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Abstract

A large number of prominent large-language-models
have, over the past few years, adopted the Mixture of Ex-
perts architecture to great success. These models, which
seek to increase the parameter to compute ratio use multi-
ple sparse MLPs, called experts, instead of a single dense
MLP. A classic conception, given the name ”experts” is that
experts specialize in a subject much the way a human expert
would. We seek to mechanistically explore Mixture of Ex-
pert models, adopting techniques from the mechanistic in-
terpretability literature in an attempt to understand what ex-
perts actually learn, and to what degree they specialize. We
present a novel feature based explanation of MoEs perfor-
mance and conduct 3 experiments to address various sub-
questions on Mixture of Expert specialization. We find that
experts do specialize, they often specialize along lines intu-
itive to humans, and that the representational complexity of
an input affects the degree to which experts specialize.

1. Introduction
Mixture of Experts (MoE) is an architecture used in

some of the most prominent large-language models today.
GPT-4 is rumored to use a Mixture of Experts (MoE) model
featuring 8 220B parameter experts, Mistral 8x7B uses a
MoE model with 8 experts, and DataBricks recently an-
nounced a 16-expert MoE model [8, 16]. MoE models re-
place a standard dense feed-forward layer, where inputs are
passed through the same MLP with multiple MLPs, called
experts [6]. Each input is routed to K of these experts,
where K denotes the number of experts each input passes
through [6]. If the inputs are tokens as in the NLP case,
this looks like feeding each token through K of N different
MLPs, instead of all through the same MLP. In our case,
we work with images and so this looks like feeding each
image through K of N different MLPs. In order to deter-
mine which of the N experts each token is routed through,
the MoE features a router which is a learned linear layer
that projects each image to an N-dimensional vector (again,
N is the number of experts) [18]. Then we take the soft-

max of this vector and select the K highest valued experts
to route each image to. MoEs are a powerful architecture
that allow us to increase the parameter to compute ratio in
our model, enabling us to build more expressive, powerful
models without increasing compute [7].

One question that remains unanswered, however, is what
these experts actually learn. Is each expert in an MoE layer
a replica with the same set of parameters such that which
expert each input is routed to essentially makes no differ-
ence—that is MoEs would be essentially useless. Or, do
experts each contain a unique set of parameters (which com-
pose a unique set of features) and therefore each expert
maps input to output differently. If so, we say that experts
specialize and then seek to understand what these unique
sets of features that each expert learns look like, and what
inputs are they best suited to—in other words what do the
experts specialize in? Is it the case that experts specialize in
high-level subjects like “animals” or “vehicles” or is it the
case that while experts do learn unique sets of features, they
don’t specialize in these high-level topics that map onto how
a human might group the inputs. We finally seek to explore
how the representational complexity of an input sequence to
an MoE layer affects the ability of an expert to specialize.

By exploring what experts in an MoE layer do, address-
ing the above questions, and building up a mechanistic un-
derstanding of MoE, we will be able to develop better MoE-
based architectures that capitalize on this new understand-
ing; optimizing the data fed to the model, the number of
experts in an MoE layer, the position of MoE layers within
the model, and so on, to maximize the expressiveness of
these models. Understanding MoE is also a crucial step to
develop alignment strategies for the various current and fu-
ture LLMs using MoE.

In what follows we train a series of toy MoE models on
image data and suggest that experts do specialize, although
per-expert specialization decreases as we increase the num-
ber of experts in an MoE layer. Often, this specialization is
along high-level lines. We also find that MoE’s positioned
earlier in the model’s architecture depth-wise are less able
to specialize which we argue arises from the fact that the
input earlier in the model is less representationally complex
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which negatively affects the routers ability to discern what
expert to send an input to and therefore expert’s need to be
more similar.

