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Abstract

As computer vision models continue to advance, fashion
has become an increasingly relevant industry for these types
of technologies. In fact, many popular clothing companies
and e-commerce companies use such artificial intelligence
models to recommend clothes to their users. In this project,
we aimed to create a deep fashion recommender by extend-
ing CLIP [15], a multimodal model that takes in text and im-
ages as input and provides image outputs. We did so by in-
vestigating the effects of augmenting the architecture of the
model, specifically adding a spatial transformer network
(STN) and replacing the vision transformers in the original
model’s image encoder with Swin transformers. We also
finetuned the model further using the Deep Fashion dataset,
which consists of over 800,000 images of clothes with de-
scriptive annotations [20]. After gathering our results,
we then conducted user evaluations, in which we incorpo-
rated a generative image model’s outputs (originally a deep
convolutional generative adversarial network, but later re-
placed by Stability AI’s Stable Diffusion 1.5 [18]) as an ad-
ditional basis of comparison to our modified model’s out-
puts. In the end, we found that further finetuniing Fashion-
CLIP (a version of CLIP finetuned on fashion-related data
[2]) and adding an STN beat our baselines. However, the
user studies showed that many people preferred the genera-
tive Stable Diffusion model and Fashion-CLIP simply fine-
tuned on the Deep Fashion dataset. In the future, extending
upon this work could include using a more modern fashion
dataset or larger dataset in general.

1. Introduction
Fashion is inherently personal and individualistic. As a

result, using artificial intelligence (AI) models for customiz-
able clothing recommendations is an exciting and increas-
ingly popular method for e-commerce platforms such as In-
stagram Shopping to improve the experience of shoppers.
In practice, user recommendation systems rely on owning a
wealth of information about the user, at the expense of their
privacy. As a result, the question that we faced was: is it

possible to output individualized clothing recommendations
to a user with limited user context? Our ultimate objec-
tive in this project is to create a deep fashion recommender
that outputs relevant fashion images to a user with just text
and image input about their fashion tastes. This problem is
important because typical fashion recommenders often use
traditional search methods reliant on large amounts of data.
Instead, we aim to harness the power of recent, pretrained
models such as CLIP [15] and FashionCLIP [2], a finetuned
version of CLIP specialized towards fashion.

For our clothing recommender, our input at test time is a
user’s general clothing preferences in images and texts. We
then attempt to provide image recommendations of cloth-
ing that fit the user’s style. We do so using our own mod-
ified version of CLIP’s image and text encoder, which out-
puts embeddings of the user’s preferences. We then search
through our fashion dataset and output images whose em-
beddings are most similar to those of user input. Finally, at
the user evaluation stage, we supplement our outputs with
generations from a generative image model, specifically
Stability AI’s Stable Diffusion 1.5. We initially planned to
incorporate a deep convolutional generative adversarial net-
work - or a DCGAN - instead, as highlighted in our Meth-
ods section, but Stable Diffusion outputted better images
for our use case. This way, we are able to evaluate the re-
sults of our model, which will only output images from the
datasets it has been trained and finetuned on, in comparison
to a generative image model.

Since collecting large amounts of data for proper user
evaluations is costly, we first choose the models to imple-
ment and train/finetune them. Then, we collect user prefer-
ence input and run evaluations afterwards.

2. Related Work
There are several related papers in machine learning

(ML), human-computer interaction, and interdisciplinary
spaces focused on fashion recommendation systems and
improving vision models for identifying and categorizing
fashion in particular. In order to understand the state of
the field, we read through survey papers on fashion rec-
ommendation systems such as Chen et al.’s survey of AI

