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Abstract

Emotion recognition plays a crucial role in interper-
sonal social interactions, making it essential for robots
and human-centered systems to accurately identify and re-
spond to human emotions. While high accuracy has been
achieved in classifying emotions from static images, recog-
nizing emotions in videos presents a more complex and re-
alistic challenge. This paper explores and implements var-
ious deep learning architectures to enhance the accuracy
of human emotion detection in videos. We used RAVDESS
dataset in our project and experiment with different dataset
preprocessing techniques, such as resizing and data aug-
mentation to boost model performance. Our best model
achieved an accuracy of 84%. Finally, we present our re-
sults and discuss future work necessary for further advance-
ments in this field.

1. Introduction
Human emotion recognition has long been a crucial re-

search area for human-interacting robotics, as an intelligent
system can only effectively interact with humans after ac-
curately identifying their emotions. Emotions can be con-
veyed through both visual (body gestures, facial expres-
sions) and non-visual (speaking tones, word choice) cues.
In 1967, Mehrabian demonstrated that 55% of emotional
information is communicated visually, while vocal and ver-
bal information account for 38% and 7%, respectively [7].
Our deepest emotions often manifest not through words, but
through subtle nuances in our facial expressions, such as
the rising corners of the mouth or furrowed brows. There-
fore, this research focuses primarily on emotion recogni-
tion using features extracted from visual facial expressions
in videos.

In this project, we evaluate some popular deep learning
solutions to recognize emotions from facial expressions de-
tected in the videos, trained and tested with the RAVDESS
dataset[5]. We begin with an early fusion approach as a
baseline. This method reshapes the input 4D video frames
into a three-dimensional matrix by combining the channel

and time sequence dimensions. The resulting matrix is then
fed into a basic 2D Convolutional Neural Network (CNN)
to predict the emotion label. Subsequently, we implement
a late fusion model, which concatenates the output feature
maps extracted from each video frame and uses these con-
catenated features to predict the emotion class. To leverage
the transitions between neighboring video frames and ex-
tract temporal features, we introduce a more advanced 3D
CNN model, which achieves better accuracy by utilizing
this temporal information.

Finally, we employ a Recurrent Convolutional Neural
Network (RCNN) to more effectively utilize the sequential
nature of video frames. Our RCNN model extracts features
for each time frame by incorporating the feature map from
the previous time step and the information from the same
frame at a shallower layer. This approach allows us to in-
clude both deep features extracted from each time frame and
temporal features from the transitions between frames, pro-
viding the model with more comprehensive and informative
data.

The specific structure of the dataset and the detailed im-
plementation of the models will be discussed in following
sections.

2. Problem Statement
Emotion recognition using facial expressions is a well-

established area of research within computer vision. In
our project, the input to the emotion recognition model is
a video of human speech, which consists of a sequence of
frames. We can express the input to the model as a 4D ten-
sor of size T × C × H × W , where T is the number of
input frames, which can be smaller than the total number of
frames in the video via sampling. C is the channel size of
each frame (which is usually 3), and H and W are frame
height and width respectively. The output of the model is
a class label l that categorizes the video into different emo-
tions.

In this project, we will initially apply basic convolutional
methods such as early fusion and late fusion, which we
have learned in class, to video data for classifying emotions.
We will then advance our approach by implementing a hy-
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brid model that combines Convolutional Neural Networks
(CNNs) for spatial feature extraction with Recurrent Neural
Networks (RNNs) for temporal sequence modeling.

We hypothesize that a larger, more complex model will
significantly outperform simpler models in the task of emo-
tion classification. Although we will not explore new archi-
tectures in this project, we will implement multiple estab-
lished networks widely utilized in computer vision tasks.
We will conduct experiments to provide insightful analysis
on the behavior and performance of these networks.

This project will benefit us in two significant ways:
firstly, it will enhance our experience with processing video
data and employing computer vision techniques. Secondly,
it will lay a strong foundation for us to venture into more
sophisticated computer vision projects.

3. Related Work
The six principal emotions—happiness, sadness, anger,

fear, surprise, and disgust—were initially identified by Ek-
man and Wllace [2] in the field of emotion recognition.
Neutral was included in most human recognition datasets
later on. The RAVDESS dataset also includes calm as an
additional emotion, resulting in eight basic emotions in this
project.

