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Abstract

Without proper early detection and identification of plant
pathogens, leaf disease can pose significant challenges to
agricultural yields. Instead of visual inspection done by
farmers, which is subjective and requires expertise, we pro-
pose automated plant disease identification method using
deep learning. Among different experiments, training a
ResNet-50 architecture delivered the best result with vali-
dation accuracy of 96.5% and test accuracy of 65.6%.

1. Introduction
In the new age of agriculture at scale, it is increasingly

difficult for farmers to manually inspect every patch of their
crop fields and prescribe a proper treatment for the vari-
ous pests present. If the presence of pests on crops and
leaves is not detected early or properly, it could cause major
agricultural and economic losses: the potential yield losses
caused by plant pathogens can be up to 16% globally [2].
Modern agriculture especially facilitates the rapid spread of
pathogens, so identification—one of the major plant pathol-
ogy management—is imperative to mitigate this challenge.

There is a diverse array of plant pathology techniques,
from traditional diagnostic methods to molecular and re-
mote sensing methods. Traditionally, visual inspection has
been done by farmers and experts who have experience in
identifying plant diseases. This method, while valuable, is
often subjective and time-consuming. Advances in molecu-
lar biology, on the other hand, have enabled rapid and highly
sensitive tools of plant pathology detection. Remote sens-
ing technologies have also proven to be powerful tools for
disease monitoring [7].

In this project, we aim to make the process of plant
disease identification scalable, inexpensive and reliable for
farmers who diagnose diseases visually and who do not nec-
essarily have access to perform molecular techniques, such
as polymerase chain reaction. With the use of deep convolu-
tional network, we investigate the feasibility of classifying
plant species type and whether the leaf shows any indication
of disease infection. In our project, the input is an image of

a leaf and the output is the predicted plant pathology cate-
gory as well as the plant type.

2. Related work
Recent and relevant uses of deep learning architectures

for agriculture and plant disease identification specifically
are discussed in this section. Aakanksha Rastogi et al. [1]
propose a method with two phases: in the first one, the plant
is recognized, and in the second phase, they classify the dis-
ease present in the leaf. Despite being simple, this approach
cleverly introduces a grading scale, indicating the risk level
of plant leaves, based on percentage infection.

More recent work moved towards using deep convolu-
tional networks for better performance, as deep learning
methods have emerged as revolutionary in the fields of ob-
ject detection [17], speech recognition [16], drug discovery
[5], and natural language processing [9]. Arunabha M. Roy
and Jayabrata Bhaduri [3] uses improved and optimized
YOLOV4 algorithm, which generates bounding boxes and
corresponding confidence scores to detect the location of
the disease on leaves. The article by by Murk Chohan et
al. [11] also experiments with architectures like VGG and
Inception V3 to classify plant pathology. In the paper, Soy-
bean Plant Disease Identification Using Convolutional Neu-
ral Network [13], Wallelign et al. investigate the feasibil-
ity of CNN for plant disease classification for leaf images
taken under the natural environment. They use an architec-
ture consisting of three convolutional layers, each followed
by a maxpooling layer, with the final layer being fully con-
nected layer and ReLU being applied at the output of each
layers. The proposed method is applied on 12,673 leaf im-
ages of four classes. All the input images are 128x128 pixel
and the authors experimented on grayscale and segmented
version of the original dataset to test the effects of different
lighting and background conditions. The model achieved a
classification accuracy of 99.32%.

CNN’s ability to extract important features in the natu-
ral environment is further demonstrated by V V Srinidhi1
et al. [15]. They use deep convolutional neural network
architectures to detect apple plant diseases and classify
them into four categories: healthy, stab, rust and multi-
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ple diseases. Models using EfficientNetB7 and DenseNet
achieved accuracy of 99.8% and 99.75% respectively. The
article concludes that in contrast to AlexNet, VGG and
GoogleNet, heavy models with a large number of parame-
ters and pooling layers, deep CNN models like EfficientNet
and DenseNet can be used even with small training data.

Authors in the paper [12] propose a somewhat state-of-
the-art method to augment the deep learning-based plant
disease classification with attention mechanism. The pro-
posed method is to apply convolutional block attention
module (CBAM) to the output feature map of the CNNs.
The result of 86.89% accuracy with EfficientNetB0+CBAM
indicates the addition of attention mechanism does not im-
prove the classification for plant pathology.