4321



in fashion [1] and Deldjoo et al.’s survey of different fash-
ion recommender systems [3]. In terms of vision models
trained on text-image fashion datasets, many people have
had success with finetuning state of the art vision models on
fashion datasets. For example models such as FashionCLIP
[2] and ARMANI [25] are finetuned for the fashion domain
using CLIP [15] and MaskCLIP [5], respectively, and their
strengths are in classification on their respective datasets but
do not generalize as well, which we discuss later. Many
fashion recommenders are focused more on the user data
side of recommendations, a perspective best suited for e-
commerce companies with large amounts of data about their
customers. For example, when H&M hosted a Fashion Rec-
ommendation competition on Kaggle, the first place win-
ner used a gradient boosting method and collaborative fil-
tering to match similar customer profiles [11]. However,
we wanted to tackle this problem with a multimodal com-
puter vision focus instead, simplifying the amount of data
inputted by the user. Fashion is an especially nuanced area
because there are typical elements of computer vision prob-
lems, such as identifying different items of clothing, but
there is also a more subtle aspect of identifying different
styles or aesthetics. DeepStyle learns different aesthetics
rather than focusing on categories of items by using a user-
item feedback matrix [12]. Yet a different approach by
Ramesh et al. is an outfit recommender based on specific
event contexts and that recommends outfits for different sce-
narios in a user’s life [17]. From the HCI perspective, Vac-
caro et al. present an in-depth user study of people’s prefer-
ences as it comes to fashion and receiving style recommen-
dations [21]. One of their key findings is the importance
of communicating about fashion via both images and text,
which motivates our multimodal approach. Finally, Kang
et al tackle the difficult task of fashion recommendation by
incorporating visual features into the objective function of
the generative model that they train [9]. They use GANs to
surface recommendations to the user. While these papers
show that there are numerous ways to approach a fashion
recommendation problem, we knew that we couldn’t rely
on traditional ”recommendation system” approaches such
as collaborative filtering due to the small-scale user study
we intended to run. We focus more on improving upon and
finetuning existing fashion-related vision models and mod-
ernize our approach to fashion recommendation with stable
diffusion as opposed to GANs.

3. Methods

3.1. Baseline and Vanilla Finetuned Model

Our baseline model is FashionCLIP (FCLIP), which is
a variant of CLIP that is finetuned on a different fashion
dataset, or the Deep Fashion dataset (iterated on more in
section 4). CLIP is a ML framework that is trained on

text-image pairs [15]. The objective during training is to
minimize the distance between embeddings of matching
text-image pairs and maximize the distance between non-
matching pairs. More specifically, the loss function LCLIP

is equivalent to 1
2 (Ltext-to-image + Limage-to-text) , where the

first loss term ensures that the correct image is ranked high-
est in similarity over the incorrect images for a given text,
and the second loss term does the same but instead ranks
similar texts to a given image. CLIP uses separate image
and text encoders. FCLIP in particular uses CLIP’s ViT-
B/32 Transformer architecture as an image encoder and uses
a masked self-attention Transformer as a text encoder, and
was trained on a fashion dataset of over 800,000 images
[2]. Other baselines from the milestone that we ran but ul-
timately performed worse than FCLIP include CLIP (ViT-
B/32 image encoder), CLIP (ResNet image encoder), and
SigLIP [24].

Our first improvement on the baseline was finetuning
FCLIP on the DeepFashion dataset without any changes to
model architecture. We did not freeze any layers.

3.2. DCGANs and Stable Diffusion

When choosing a generative image model to compare
the results of our modified model to, we initially settled on
a deep convolutional generative adversarial network (DC-
GAN). DCGANs are a subclass of generative adversarial
networks, a type of model that has two major components:
a discriminator, which attempts to distinguish between real
and fake images, and a generator, which attempts to output
images that are able to fool the discriminator by becom-
ing more “realistic” [6]. However, DCGANs are unique in
the fact that they incorporate convolutional neural networks
into their architectures [16].

In the context of our project, we implemented and trained
a DCGAN on the Deep Fashion dataset. Before accom-
plishing this, however, we first trained a simple DCGAN
on black and white images of clothes from the Fashion
MNIST dataset to see if we could get stable results [23].
This model’s architecture was adopted from pre-existing
open source code [7] tailored towards the Fashion MNIST
dataset, and the full structure can be seen in the Appendix
in Figure 10 and Figure 11.

After achieving success with this model, we moved on
to training a more complex DCGAN on our Deep Fash-
ion dataset, meaning the new model needed to be capable
of processing colored (RGB) images [10]. To develop the
architecture for this model, we took inspiration from pre-
existing open-source code involving a DCGAN tailored to
generate images of hands. However, we modified this code
by changing the data pre-processing, the details of which
are described in Section 4. The full architecture of this
model’s discriminator and generator can be seen in Figure
1 and Figure 2.
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Figure 1. Discriminator architecture diagram of larger, RGB DC-
GAN.