Most modern methods for facial expression recognition
(FER) are based on deep learning and have achieved re-
markable success in predicting emotions. These approaches
generally employ different types of deep neural networks
with convolutional layers. Due to their versatility in numer-
ous computer vision tasks, convolutional neural networks
(CNNs) have proven highly effective in emotion recognition
from video-based datasets. Andrej et al. [4] provided an ex-
tensive empirical evaluation of CNNs on large-scale video
classification using a dataset of 1 million YouTube videos
belonging to 487 classes. The authors investigated three
approaches - early fusion, late fusion, and slow fusion - for
fusing information across the temporal domain. We will ap-
ply these three approaches to the RAVDESS dataset in this
project and conduct thorough experiments to explore their
effectiveness in emotion recognition. Our goal is to deter-
mine which fusion method yields the highest accuracy and
robustness in predicting the eight basic emotions present in
the dataset. Through these experiments, we aim to gain in-
sights into the optimal strategies for leveraging temporal in-
formation in video-based emotion recognition tasks.

Hybrid network proved to be a promising approach to
improve the accuracy of emotion recognition. Fan et al.
[3] presents a video-based emotion recognition system that
utilizes a hybrid network, consisting of Recurrent Neural
Network (RNN) and 3D Convolutional Network (C3D).
This paper primarily focuses on extracting temporal infor-
mation from videos, rather than solely relying on spatial
information. Unlike many previous models that extracted

static frames from videos and treated them as images, this
approach aims to leverage the dynamic aspects of video
data to predict emotions more accurately. The paper uti-
lized C3D to model appearance and motion information si-
multaneously, and further combining it with Long Short-
Term Memory (LSTM), which is proved to be efficient in
dealing with long sequences of input data. Two-stream
networks proposed by Simonyan and Zisserman [11] that
separate motion and appearance for action recognition in
videos achieve better results. Similarly, Manalu et al. [6]
developed a hybrid Convolutional Neural Network – Re-
current Neural Network (CNN-RNN) model that is adept at
detecting human emotions derived from facial expressions
based on video data. Three models – MobileNetV2-RNN,
InceptionV3-RNN, and custom CNN-RNN – are developed
for the classification. The authors concluded that the de-
veloped models demonstrate enhanced efficiency in distin-
guishing nuanced emotions on Emotional Wearable Dataset
2020. It is worth noting that this dataset also consists of
amusement, enthusiasm, awe, and liking that were not of-
ten explored in other datasets.

In facial expressions, much of the information is often
derived from specific parts of the face, such as the mouth
and eyes, while other parts, like the ears and hair, contribute
minimally. Therefore, an effective machine learning frame-
work should concentrate on these crucial facial regions and
be less sensitive to less informative areas. Because of the
close relationship between face alignment and facial expres-
sion recognition, Tautkute et al. [12] proposed to build upon
Deep Alignment Network (DAN), an innovative facial land-
mark detection model, to exploit the location of these facial
landmarks (like eyes, lips, and eyebrows) and to use such in-
formation to improve the accuracy of video emotion recog-
nition. Minaee et al. [9] proposed a deep learning approach
based on attentional convolutional network, which is able to
focus on important parts of the face and achieves significant
improvement over previous models on multiple datasets, in-
cluding FER-2013, CK+, FERG, and JAFFE. The authors
also use a visualization technique which is able to find im-
portant face regions for detecting different emotions, based
on the classifier’s output.