3. Method

3.1. Different Methods

3.1.1 Baseline methods

We experimented with a few baselines. First, we fed the
features extracted using ResNet-50 into a Logistic Regres-
sion, which then outputted a predicted class. The parame-
ters of ResNet-50 were frozen for this purpose, so the model
was optimizing the typical logistic loss, while taking in ex-
tracted features from ResNet-50 as input. We used all of
the default options offered by the LogisticRegression class
in the sklearn library.

Another baseline was a simple convolutional neural net-
work: it uses the

(Conv → BatchNorm → ReLU → MaxPool) x N

strategy, upsampling the channels while downsampling
the height and width, and then feeds through two fully con-
nected layers.

We also ran the model proposed by user Mohamadreza
Momeni which used convolutions with simple residual con-
nections [10]. We made slight modifications both to account
for our image sizes being different, and some other small
changes that we saw fit (changing the pooling kernel size,
for example).

Lastly, we used a convolutional neural network that in-
corporates residual blocks. The architecture consists of
many of these residual blocks, followed by fully connected
layers for classification.

A residual block consists of a few convolutional layers
followed by batch normalization and ReLU activation. The
addition of the input, (or the down or upsampled version of
it), to the output of the convolutional layers creates a ”short
connection” that addresses the vanishing gradient problem
in deep networks.

3.1.2 Proposed method

We propose a transfer learning method to classify plant
pathology by utilizing a pre-trained ResNet-50 model.
ResNet-50 is a convolutional neural network that is 50 lay-
ers deep, and similar to our baseline model, the network
stacks residual blocks but is much deeper and contains a
bottleneck design [8]. Compared to the baseline model,
ResNet-50 is designed for very deep networks, making it
more suitable for very large and complex datasets.

In addition to ResNet-50, we include two fully connected
layers afterwards in order to process the extracted features
and to reduce the dimensionality into that of the number of
classes that we have. Due to the size of our dataset, we
chose to unfreeze all the layers.

3.2. Model Details

3.2.1 Logistic Regression

Following feature extraction from ResNet-50, we used
sklearn’s LogisticRegression class for our multiclass clas-
sification problem. Sklearn uses the cross-entropy loss for
its multiclass regression, which is defined as

Loss = − 1

N

N∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi))

where N is the size of the dataset. All of the default options
provided by sklearn were used, including L2 regularization,
resulting in a true loss term of

Loss = − 1

N

N∑
i=1

[yi log(p(yi))+(1−yi) log(1−p(yi))]+λ∥W∥22,

where λ = 1 and ∥W∥22 represents the squared L2 norm of
the weights of the model.

3.2.2 Simple Convolution

For a convolutional layer, the output value of the
layer with input size (N,Cin, H,W ) and output
(N,Cout, Hout,Wout) is described by the following
equation: out(Ni, Coutj)

= b(Coutj) +

Cin−1∑
k=0

weight(Coutj , k) ⋆ input(Ni, k)

where ⋆ is the 2D cross-correlation operator, N is the batch
size, C is the number of channels, H is the height, and W is
the width. The new height and new width can be calculated
by the following equations:

Hout = ⌊Hin + 2 · padding[0]
stride[0]

+ 1⌋
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Figure 1: MaxPool 2D equation

and

Wout = ⌊Win + 2 · padding[1]
stride[1]

+ 1⌋

For our simple convolution, all convolutional layers were
kernel size 3x3, stride 1, and using ′same′ padding, which
adjusts the padding to keep the same height and width after
the layer. Each convolution is followed by a BatchNorm2d,
which operates following the equation

y =
x− E[x]√
V ar[x] + ϵ

· γ + β

where γ and β are learnable vectors. This allows us to re-
center the model’s outputs at mean 0 and standard deviation
1, which aids in model training.

We use a Max-Pooling layer of size 2x2 and stride 2
after every layer in order to reduce the spatial dimension.
The Max Pooling function’s output from a layer with input
size (N,C,H,W ) and output (N,C,Hout,Wout) and ker-
nel size (kH, kW ) is here 1. We chose the ReLU activation
function, which is defined as

ReLU(x) = max(0, x)

where the max is applied elementwise.
Finally, we use two fully connected layers each seperated

by the ReLU function.
Our simple architecture is (Conv → BatchNorm →

ReLU → MaxPool) x 4 → FC. The convolutions upsam-
ple the channels up to 512, while our pooling downsamples
height and width down to 8.