In the end, however, we decided to use Stability AI’s Sta-
ble Diffusion 1.5 instead of our DCGAN in the user eval-
uations due to better performance. Stable Diffusion is a
text-to-image model that utilizes several denoising autoen-
coders to synthesize original images [18]. It is important to
note that Stable Diffusion is a latent diffusion model, mean-
ing the model is applied to a latent representation of images
rather than raw pixel values. As a result, this model is much
less expensive to train and use at test time than previous
diffusion models.

3.3. Spatial Transformer Networks

To improve on the performance of the FashionCLIP
model, we edited the architecture of the model, especially
with regards to the image encoder. We implemented a ver-
sion of the FashionCLIP model with an added spatial trans-
former network (STN) [8]. This involved using the fine-
tuned weights from the FashionCLIP model, and training
the new STN and FashionCLIP model end-to-end on the
DeepFashion dataset. The STN has a localization network
of 2 convolutional layers followed by a max pooling layer.
It then extracts features to produce the affine transformation
parameters with 2 fully connected layers. In addition, we
initialize the STN at the identity transformation.

Spatial Transformers allow a model to learn what spatial

Figure 2. Generator architecture diagram of larger, RGB DCGAN.

Figure 3. Diagram of STN+Swinn-FCLIP

transformations to perform on the input images in order to
improve a model’s geometric invariance. This is useful for
making models more robust to diverse image inputs. The
transformer comprises of a localization network, that learns
different transformation parameters that are to be applied to
the input. Its grid generator then produces a grid represent-
ing which coordinates in the input image map to ones in
the output image. The transformer then uses differentiable
image sampling to produce the output. We incorporated an
STN into the model since it allows the model to focuse more
on relevant parts of the images. This is important for our
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dataset, as DeepFashion contains clothes on many different
models in different poses. For this milestone, we experi-
mented with placing an STN before the image encoder. We
hoped this may allow the model to focus more on the con-
tent of the image rather than certain geometric or visual dif-
ferences, such as the angle of the photo or rotation of cloth-
ing. For our STN we used a localization network that was a
CNN with two layers, and a regression network consisting
of two fully connected layers.

3.4. Swin Transformers

We also experimented with replacing the vision trans-
formers in the image encoder with Swin transformers [13].
This is a recent architecture that implements a shifted
window-based self-attention mechanism, where attention is
repeatedly computed within shifted local windows. This re-
duces its computation complexity, as a normal vision trans-
former applies self-attention globally. This use of local con-
text can make the Swin transformer more robust to image
variations and allow it to better pay attention to important
parts of the clothing. Its hierarchical structure also helps
the model capture more important features of the image. We
used a Swin transformer that was pretrained on ImageNet-
1k, with a patch size of 4 and a window size of 7 [4] [22].
We chose this in hopes that a model with a large amount
of general knowledge could more quickly learn and better
adapt to our fashion dataset. A diagram of our STN+Swinn-
FCLIP model (appending an STN and replacing the ViT in
CLIP with a Swinn transformer) is in Figure 3.

4. Dataset and Features
While training the initial models, we use the Deep Fash-

ion dataset [14], which contains over 800, 000 images of
clothes annotated with category and descriptive attributes.
See Figure 4 for an example image from the DeepFashion
dataset. We specifically used a subset of the ”Category and
Attribute Prediction Benchmark” section of the dataset with
14, 000 train images, 2, 000 validation images, and 4, 000
test images to train and finetune our models. We used this
benchmark because of the rich metadata available about
each image with regards to clothing type, material, and
style. Since the dataset did not come with captions, we gen-
erated captions based on the annotated attributes. For ex-
ample, a picture with the annotations ”solid”, ”long sleeve”,
”v-shaped neckline”, ”chiffon”, ”conventional” would yield
the following caption: ”garment with solid pattern, long
sleeve, v-shaped neckline, chiffon fabric, conventional fit.”

With regards to preprocessing, CLIP’s preprocessing in-
cludes reshaping the image, center cropping if necessary,
and then normalizing each channel of the images before be-
ing passed through the model. For STN, the image is in-
stead simply resized into a 224 by 224 pixel image before
being passed into the model. For our DCGAN (the large

Figure 4. Example image from the DeepFashion dataset.

RGB one), we resized our images to 256 by 256 pixel im-
ages and included horizontal flips to augment the dataset.
The pre-existing model also allowed vertical flips, but we
chose to omit them because images of clothes have a spe-
cific vertical, upright orientation. We also received user in-
put from the participants in our study in the form of im-
ages. In order to preprocess user responses, we converted
WEBM, PNG, and other image file types into JPEG files
before going through the preprocessing described above so
that embeddings could be generated successfully.