2. Related Work
Our work explores the Mixture of Experts architecture,

introduced by Shazeer et al. [15]. In this work, the au-
thors present MoE as a form of conditional computation
that allows us to increase the model’s capacity without pro-
portionally increasing required compute [15]. Specifically,
rather than only use a single dense MLP, we use multiple of
these MLPs, each called an ”expert”, and maintain equiva-
lent compute cost by only activating a single MLP for any
given token (of course, this is a simplified view and we of-
ten activate more than 1 MLP). We adopt this view of MoE,
increasing model size without increasing compute, as op-
posed to the equally viable alternative presented by Gale et
al. [6]; here, MoE is seen as taking a large dense model, and
sparsifying the model, only passing input through a certain
subset of the MLPs, reducing compute while maintaining
model capacity [6].

Lepikhin et al. and Fedus et al., introduce the idea of a
load-balancing loss. used to a roughly equal degree [10, 5].
Specifically, when training MoE models, the percentage of
inputs routed to each expert is almost always unequal due
to the random initialization of the model; in practice, a se-
lect few experts receive virtually all inputs [10]. This is
obviously sub-optimal as the other experts are essentially
wasted parameters. In order to overcome this training chal-
lenge, Lepikhin et al. introduce the idea of using an aux-
iliary loss which combines with the cross-entropy loss to
produce our final loss [10]. We adopt the specific auxiliary
loss presented by Fedus et al., where the auxiliary loss is
a dot-product between the number of tokens routed to each
expert and the mean-probability a given token is routed to
each expert [5]. The loss is minimzed when every value in
both vectors is 1

N where N represents the number of experts
in the MoE layer. They scale the auxiliary loss such that it
remains constant regardless of number of experts and then
add it to the cross-entropy loss with a weighting term such
that it doesn’t overly influence training [5].

In addition to existing research on MoEs, our exploration
builds on recent work in mechanistic interpretability which
seeks to understand how models map input to output by ana-
lyzing low-level elements of the model (individual neurons,
combinations of neurons etc.). Specifically, we adopt the
concept of features as the fundamental unit which combine
to map input to output, introduced by Olah et al. [1]. Fea-
tures are the base building-block of Neural Networks, are
combosed by the model’s parameters and are represented
by the model’s neurons. When a neuron activates this is
Features combine with one another to form more complex
circuits that are able to interact with inputs, and detect key

attributes that ultimately allow the model to classify the in-
put et al. [12, 14]. We view MoEs as powerful because, by
increasing the number of experts and therefore the number
of neurons the model can represent, we are also increasing
the total number of features the model can represent.

A key aspect of mechanistic interpretability research is
training models that are quick to train, easy to explore [3].
Large models are incredibly intensive to train from scratch,
making minor ablations, repeated trials, and multiple ex-
periments not viable [13]. Instead, we follow the lead of
Elhage et al. who use small toy models to explore superpo-
sition within neurons in an interpretable manner [3]. Our
experiments similarly rely on using small toy models, and
small datasets, to explore MoE. This allows us to examine
individual layers in great-depth to understand whether and
how experts are specializing on a given input, easily ablate
or modify the architecture to test how this impacts special-
ization, and run hundreds of trials.

Much of the early mechanistic-intepretability work was
focused on understanding convolutional layers in CNN im-
age models, and attention layers in transformers [11, 4].
MLP layers were seen as particualrly difficult to work with
given the presence of polysemantic neurons and the super-
position theory. Recent work, however, has begun exploring
MLP layers. Templeton et al., for example, explore Claude-
3 Sonnet and extract interpretable features from the neurons
within the model’s MLPs [17]. We are unaware, however,
of any formal explorations of the MLPs (experts) in MoE
models, however, and therefore believe our exploration of
MLPs in MoE layers, experts, and their specialization (in-
terpreted through the feature lens), is a novel one.

