffusion models and autoregressive models by in-
troducing a novel “score entropy” loss (see Methods sec-
tion for more details) that allows the score matching frame-
work from continuous diffusion models to be extended to
the discrete setting. Specifically, instead of parameterizing
gradients, they parameterize the ratios qt(y)

qt(x)
(which can be

thought of as the discrete analogue of the gradient). After
proving some theoretical results, they demonstrate that this
new model (called SEDD — Score Entropy Discrete Dif-
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fusion) is competitive with autoregressive language models
(GPT-2) in terms of perplexity, even beating GPT-2 on sev-
eral datasets.

3. Methods
Building on [6], the goal for our model will be to learn

the discrete analogue of the score (gradient of the log like-
lihood), which is the ratio of likelihoods between all pairs

sθ(x, t) ≈
[
pt(y)

pt(x)

]
y ̸=x

.

(Intuitively, in the continuous setting, having access to the
score allows us to simulate the reverse process via a ran-
dom walk). The score entropy loss of a distribution p with
parameterized concrete score sθ(x) is (naively)

LSE = Ex∼p

∑
y ̸=x

(
sθ(x)−

p(y)

p(x)
log sθ(x)

) .

In practice, we need to modify the loss slightly to make
it tractable. Specifically, we need to add a constant to
each term to make it nonnegative, and replace p(x) by
p(x|x0)p(x0) (because pt is intractable for arbitrary t),
which is reasonable in a diffusion setting where we are grad-
ually adding noise. We also consider ratios between pairs
which differ at only one token, rather than all pairs y ̸= x,
in order to avoid exponential blowup in sequence length.

Finally, skipping over some other minor technical details
for brevity, we can integrate over t to get an ELBO that we
can then optimize over during training.

The upshot is that we have an objective function tailored
for discrete diffusion that is computationally tractable as
well as scalable. Furthermore, it can be proven that match-
ing the score exactly recovers the true data distribution.

For the transition matrix Qt in the forward Markov pro-
cess, we test both a uniform matrix (where tokens can
“jump” to any other token with equal probability) and an
absorbing matrix (where tokens either stay or jump to an
absorbing state with some probability), both with a logsin
noise schedule. Different transition matrices, along with
noise schedules (i.e. dependence on t), could be one avenue
of further exploration.

3.1. Reverse process

Once we have the ratios sθ(x, t), we can solve the re-
verse SDE

dpT−t

dt
= QT−tpT−T

where QT−t is some matrix depending on sθ and Qt. (We
omit some technical details regarding solving this SDE for
brevity; see [6] for a complete explanation.)

There are also a number of tricks we implement to boost
sample quality: Classifier-free guidance [5] learns both con-
ditional scores p(y|c)

p(x|c) as well as unconditional scores p(y)
p(x)

by randomly dropping the class label with some probability
during training, and then combines them at sampling time
using

sθ(x, t) =
p(y|c)
p(x|c)

1+w
p(y)

p(x)

−w

.

w is a hyperparameter that controls the tradeoff between
fidelity and diversity.

Temperature sampling is a technique that has been
widely adopted by autoregressive models which can also
be adapted to discrete diffusion models which essentially
scales the distribution to push the model to sample from
higher-probability regions.

4. Experimental setup
Code for SEDD [6], which applies discrete diffusion to

language modeling, was provided by Aaron Lou as a start-
ing point for much of the experiments.

We test three different variants of SEDD:

• Absorb: tokens are randomly set to a special mask to-
ken (in similar fashion to MaskGIT).

• Uniform: tokens randomly jump to other tokens with
uniform probability.

• Absorb-2D: same as Absorb with 2D rotary position
embeddings (RoPE); see [3].

For baseline, we use MaskGIT [2], which essentially
uses a masked language model (rather than autoregressive)
to predict tokens, as it offers the most high-level similar-
ity to our approach on a similar scale while using a funda-
mentally different mechanism. We also include results from
VQGAN and LDM [8] (a continuous diffusion model) for
posterity. We compare on the Fréchet Inception Distance
(FID) metric (similar to perplexity for natural language gen-
eration).

4.1. Dataset

We use the ImageNet dataset, which consists of 1.3M
training examples, 50K validation examples, and 100K test
examples. Images are randomly cropped to 256 × 256 and
randomly flipped horizontally.

4.2. Tokenizer

For the tokenizer, we use a pretrained release of
VQGAN [10], which holds SoTA results among open-
source VQ-VAEs (and is also the same tokenizer used by
MaskGIT [2]).
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4.3. Model architecture

We base our model on the diffusion transformer [7],
which is more or less a standard encoder-only transformer
that also takes in time as input and predicts the score
sθ(x, t). Specifically, our model consists of

• An embedding layer which processes the class label as
well as time, and additionally computes rotary position
embeddings,

• 24 encoder layers with layer norm and dropout, and

• A final fully-connected layer.

We use the Adam optimizer, with model and optimizer hy-
perparameters chosen based on similar work in existing lit-
erature.

For each proposed variant, we train a 186M parameter
model for ∼1.3M iterations.

5. Experiments
Due to time and compute constraints, we present results

for a checkpoint of the model trained for ∼400K itera-
tions using an absorbing transition matrix and log sin noise
schedule (see [2] for comparison of noise schedules). Fur-
ther work could also involve measuring Inception Score (IS)
and precision/recall. See Figure 2 for a random snapshot of
Absorb generated samples at ∼400K iterations.

Model FID (↓) # params
VQGAN [10] 15.8 1.4B
MaskGIT [2] 6.2 227M
LDM-8 [8] 15.5 395M
Absorb 16.2 186M
Uniform 20.7 186M
Absorb-2D 14.4 186M

Table 1. Evaluation of image generation samples using Imagenet
256× 256 at ∼200K iterations.

6. Conclusion and future work
While our FID scores are worse than baselines MaskGIT

and VQGAN, we expect this is due to unfinished training
(we expect quality to increase ∼1.3M iterations), as well
as the relatively small parameter count (which was chosen
due to compute constraints). However, our results demon-
strate that discrete diffusion is a promising approach, and
may very well be competitive when scaled up appropriately.
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Figure 2. ImageNet 256× 256 samples generated by Absorb.
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