5. Experiments
5.1. Model Selection Experiments

For all models we used a learning rate of 1e-6. For the
Swinn and STN augmented models, we experimented with
learning rate values of 1e-3, 1e-4, 1e-5, and 1e-6. We did
not have the compute resources for cross-validation, as we
could not train many models until convergence. Instead,
we found that the loss of our models only decreased with
a learning rate as small as at least 1e-5 and 1e-6. We ex-
perimented with both and found that 1e-6 produced the best
results for our models. We also used an AdamW optimizer
(Adam optimizer with weight decay) as it is one of the best
and most stable optimizers for learning, and is also used by
the FCLIP model.

5.2. DCGANs

For the small black and white DCGAN we used 30
epochs. For the large, more complex RGB DCGAN, we
used 427 epochs as that was what was feasible with our
computational resources.

5.3. User Study

We conducted a user study of 20 students. Each par-
ticipant gave text descriptions and uploaded 2 − 4 im-
ages of clothing that matched their style. For the differ-
ent CLIP models, we computed embeddings of user input
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and searched for images in the Deep Fashion dataset that
were close to those embeddings to surface to the user. For
the diffusion model, we took in user text input to generate
new images. We asked the user to evaluate four models:
the baseline FCLIP, the version of FCLIP we finetuned on
DeepFashion, and the STN model trained on DeepFashion,
as well as stable diffusion. For each model, we surfaced
four recommendations to the user. We also asked the users
to rate each model on a scale from 1− 10, rank the models
in order of which recommendations they preferred, and give
qualitative feedback on the model outputs.

6. Results
6.1. Model Selection

For each model, we generated image and text embed-
dings from the text-image pairs in our dataset and then com-
puted the cosine similarity between the respective embed-
dings for each pair. We define the text surfacing accuracy
to be the proportion of images for which the closest text
embedding for that image corresponds to the actual text
description of that image. For each image, we searched
through all of the texts to find the closest text embedding
for that given image. The attribute surfacing accuracy is
the proportion of attributes in an image are accurately re-
flected in the ”nearest” text embedding.

Model Cos Simil. Text SFA Attr. SFA
CLIP* (ViTB-32) 0.276 0.22 0.589
FCLIP* 0.272 0.074 0.672
Finetuned FCLIP 0.288 0.338 0.819
STN-FCLIP 0.284 0.142 0.707
SWIN-FCLIP 0.160 0.058 0.584
STN+SWIN-FCLIP 0.164 0.047 0.577

Table 1. Metric Results (SFA is Surfacing Accuracy). Baseline
Models are starred, and the best scores are bolded.

We found that vanilla finetuned FCLIP and STN+FCLIP
worked the best out of all of our modified models. To de-
termine this, we took into account the three column metrics
listed in Table 6.1. As a result, we included these two mod-
els in the user study. The significant improvement of our
finetuned FCLIP model over our baselines across all met-
rics shows that our additional data from the DeepFashion
dataset has helped the model adapt better to the new data.
Adding an STN seems to improve performance across all
metrics over our baseline, but still does not produce as high
results as vanilla finetuned FCLIP. This may be because our
DeepFashion dataset that we train on may be too small and
not visually diverse enough to fully utilize the benefits of
an STN. For example, in comparison, FCLIP was finetuned
on over 800,000 fashion images. In addition, since the base
pretrained CLIP model already uses a Transformer based

architecture, and it is already trained on fashion, it may al-
ready encode the spatial features in a way that does not vary
as much depending on the alignment of the image. Thus
adding an STN could reap minimal benefits. It may be in-
teresting to see if the STN can be better utilized if we trained
the model with it from scratch. However, we did not have
the compute resources for this.

We also found that Swin-FCLIP and STN+Swin-FCLIP
seemed to have the lowest evaluation metric values. Again,
this is most likely due to overfitting on the DeepFashion
dataset, as we retrained complex architectures on a smaller
dataset. In addition, due to compute constraints, we used a
Swin transformer that was pretrained on ImageNet-1k [4],
hoping that this general knowledge would help the model
adapt better to our fashion images. However, this gen-
eral knowledge may not have translated well to our fash-
ion dataset, as it may look at different visual features that
are not as significant for our fashion images. For example,
ImageNet-1k has around 1,000 different classes and over a
million images, and thus it is possible that our large pre-
trained Swin transformer was too complex for our dataset
and overfit it to.