3. Methods
We adopt the view that MoEs allow us to increase the

parameters in our models, and therefore the number of neu-
rons in our model, without increasing the theoretical com-
pute, and build on this view below [15]. Specifically, when
we replace a standard feed-forward layer with an MoE
layer, instead of a single MLP with x parameters we now
have N MLPs with x parameters. Crucially, every input
still only interacts with x parameters as opposed to all Nx
parameters the model contains (at least when K = 1), main-
taining consistent compute cost. So why does increasing pa-
rameters (sparsely) without increasing compute and without
increasing the parameters each input interacts with, improve
a model’s representational power? We frame the power
of MoEs as an improvement through the lens of features.
Specifically, to map input to output, a neural net maps the
inputs through a series of features which activate to vary-
ing degrees. The degree to which a feature activates shapes
the output for the next layer which again triggers a series of
features and so on until finally reaching the final output.
In simple terms, consider an image of a cat—this might
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look like first triggering the ”small feature”, followed by
the ”eyes feature”, followed by the ”fur feature”, and so on,
each of which modifies the output such that collectively they
modify the output in a way that the final linear layer now
projects it to the ”cat” output. Obviously, the more features
a neural network can represent the more successfully it can
distinguish between inputs and the more successfully it can
map each input to its correct output. A neural net only able
to represent the features “fur” and “small” is going to strug-
gle to correctly classify whether an image is a car or a truck.
Through this lens, we see why MoE is such a powerful ar-
chitecture. Say, a single MLP can represent y features. If
we add an additional MLP, we should be able to represent
y more features and now have 2y features. Crucially, to
maintain equivalent compute we are only able to send each
input through one of the two experts. So, each input still
only interacts with y features, but because the model con-
tains two experts with two different sets of y features, we
can, for each input, select which of the two experts’s set of
y features is best suited to the input. Naturally, then when
we add a second expert, shifting our architecture from dense
to MoE, so long as a single token is better suited to the fea-
tures represented by the second expert, and so long as the
router can send this token to the second expert, we should
be able to achieve theoretically better performance. We in-
troduce this fairly novel understanding of MoE and rely on
it as we conduct our experiments and analysis.

Our goal is to develop a better understanding of the ex-
perts in a MoE model and what features they learn, particu-
larly in relation to one another. This then, looks like a broad
exploration of the unique features experts learn (and if they
learn unique features) which we call specialization. We fur-
ther divide this into 3 sub-questions and develop methods to
answer each question which we detail here.

First, do experts specialize at all? Here, we’re interested
in whether each expert is unique and whether experts learn
truly distinct sets of features. Presumably, if they do, these
distinct sets of features are designed such that each maps
some set of inputs to their correct output better than other
experts but the set of inputs is not necessarily a high-level
subject like ”cats”. To explore this we train a series of toy
models and ablate the learned router with a random router.
The idea behind this is that if experts specialize at all—that
is have different features—for many inputs in the model
there should be some optimal set of features and therefore
an optimal expert that can best map the image to it’s cor-
rect output (or to an output representation that the final lin-
ear layer can map to the correct output). A learned router
will attempt to route each input to the optimal expert and
while it won’t be perfect it should route experts to their op-
timal expert more frequently than random chance. And so,
if we replace the learned router with a random router that
does simply route tokens to experts randomly, and experts

do specialize—have unique features—we should expect to
see a drop in accuracy. Moreover, the degree to which ac-
curacy drops when we ablate the router in some model is
a very strong indicator of how much experts in that model
specialize.

Second, do experts specialize in highly-interpretable
subjects (e.g. one expert specializes in vehicles while an-
other specializes in animals)? A common view of MoE is
that each expert would specialize in some broad category of
input and would therefore learn the optimal set of features
to map this input to output. This seems like a rational ap-
proach for humans to take but it’s not clear that a model, if
it does specialize, does so in this way. For a dataset con-
sisting of images of animals and vehicles (i.e. CIFAR-10)
it seems plausible that experts break down along these lines
but also perfectly plausible that one expert specializes in im-
ages with some combination of colors in the top-left. This
is an important question to address because if experts don’t
specialize in high-level subjects, interpreting MoE models
and therefore aligning them and improving them through
the lens of interpretability results becomes much more dif-
ficult. It’s much easier to analyze MoE models and discern
why they output the values they do, if we can predict, purely
off of the input, the precise set of experts the input will flow
through. To address this question we train a series of toy
models, and explore the breakdown of expert routing given
an image’s output class.