3.2.3 Simple Residual Model

Our simple residual model used many of the same elements
of the simple convolution model. However, the backbone is
now a residual unit which consists of two (Conv → Batch-
Norm → ReLU) blocks, followed by the addition of the
(downsampled or upsampled, if necessary) input. Mathe-
matically, it would be similar to have some function

y = f(x) + x,

and here is a diagram of the block 2.
Our residual model consists of 4 sequential blocks, each

of which contain three residual blocks and then a Max-
Pooling layer. The channels are increased to 512 and the
height and width down to 8, and then that is fed into two
fully connected layers with ReLU activation.

Figure 2: Residual Block

Figure 3: ResNet Architecture

3.2.4 Resnet Models

Our Resnet models all used ResNet-50 as a backbone. We
will not get too lost in the details of ResNet-50’s architec-
ture, but at its core it consists of several convolutions lay-
ers armed with residual connections which allow it to avoid
vanishing gradient problems and train very effectively. Be-
cause our image size is not the same as the 224x224 ex-
pected by ResNet-50, we first introduce a convolutional
layer to turn our image into that size. Then, we piggyback
off the powerful feature extraction capabilities and add two
fully connected layers directly after the ResNet-50 call, sep-
arated by the ReLU activation function.

This network also uses the Cross-Entropy loss as defined
in Section 3.2.1.

We experimented with two models: one where we froze
the parameters of ResNet-50, and one where we unfroze
them.

3.3. Training Details

3.3.1 Logistic Regression

For our logistic regression, we used sklearn’s LogisticRe-
gression Class. First we applied ResNet-50 on all of
our training examples to extract features, and then used
sklearn’s API in order to train our model. It was extremely
simple and straightforward compared to the others.

3.3.2 Deep Models

All of the other proposed models, including the naive
convolution, simple residual convolution, as well as the
ResNet-50 architectures, were trained using PyTorch. First,
we converted our image directories into PyTorch dataload-
ers using built-in functions. With the 128x128x3 images,
we found that we could comfortably use a batch size of 64
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while maintaining reasonable training speed and avoiding
memory issues.

Our optimizer of choice was Adam, using an initial
learning rate of 0.001, and a weight decay of 0.0001. How-
ever, we saw issues with our model training as the epochs
went on, and as such decided to use a different strategy to
control our learning rate and improve results.

For our learning rate, we used PyTorch’s OneCycleLR
learning rate scheduler, which anneals the learning rate
from an initial learning rate to some maximum learning
rate and then from that maximum learning rate to some
minimum learning rate much lower than the initial learn-
ing rate. The exact policy is described in the paper Super-
Convergence: Very Fast Training of Neural Networks Using
Large Learning Rates [14]. In our case, that means that our
learning rate would start at 0.001, increase to 0.01 (which
we set as an upper bound), and then decrease to something
much smaller than that. We saw greater success with this
learning rate scheduling strategy compared to any particu-
lar learning rate that we tried, likely due to it preventing the
model from stepping too far away from optimum towards
the end of the training process.

We trained all of our models for 10 epochs. We did this
not only because training them for longer would take too
much time, but also because our models seemed to converge
within those 10 epochs in most cases, likely due to our use
of the OneCycleLR scheduler.

4. Dataset
The dataset used for this project [4] is recreated from

PlantVillage [6] database using augmentation. It consists
of healthy and unhealthy leaf images divided into 38 cate-
gories by species and disease. The resolution of the images
is 256 x 256, but to prepare the dataset for faster training,
the images are re-sized to 128 x 128 pixels at the expense
of some visual detail. We also attempted to use a 64 x 64
pixel image, however the amount of detail lost was deemed
to be too great. The dataset was pre-split into training, val-
idation, and test sets using each with 70295, 17572 and 38
images in them respectively. In order to make the test set
contain more data, we used roughly a 60/20/20 split after
removing mislabeled data from the dataset. This resulted
in 56251 training, 17572 validation and 14044 test images.
Examples of the training dataset is demonstrated in Figure
4 for apple plants in four states: healthy, scabby, rotten and
rusty.

A diagram detailing the number of training examples for
each class is included here Figure. 5. Our dataset was rela-
tively well balanced, to the point where we did not feel the
need to employ reweighted Cross-Entropy loss or special-
ized methods to sample batches.

Because the dataset already contained several augmenta-
tions (such as rotation, brightened or darkened, etc), we did

(a) Scab (b) Black rot (c) Rust (d) Healthy

Figure 4: Examples of different phenotypes of apple plants

Figure 5: Training dataset distribution across classes

not employ any augmentations of our own.