In addition, the Swin transformers are much different
in architecture than the vision transformers used in CLIP.
Thus, we may have better results if we train the Swinn-
FCLIP and STN+Swinn-FCLIP on a larger fashion dataset
and for longer, from scratch. This may produce better re-
sults than using a pretrained Swinn model and finetuned
weights for the text encoder. Unfortunately we did not have
the compute resources for this.

Figure 5. PCA of texts embeddings from different model encoders.

For finetuned FCLIP, STN-FCLIP, FCLIP (our baseline),
and Swin-FCLIP, we examined the image and text embed-
dings of these models on the first 50 datapoints in our test
set using PCA in 6.1 and 6.1. We can see in the graph
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that the STN-FCLIP model has the smallest mean embed-
ding radius for both text and image, and its embeddings
are much more closely clustered, especially in comparison
to the baseline FCLIP and finetuned FCLIP. This may be
caused by the STN model overfitting on the small, train-
ing dataset encoding less variance in its embeddings, as it
only pays attention to a narrow amount of spatial features.
In addition, the Swin-FCLIP model also demonstrates this
tight clustering, most likely due to overfitting on the dataset.
This makes sense as qualitatively, Swin-FCLIP and STN-
FCLIP were more likely to confuse similar text embeddings
with visually similar but different components, than fine-
tuned FCLIP. For example, they would mistakenly believe
an image of a cotton mini-length striped dress had the most
similar embedding to the text, ”chiffon mini-length striped
dress,” instead of ”cotton mini-length striped dress.” In
general, Swin-FCLIP and STN-FCLIP had more difficulty
identifying fabrics than finetuned FCLIP, which may be due
to it being more subtle to visually recognize.

Figure 6. PCA of image embeddings from different model en-
coders.

6.2. DCGANs Results

The results of the first simple DCGAN were promising.
After 30 epochs, the generated images were pixelated, but
were recognizable as pieces of clothing (see 9). The second
RGB DCGAN, however, did not produce images as clear
or recognizable as the first DCGAN. As seen in 7, after 427
epochs, the images were blurry and somewhat contained the
outlines of a model wearing clothes (which is the bulk of
the Deep Fashion dataset). Nevertheless, the images were
certainly not clear enough to be compared to our outputs
in the user evaluation stage. This is likely due to the com-
plexity of the images, which are 1) in color and 2) involve

human models and faces. We knew that improving on this
GAN would likely require training for even more epochs
and potentially changing other parameters, which did not
seem feasible with our computational resources and time
constraints. As a result, we decided to switch to Stable Dif-
fusion (version 1.5) instead, as it is open-source, fast, and
produces much higher-quality outputs. An example of these
outputs can be seen in Figure 8; evidently, these images are
much less blurry than the outputs from the GAN and resem-
ble photos of real clothes.

Figure 7. Outputs from larger, RGB DCGAN trained on Deep
Fashion.

Figure 8. Outputs from state-of-the-art Stable Diffusion model.

6.3. User Study Results

A metric we used to evaluate each model based on user
preferences is Mean Average Precision@k (MAP@k). This
is a common metric for recommender systems and was used
in H&M’s Fashion Recommendation Challenge [11].For a
user, Precision@k can be defined as the proportion of top-k
recommendations that are relevant. Then, Average Preci-
sion@k is the average of Precision@i for i = 1, 2, . . . , k.
Finally, MAP@k is the mean of Average Precision@k over
all users. As we also asked users to rank the models and
rate them out of 10, we calculated MAP@4, the average
rank, and average rating for each model. The possible ranks
were from 1 (best) to 4 (best), and the satisfaction scores
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were from 1 (worst) to 10 (best). The results are displayed
in Figure 2.