Finally, how does the input’s representational complex-
ity affect the degree to which experts specialize? In order
for experts to specialize and learn different sets of features,
which are best suited to some set of inputs, the router needs
to be able to discern which inputs are in this set and there-
fore route these inputs to that expert. When experts special-
ize in high-level subjects this looks basically like a classi-
fication problem; if one expert specializes in animals, the
router has to determine whether a given image is an animal
or not in order to determine whether it should route the im-
age to that expert. The resemblance of routing and classifi-
cation prompts us to explore how the representational com-
plexity of the input to an MoE layer impacts expert spe-
cialization. Specifically, the ability of a model to classify
the input prior to any of the convolutional layers, or after it
passes through the first convolutional layer is significantly
lower than it’s ability to classify the input after passing
through a series of convolutional layers. Early on, depth-
wise, in the model the representation isn’t sufficiently built
up such that the model could classify it well—each subse-
quent layer, instead, builds up this representation until clas-
sification is more feasible. Since we view routing as similar
to classification we expect that routing inputs to a specific
expert is more challenging earlier on in the model. If rout-
ing is difficult and inputs often get routed to the “wrong”
expert it seems reasonable that experts have to learn very
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Figure 1. CIFAR-10 Dataset

similar features such that incorrect routing is less costly as
all experts broadly share the same features and can roughly
handle all inputs. It seems likely, then, that MoE layers in
earlier layers in the model have experts with largely over-
lapping features to account for the fact that routing inputs
to the “correct”, optimal expert is more difficult as the input
sequence isn’t representationally complex (equivalent term
here is representationally rich) enough. We evaluate this
by shifting the location of the MoE layer depth-wise in the
architecture and comparing the level of specialization.

Some of our training loop and evaluation code is based
on [2]

4. Dataset and Features
We primarily use the CIFAR-10 dataset for all our exper-

iments [9]. CIFAR-10 contains 50,000 training examples
and 10,000 test examples. We divide the 50,000 training
examples into 49,000 training images and 1,000 validation
images. Each image is 32x32x3 and belongs to one of 10
classes: plane, car, bird, cat, deer, dog, frog, horse, ship,
and truck. We normalize our data giving the dataset a mean
of 0 and a standard deviation of 1.

5. Results
Our base model architecture which forms the foundation

of all our experiments uses 4 convolutional layers each with
a stride of 1 and kernel size of 3. Each convolution is fol-
lowed by a ReLU activation function. The first convolution
has 128 filters and uses a 2x2 Max Pool, the second has 256
filters and no pooling layer, the third also has 256 filters
with a 2x2 Max Pool, and the fourth has 512 filters with a
2x2 Max Pool. We follow these 4 convolutional layers with
a 4x4 Max Pool. We have a final linear layer that projects
our 512 dimensional sequence post-convolution and pool-
ing to our output logits. Unless otherwise specified (such
as in experiments testing the impact of MoE layer location
depth-wise on specialization), we insert our MoE layer af-

ter the four convolutional layers and 4x4 pooling layer and
before the final linear layer.

We train our model with the AdamW optimizer and the
OneCycleLR learning rate scheduler. We set our max learn-
ing rate to 1e-2 and our weight decay to 1e-4. Across all ex-
periments and all trials we train for 10 epochs and achieve
a final test loss (at least for the base model) between 86%
and 87.5%. Crucially, we are not optimizing for accuracy,
we just want a relatively high-performing model.

We use the auxiliary loss described in Fedus et al., 2022
with a weight of 1e-5, meaning our total loss is the cross-
entropy loss + 1e-5 aux loss. Without an auxiliary loss,
many experts end up deeply underutilized, with the vast ma-
jority of images clustering in only some of the experts. We
compare different weightings for the auxiliary loss, testing
values between 1e-2, and 1e-7. We find 1e-5 optimal in
terms of not hurting loss while also ensuring equal expert
utilization. This differs from the standard weighting of 1e-
2. We suspect this is because our CE loss is much lower than
with a standard model on normal data; training on CIFAR-
10, which is such a small dataset, results in our accuracy
being very high. To account for this we need our auxiliary
loss to also be lower than normal so that we maintain the
same ratio between it and the CE loss.