5. Experiments
Our process for selecting hyperparameters was relatively

hands off. Because we had extensive use of batch norm lay-
ers both in our own models and in ResNet-50, it was in our
best interest to have the batch size as large as possible for
the best batch normalization performance. That ended up
being a batch size of 64 for the 128 x 128 pixel images. We
employed the use of a learning rate scheduler, setting an ini-
tial learning rate of 0.001 (which is within standard range)
and a maximum learning rate of 0.01 (also within standard
range). We utilized the Adam optimizer with a weight de-
cay factor 0.0001, which takes into account the complexity
our model would need while also somewhat encouraging
the weight values to be small. We chose to use 10 epochs
initially as a starting point and adjust as needed, however
we saw convergent behavior consistently within 10 epochs,
likely due to the scheduler that we used.

6. Results
6.1. Quantitative results

We ran the different models for 10 epochs and obtained
statistics after each epoch. The results are shown in Table 1
in forms of final training loss and accuracy values. Table 2
also shows the precision and recall values that can be used
to compare the different models we considered. To better
understand how these models generalize to new and unseen
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data, we also obtained test accuracy values, shown in Table
3.

Val Loss Val Accuracy
LogReg 0.271 0.941
Kaggle 0.193 0.941

Raw CNN 0.047 0.985
Residual Blocks 0.051 0.984
Resnet Frozen 0.751 0.773

Resnet Unfrozen 0.112 0.965

Table 1: Loss and Accuracy from Final Epoch

Precision Recall
LogReg 0.941 0.941
Kaggle 0.941 0.941

Raw CNN 0.985 0.985
Residual Blocks 0.984 0.984
Resnet Frozen 0.771 0.772

Resnet Unfrozen 0.965 0.965

Table 2: Precision and Recall from Final Epoch

Test Accuracy
LogReg 20.3%
Kaggle 59.7%

Raw CNN 50.6%
Residual Blocks 47.6%
Resnet Frozen 29.4%

Resnet Unfrozen 65.6%

Table 3: Test Set Performance

Based on these results, we can see that our proposed
method of using ResNet-50 architecture and training all the
layers achieved the highest performance on the test set. The
loss curve, precision-recall curve as well as the confusion
matrix of our proposed method are shown for visualization
purposes of the results.

The loss curve (Fig 6) shows a consistent fall in the train-
ing loss value as well as for validation loss value that starts
from a relatively large value.

The precision-recall curve (Fig. 7) shows the trade-off
between precision and recall for different threshold. For
all 38 classes, the curves have similar characteristics: the
classifier maintains both a high precision and high recall
across the graph at most thresholds. This means that the
model is returning accurate results as well as a majority of
all positive results.

Fig. 8 is the confusion matrix for our proposed method.
High values on the diagonal imply that the model performs

Figure 6: Loss Curve

Figure 7: Precision-Recall Curve

Figure 8: Confusion Matrix

well on the dataset. For example, healthy strawberry (straw-
berry healthy) has a diagonal value of 477, indicating that
the model correctly predicted this class 477 times. Since the
off-diagonals have relatively lower values, we can see that
the model does not misclassify as much.
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(a) Grape leaf with esca (b) Grape leaf with rot

Figure 9: Failure case 1: Same plant type with different
diseases

(a) Healthy apple leaf (b) Healthy cherry leaf

Figure 10: Failure case 2: Healthy plants of different types

6.2. Qualitative results

In this section, we look at failure modes to understand
why the model mislabeled data. Inspecting the misclassified
instances, we found out that there were mainly two failure
cases. The first one was that the plant was correctly identi-
fied but the disease was mislabeled, as seen in Figure 9. The
second case was when the disease condition type matched
but the plant type was misclassified as shown in Figure 10.
Such failures could be due to the fact that there are low inter-
class variation: images from the same sub-class share very
similar visual characteristics.

7. Conclusion & Future Work

In this paper, we experimented with multiple classifica-
tion architectures to predict plant diseases based on images
of plant leaves. Our final model, training all the layers of
ResNet-50 architecture on our dataset, performed the best
(in terms of test accuracy as it shows model’s ability to gen-
eralize to new and unseen data): validation set accuracy of
96.5% and test set accuracy of 65.6%.

If we had more team members, time and compute, we
would have liked to train our model on the original dataset
without having the need to down sample them. We would
also like to explore other architectures and models such as
transformers, which might improve model performance on

our dataset.
Nevertheless, we learned a lot from this project, from

transfer learning to visualization of our results. This work
provides an efficient method for detecting different plant
diseases, especially for plant owners who do not necessar-
ily have expertise in plant pathology. With further advance-
ment in the field of computer vision, this system can be in-
tegrated to drones for live and automated agricultural detec-
tion processes.
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