Model MAP@4 Avg. Rank Avg. Rating
Baseline 0.417 2.63 5.53

Finetuned FCLIP 0.559 1.89 6.32
STN FCLIP 0.204 3.47 3.42

Stable Diffusion 0.558 2.0 6.58
Table 2. Results of our user evaluation for four models: baseline
FCLIP, finetuned FCLIP, STN-modified FCLIP, and stable diffu-
sion. Best scores are bolded

Overall, users were somewhat satisfied given the lim-
ited amount of information inputed to the recommendation
system. Some of the feedback about the recommendations
could have definitely been mitigated by soliciting more in-
formation from the users. For example, one user noted that
he was recommended women’s clothing, and he wasn’t in-
terested in those styles. Another user said that ”often times
the actual clothing items themselves were fine, but they
wouldn’t align with colors i liked.” Considering that the best
average rating for a model was 6.58 on a 10-point scale,
there is still a lot of room to grow in this area. Both Fine-
tuned FCLIP and Stable Diffusion outperformed baseline
FCLIP on all metrics. However, STN FCLIP consistently
was the worst model across all metrics. Stable Diffusion
outperforms Finetuned FCLIP with regards to average rat-
ings, but their MAP@4 scores are nearly identical and their
ranking is worse.

The discrepancy between rank and score for Stable Dif-
fusion versus Finetuned FCLIP can be explained by the
variance of people’s satisfaction scores. The variance for
FCLIP was 0.55, whereas the variance in user scores for
Stable Diffusion was more than double that, at 1.22. The
polarizing nature of the Stable Diffusion model can be ex-
plained by some of the qualitative feedback: people noted
that the AI-generated faces were ”terrifying.” However,
a different user noted that ”Models B and C [Finetuned
FCLIP and Baseline] were relatively similar in that they in-
cluded at least a few items that I might wear... Model D
[Stable Diffusion] seemed much better for me because all of
them were not only items that I would consider wearing, but
that were unique items as opposed to commonplace styles.”
When taking into account the variance in user response, it
seems that Finetuned FCLIP may be the best performing
model overall given that it has the lowest average rank, is
essentially tied for best MAP@4, and is less polarizing to
users.

Finally, users also noted that the outputs from the
FCLIP-variant models had ”all very 2010’s vibes.” Consid-
ering that the outputs were surfaced from the DeepFashion
dataset from 2016, it makes sense that users may consider
some images to be out of style. So it is most likely the
case that people prefer the stable diffusion model due to its

more personalized flair, given that the Deep Fashion dataset
is more generic and outdated. The user feedback gives us
some understanding that personalized and specific recom-
mendations were preferred. Trying to develop ways to mit-
igate variance amongst users is difficult, as people have dif-
ferent objectives and preferences. Further, satisfying prefer-
ences such as gendered clothing or color require collecting
more information from users before surfacing recommen-
dations.

7. Conclusion and Future Work

We sought to create a deep fashion recommender by
improving on the multimodal model CLIP [15]. We did
so by adding some state-of-the-art architectural augmenta-
tions, namely STNs and Swin Transformers. Additionally,
since our recommender could only output images from the
datasets it was trained and/or finetuned on, we aimed to in-
corporate a generative image model’s outputs in our user
evaluations as well to provide a basis of comparison.

We found that due to compute limitations (small train
dataset and having to use pretrained weights), our archi-
tectural changes caused our new models to overfit to our
small fashion dataset. However, we found that further fine-
tuning the Fashion-CLIP model on our smaller dataset, and
even adding an STN, allowed us to beat our baselines in our
evaluation metrics. But in terms of user studies, the Stable
Diffusion model and finetuned Fashion-CLIP were able to
beat our baseline. Additionally, we initially planned to use a
DCGAN as our generative image model, but we found that
our outputs were poor in quality and that it was unrealistic
to further improve upon them with our computational and
time constraints. As a result, we decided to use the open-
source Stable Diffusion model instead.

For future work, we’d like to try training the models that
incorporate STNs and Swin transformers in their architec-
ture from scratch on a larger dataset. We found before in
our analysis that these models had worse results than the
vanilla finetuned FCLIP since they overfit on the Deep-
Fashion data. In addition, it would be useful to use newer
datasets to train on or to use for recommendations, as some
of the feedback from the user study was that some of the
recommended clothes from our models were outdated styles
from the 2010s.

8. Contributions and Acknowledgements

Evelyn implemented, tuned, and evaluated all proposed
architectural changes, and analyzed results. Poonam ran all
of the baselines, finetuned FCLIP, conducted the user sur-
vey (contacting participants, collecting responses, sending
out recommendations, collecting feedback), analyzed the
user study results, and developed the metrics for bench-
marking the performance of CLIP models on this dataset.
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Ananya worked on the simple, black and white DCGAN,
the complex RGB DCGAN, and analyzing their results.
She also attempted to further finetune the Stable Diffusion
model, which is detailed in the Appendix.