5.1. Experiment 1

We first evaluate whether experts learn unique features
at all; that is, do they specialize? We train a base model,
which consists of 4 convolutional layers followed by our
MoE layer and a final linear layer that outputs our class log-
its. In order to evaluate expert specialization we replace the
learned router with a random router, which, for each token
randomly selects one of the N experts to send the token
through.

We train three different versions of this model, the first
with 2 experts, the second with 3 experts and the third with
5 experts. For all three versions we use K=1: each image is
sent to only one expert. For each version, we train the model
10 times (each time starting from scratch) and evaluate the
clustering of classes with regard to the experts.

We find that across all 3 versions, accuracy drops when
we replace the learned router with our random router, but
not significantly. Specifically, averaged over 10 trials, ac-
curacy in the 2-expert model drops by 3.46% on average,
accuracy in the 3-expert model drops by 1.5% on average,
and accuracy in the 5-expert model drops by 0.0066 on av-
erage. Still, in all 3 versions, across all 10 trials accuracy
remains above 81%. Note, that simply replacing the experts
with randomly initialized experts drops accuracy to around
10%: random chance.

The accuracy drop when we route tokens to random ex-
perts as opposed to their ideal expert (as determined by the
router) suggests that experts do specialize—each learning

4324



Experiment 2 2-Experts 3-Experts 5-Experts
Learned 86.77% 86.78% 86.03%
Random 83.77% 85.43% 85.57%
% Decrease 3.46% 1.56% 0.535%

Table 1. Test-set accuracy with learned router versus random rout-
ing for 2, 3, and 5-expert MoEs

a unique set of features that are best suited to some set of
inputs; when tokens are routed to another expert they inter-
act with a less optimal set of features and the model mis-
classifies the input more frequently. However, the fact that
the accuracy drop is relatively minor gives us strong evi-
dence that experts, despite specializing, still share the vast
majority of their features. In other words, the features in
an expert tailored specifically to the set of inputs the ex-
pert specializes in is a small fraction of their overall feature
set; most features are general shared features required for
mapping any input to output not just the specialized inputs.
We suggest the strong overlap in features across experts is
the result of two factors. First, in general, mapping animal
images to their correct category and mapping vehicle im-
ages to the category will generally require many of the same
tools: curve detectors, color detectors etc [?, 12]. While
many of these features might be present in the prior con-
volutional layers, the MLP of course also has features and
these features are still tasked with mapping input to output.
And because the MLPs are another component which helps
map images to classes and because regardless of input much
of this task is the same, whatever features the MLPs do have
then, are likely going to be similar across experts. Naturally,
then, even experts designed only to handle the inputs they
specialize in would still share lots of features. Second, the
router isn’t perfect. Routing (as we discuss in experiment 3)
is difficult and the router often sends images to a subopti-
mal expert. In order to ensure that this frequent occurrence
doesn’t hamper loss significantly, experts need significant
overlap so they can still perform reasonably well on inputs
they don’t “specialize” in.

The fact that the accuracy drop is largest for the 2-expert
model, followed by the 3-expert model, with the lowest ac-
curacy drop for the 5-expert model suggests that the fewer
experts we have the more experts specialize (a finding we
also discuss with reference to high-level specialization). We
believe this is because it’s more difficult to discern which
of 5 categories an input falls into as opposed to which of
2 categories the input falls into; this makes routing more
difficult and error-prone as the number of experts increases
and forces experts to specialize less and have more over-
lapping features to handle poorly-routed inputs. Note that
this doesn’t mean more experts are worse. While more fea-
tures are shared across experts, we also have more features

in total and so it’s reasonable that while an expert in a 5-
expert MoE adds fewer marginal features to the model than
an expert in a 2-expert MoE, collectively the 5 experts still
represent more total features than the 2 experts.

The implications of this are important, however. If a
dense feedforward layer’s MLP has N parameters, and
x features, a second MLP (i.e. shifting the layer to a
sparse-gated-MoE) increases the parameter count to 2N ,
but it doesn’t increase the feature count—the representa-
tional power of the model—to 2x Increasing parameter
count sparsely (as in MoE) does generally increase compute
time as while actual computation remains the same, mem-
ory costs are higher. So, given that the marginal increase in
additional features decreases as we add more experts, and
memory costs still increase linearly, we suggest that MoE
models with tons of experts are likely sub-optimal. Where
this line is, represents an important next step in MoE re-
search.

5.2. Experiment 2

In experiment 1, we saw that experts specialize, at least
to some degree. We now explore whether MoE layers spe-
cialize along high-level interpretable subject lines. Specif-
ically, we analyze how each of the 10 classes in CIFAR-
10 are sent through the MoE layers. Here, we’re looking
not only for interpretable class-based clustering for a sin-
gle trial (i.e. vehicles to one expert, animals to the other)
but crucially whether clustering patterns are consistent and
universal across trials. Non-consistency would suggest ex-
perts don’t really specialize in high-level subjects as the
grouping is random; there’s no ”thought” put into how in-
puts are grouped. Sometimes an expert specializes in ”cars”
and ”trucks” while other times it specializes in ”cars” and
”horses”. This would make for a much less convincing case
that experts learn high-level interpretable subjects (like ve-
hicles vs animals). Instead, it would only suggest that the
router does send things to experts based on their class but
that the router does not group classes in an intetional way
and doesn’t exploit intuitive human groupings of classes..

We again conduct 3 versions of the experiment, one with
2 experts, one with 3 experts, and one with 5 experts (K=1),
in order to see how general specialization varies by number
of experts. We again train each version for 10 trials.

We first analyze the results of the 2-expert model. Across
all 10 trials we notice striking clustering patterns. Specifi-
cally, in each trial, over 88.5% of plane, ship, car, and truck
images end up in one expert while the vast majority of the
remaining classes, the animal classes (cat, dog, deer, horse,
frog, and bird), end up in the other expert. This breaks down
into by far the most obvious human-interpretable bifurca-
tion of the classes: vehicles versus. animals. The fact that
this expert split is consistent across all our trials provides
strong evidence that, at least when possible, experts do spe-
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Figure 2. Coefficient matrix of 2-expert Model

Class Expert 1 Expert 2
Plane 96.3% 3.7%
Car 95.7% 4.3%
Bird 31.7% 68.3%
Cat 17.6% 82.4%
Deer 11.3% 88.7%
Dog 24.2% 75.8%
Frog 3.2% 96.8%
Horse 32.8% 67.2%
Ship 96.5% 3.5%
Truck 93.7% 6.3%

Table 2. Class breakdown of expert routing in 2-expert MoE (av-
eraged across 10 trials)

Figure 3. Coefficient matrix of 3-expert Model

cialize in high-level subjects.
We next train the same model with 3 experts instead

of 2. Here, we notice that images of planes, cars, trucks,
and ships are typically routed to the same expert with high-
confidence.

Images of dogs, cats, and generally horses usually share
another expert, though with less confidence and images of

Class Expert 1 Expert 2 Expert 3
Plane 80.7% 17.8% 1.5%
Car 60.5% 8.9% 30.6%
Bird 28.5% 44.6% 26.9%
Cat 10.0% 36.6% 53.4%
Deer 6.1% 62.3% 31.6%
Dog 12.8% 10.6% 76.6%
Frog 2.4% 92.1% 5.5%
Horse 12.7% 25.6% 61.7%
Ship 70.6% 21.9% 7.9%
Truck 58.6% 3.7% 37.2%