9. Appendix

9.1. Black and White DCGANs

Figure 9. Outputs from simple, black and white DCGAN trained
on Fashion MNIST.

Figure 10. Discriminator architecture diagram of simple, black and
white DCGAN.

9.2. Stable Diffusion

Although we were unsuccessful, we did attempt to fine-
tune Stable Diffusion in two different ways: 1) finetune the
model over a smaller portion (4,000 images) of the Deep
Fashion dataset and 2) finetune the model via Google’s
DreamBooth [19] to teach the model a specific new con-
cept (in our case, a person’s face so that they would be able
to see themselves wearing the clothes they request). Unfor-
tunately, we were unable to get the first type of finetuning
running, and although we were able to generate checkpoint
files/execute the full finetuning script for the second type, it
failed at test time when uploaded to HuggingFace.

x
Figure 11. Generator architecture diagram of simple, black and
white DCGAN.
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galhães, D. Goncalves, C. Greco, and J. Tagliabue. Con-
trastive language and vision learning of general fashion con-
cepts. Scientific Reports, 12(1), Nov 2022.

[3] Y. Deldjoo, F. Nazary, A. Ramisa, J. McAuley, G. Pellegrini,
A. Bellogin, and T. D. Noia. A review of modern fashion
recommender systems. ACM Comput. Surv., 56(4), oct 2023.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[5] X. Dong, J. Bao, Y. Zheng, T. Zhang, D. Chen, H. Yang,
M. Zeng, W. Zhang, L. Yuan, D. Chen, F. Wen, and
N. Yu. Maskclip: Masked self-distillation advances con-
trastive language-image pretraining, 2023.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. 2014.

[7] R. Gupta. Data-aug-gan, Jan. 2024.
[8] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks, 2016.
[9] W.-C. Kang, C. Fang, Z. Wang, and J. McAuley. Visually-

aware fashion recommendation and design with generative
image models. 2017 IEEE International Conference on Data
Mining (ICDM), pages 207–216, 2017.

[10] D. Klock. Dcgan256, 2020.
[11] C. G. Ling, ElizabethHMGroup, FridaRim, inversion, J. Fer-

rando, Maggie, neuraloverflow, and xlsrln. H&m personal-
ized fashion recommendations, 2022.

[12] Q. Liu, S. Wu, and L. Wang. Deepstyle: Learning user
preferences for visual recommendation. In Proceedings of
the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’17, page

4328



841–844, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[13] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo. Swin transformer: Hierarchical vision transformer
using shifted windows, 2021.

[14] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfashion:
Powering robust clothes recognition and retrieval with rich
annotations. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[15] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision, 2021.

[16] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. 2015.

[17] N. Ramesh and T.-S. Moh. Outfit recommender system.
In 2018 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pages
903–910, 2018.

[18] R. Rombach, A. Blattman, D. Lorenz, P. Esser, and B. Om-
mer. High-resolution image synthesis with latent diffusion
models. 2022.

[19] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and
K. Aberman. Dreambooth: Fine tuning text-to-image diffu-
sion models for subject-driven generation. 2022.

[20] Y.-G. Shin, Y.-J. Yeo, M.-C. Sagong, S.-W. Ji, and S.-J. Ko.
Deep fashion recommendation system with style feature de-
composition. In 2019 IEEE 9th International Conference on
Consumer Electronics (ICCE-Berlin), pages 301–305, 2019.

[21] K. Vaccaro, T. Agarwalla, S. Shivakumar, and R. Kumar. De-
signing the future of personal fashion. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Sys-
tems, CHI ’18, page 1–11, New York, NY, USA, 2018. As-
sociation for Computing Machinery.

[22] R. Wightman. Pytorch image models. https://github.
com/huggingface/pytorch-image-models,
2019.

[23] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning al-
gorithms. CoRR, abs/1708.07747, 2017.

[24] X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer. Sigmoid
loss for language image pre-training, 2023.

[25] X. Zhang, Y. Sha, M. C. Kampffmeyer, Z. Xie, Z. Jie,
C. Huang, J. Peng, and X. Liang. Armani: Part-level
garment-text alignment for unified cross-modal fashion de-
sign. In Proceedings of the 30th ACM International Confer-
ence on Multimedia, MM ’22. ACM, Oct. 2022.

4329

https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