Table 3. Class breakdown of expert routing in 3-expert MoE (av-
eraged across 10 trials)

birds, deer, and frogs are also generally classed together.
Compared to 2 experts, the routing is less consistent, but
the general trend holds across the majority of trials. The
routing here appears to still be broadly following high-level
interpretable lines. Vehicles are classified together and then
animals are divided into two groups. That dogs and cats are
routed together is similarly unsurprising. Birds, deer, and
frogs representing the third and final group may seem odd,
however. We qualitatively explore the images from these
classes to make sense of the groupings. When we explore
the images of these animals in CIFAR-10 we find that frogs
and deer have similar images with frequent green–brown
backgrounds, and the animals themselves are both typi-
cally light brown with deer antlers somewhat resembling
the body shape of a frog. Birds, meanwhile, are small and
often brown and therefore seem to resemble a frog when
looked at from a distance. Dogs and cats tend to have a dis-
tinctive body shape and similar texture given their fur, and
many of the images have details of their faces, which distin-
guishes them from other animals. Horses may seem more
similar to deer here, but we notice that while horses gen-
erally cluster with dogs and cats, this is a weaker correla-
tion and that light brown horses (particularly in fields) often
cluster with the deer/frog/bird class. This analysis suggests
once again, that, when possible, experts are routing based
on general concepts that map onto high-level human sub-
jects like animal body shape and background setting. Inso-
far as experts fail to group by human discernable subject,
occasionally sending a truck image to the frog class, for ex-
ample—this seems to be a function of lacking the necessary
detail to discern the difference between the two as opposed
to a desired, intentional grouping.

Finally, we expand to 5 experts and notice that clustering
by interpretable high-level subjects has almost completely
broken down; no single expert gets a large percentage of
some intuitive group. Still, the correlation matrix shows
positive relationships between vehicle images and between
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Figure 4. Coefficient matrix of 5-expert Model

images of dogs and cats which map onto intuitive high-level
subjects. While for all trials, we see at least some grouping
by high-level subject, there’s a clear and sharp decline in the
strength of these groupings as we increase the number of ex-
perts. We suggest this again ties into the difficulty of routing
discussed in experiment 1. As we increase the number of
experts, the human-intuitive high-level groupings become
more fine-grained—instead of vehicles vs. animals, it’s now
dogs and cats, vs small animals like birds and frogs, vs large
mammals like horses and deer, and so on. The problem is
the router needs to be able to discern whether an image is in
group 1 or 2 or 3, and so on,in order to learn such a group-
ing. Crucially, distinguishing whether an image is a vehicle
or an animal is easier than distinguishing whether an image
is of a deer or a horse. It’s unsurprising then that not only do
experts specialize less as we increase the number of experts,
they also specialize less along high-level lines.

5.3. Experiment 3

We finally wanted to explore how the representational
complexity (equivalently, representational richness) of the
input sequence to the MoE influences specialization. We
view the model as gradually building up the representational
complexity of the input; taking a raw image, and gradually
modifying it, through both the first 4 convolutional layers,
as well as the MLP in the MoE layer, to contain impor-
tant semantic information that allows the final linear layer to
classify the input correctly. In this sense, then, the deeper an
input is within the model, the more the modified input con-
tains necessary information for classification. We discuss
above the similarities between classification and routing.
We have also, suggested, based on our analysis of the results
from our 1st experiment, that additional experts result in re-
duced specialization-per-expert because the router is more
error-prone when forced to distinguish between 5 groups
compared to, say, 2 groups. Given this, we expect that in the
same way that additional experts increase router-diffculty

Figure 5. Covariance matrix of 2-expert Base Model

and reduce specialization, lack of representational complex-
ity in the input increases router-difficulty and might also re-
duce specialization. To test this, we compare the special-
ization of experts in MoE models located earlier within the
model’s depth, compared to later within the model’s depth.
Specifically, we train a short model where we modify the
base model to only use the first convolutional layer (which
features a 2x2 Max Pool and 128 filters), and follow it with
an 8x8 Max Pool before flattening the 512-dimensional in-
put and passing it to the MoE layer which is followed by the
final linear layer. We compare this to our base model which,
as mentioned above, features 4 convolutional layers, a 4x4
pool, the MoE layer and then the final linear layer. We use
the 8x8 pool in the short model to ensure that the flattened
input to the MoE in both models is 512-dimensional; this
ensures we don’t make the router have to handle a larger
input in one model and therefore impact the routing ability
in an unintended manner. We compare expert specialization
by analyzing the class-breakdown of expert routing (as in
Experiment 2).

We find that human-interpretable specialization is sig-
nificantly reduced in MoEs located in earlier layers. We
compare the covariance matrix of the short-model’s class-
based expert routing to the base model’s covariance ma-
trix. We use the covariance matrix here because it better
highlights the distinction in specialization between the two
experts (correlation, by normalizing everything to [−1, 1]
results in all values being 1 or -1 in both matrices despite
significant differences in covariance).

We don’t compare results using random ablation (exper-
iment 1 technique). The MoE in the shorter model repre-
sents a larger proportion of total model parameters (since it
only has 1 convolutional layer compared to the base model’s
4). We would therefore expect it to have a larger impact on
loss. So, if ablating the learned router with a random router
results in a larger percentage drop in loss compared to the
base model this doesn’t indicate greater specialization but
is likely just a function of the layer being more important;
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Figure 6. Covariance matrix of 2-expert Short Model

sub-optimal routing would therefore have a greater impact
on loss in the short model compared to the base model for
equivalently specialized experts.

These results, which demonstrate less high-level special-
ization among experts earlier in the model, suggest that the
representational complexity of the input sequence influence
the ability of the router to successfully gate inputs, in the
same way representational complexity influences the ability
of a model to classify an input; classification would have
much lower accuracy if attempted after the first layer. In
turn, to make up for less precise, routing, expert’s specialize
less and share more overlapping features. When combined
with the findings from experiment 1——that increasing the
number of experts in a layer reduces the expert’s special-
ization——which we also theorized occurs due to routing
difficulty, we believe this is strong and compelling evidence
for this hypothesis; that representational complexity of in-
put increases specialization. An alternative, viable, counter-
argument is that routing along high-level intepretable sub-
jects is similar to classification and so experts in early layers
struggle to do this, but general specialization allows for ex-
perts to specialize in lower-level concepts (color of the top-
left of an image). It seems reasonable that even while the
input sequence isn’t particularly representationally rich, the
router is still able to correctly discern whether a given input
contains one of these lower-level, simpler features, even if
discerning whether an image is of a large, furry, mammal is
too difficult. That is, specialization may still occur, just not
high-level specialization. We believe exploring this ques-
tion in further depth requires a neuron-based analysis and
represents an important and natural next step for our work.

6. Conclusion

We conduct a novel exploration of MoE models, present-
ing a feature-based explanation of MoEs power, mechanis-
tically interpreting their experts and exploring key aspects
of how they work. We find that experts specialize, and do so

along high-level human interpretable lines; that increasing
the number of experts decreases expert specialization likely
due to difficulty routing; and that less representationally
rich experts specialize along high-level lines less. Our find-
ings help breakdown how MoE models behave, why they
perform well, and have significant implications for training
future MoE models. For example, that experts specialize
less (at least along high-level lines) suggests that training
hierarchical MoEs where the number of experts in an MoE
layer increases depth-wise through the model as the input’s
representational complexity is gradually built up is a rea-
sonable idea.

Further research is needed on three key fronts. First, ex-
panding our results to analyze larger, more complex models
and seeing if the same findings hold—while we expect the
general, core ideas (like representational complexity of the
input to an MoE layer positively impacts specialization) we
need to verify this and also see whether other, tangential
details differ in larger models. Second, exploring whether
only high-level specialization or all specialization increases
as representational complexity increases. And third, verify-
ing whether the results we find here when focused on image
models hold in the NLP space. MoEs are generally used
in language-based models where the inputs are tokens rep-
resenting words, sub-words, or characters. Ensuring these
findings hold could have significant implications for future
LLMs which are increasingly adopting the MoE architec-
ture.
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