Recently, there has been a growing interest in multi-
modal emotion recognition. Pan et al. [10] provides a
comprehensive review of multimodal emotion recognition
from the perspectives of multimodal datasets, data pre-
processing, unimodal feature extraction, and multimodal
information fusion methods in recent decades. This pa-
per summarizes an emotional recognition system into four
pipeline stages: data collection, data preprocessing, emo-
tional feature extraction and emotion recognition. It was
also pointed out that by properly fusing different modali-
ties, emotional recognition performance can be enhanced
because different modalities complement each other. The
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work by Middya et al. [8] explores model-level fusion to
find out the optimal multimodal model for emotion recog-
nition using audio and video modalities. Separate fea-
ture extractor networks for audio and video data are pro-
posed, and an optimal multimodal emotion recognition
model is created by fusing audio and video features at
the model level. Aziz et al. [1] proposed MMTF-DES,
a unified multimodal transformer-based framework with
image-text pair settings to identify human desire, senti-
ment, and emotion. In this paper, the authors finetuned two
pre-trained multimodal transformer models, Vision-and-
Language Transformer (ViLT) and Vision-and-Augmented-
Language Transformer (VAuLT), as multimodal encoders
to extract effective integrated contextual-visual features in
the MMTF-DES model. The paper also experiments with
different unimodal inputs, and found out all text models
perform better than all image models by a large margin,
and hence it concludes the multimodal human desire un-
derstanding task is a text modality-dominant task. It would
be interesting to see whether using video instead of image
would change the balance of dominance between different
modalities in this study.

4. Data
The dataset we use is RAVDESS[5], which is a vali-

dated multimodal database of emotional speech and song.
The database is gender balanced consisting of 24 profes-
sional actors, vocalizing same statements in a neutral North
American accent. Speech includes calm, happy, sad, angry,
fearful, surprise, and disgust expressions, and the song con-
tains calm, happy, sad, angry, and fearful emotions. Each
expression is produced at two levels of emotional intensity
(normal, strong), with an additional neutral expression. The
data split we used only consisted of speech actors, no songs.
It consists total of over 1,400 video clips with resolution of
1280 * 720, with each less than 5 seconds. We randomly
split the dataset into three parts, where 70% is the training
set, 10% is the validation set and 20% is the test set.

To make the input to our model manageable, we prepro-
cess each clip by sampling one frame every 0.5 seconds for
a total of 6 frames, starting from 0 second. Hence we get
a sequence of 6 frames for each clip, which we then use as
input to our emotion recognition model. The bottom of fig-
ure 1 shows 5 of the frames sampled from one video clip.
In later experiments, we also investigate into the effect of
increasing frame samples to 10 or 16 per video.

We chose to use the RAVDESS dataset because of its
simplicity and well-classified emotional states, which we
found to be inclusive and general. In our project, we used
only the raw video data and disregarded the audio part of the
dataset due to time constraints. Our future research plans in-
clude incorporating the audio data to evaluate the accuracy
improvement with the additional modality. Additionally, we

would like to extend our work to other emotional classifica-
tion benchmark datasets.

5. Methods

We implemented and experimented with several differ-
ent deep learning models, and we discuss about them in this
section.

5.1. Early Fusion Model

The initial architecture we employ in our project, which
also serves as our baseline, is the early fusion model. This
model receives input in the shape of (T,C,H,W ) and
straightforwardly reshapes the matrix to (T ∗ C,H,W ).
This process allows the model to superficially integrate tem-
poral information from the videos. After reshaping, the in-
put is fed into a standard 2D Convolutional Neural Network
(CNN) to determine the emotion label, as shown in Figure
1. We have chosen to implement the early fusion model
due to its widespread use in video classification tasks. The
simplistic reshaping at the start of the 2D CNN architecture
enables it to extract temporal features from the transitions
between different video frames, making it an appropriate
starting point for our project.

Figure 1. The structure of early fusion model. The input frames
will be reshaped to be a three-dimensional matrix and be passed
into a 2D CNN model to predict emotion label

The 2D CNN model used in our early fusion model has
the following structure:

We use the first four convolution layers to attempt to
extract deep features from the frames, and the receptive
field of the last convolution layer covers the whole H×W
region of the input of the first convolution layer, enabling
the model to learn more comprehensive features form the
raw frames. Batch Normalization and ReLU activation are
applied after each convolution layer, and we also apply
dropout layer after each fully connected layer to prevent po-
tential overfitting.
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# Kernels Kernel Size Stride Padding
Conv1 64 3 2 1
Conv2 128 3 2 1
Conv3 256 3 1 1
Conv4 512 3 1 1
FC1 output size: 512
Dropout p = 0.5
FC2 output size: 1024
Dropout p = 0.5
FC3 output size: 8

Table 1. Early Fusion Architecture

5.2. Late Fusion

Next, we transition to the late fusion model, which dif-
fers structurally from the early fusion model. In the late
fusion model, each frame in the sequence is fed into the
same 2D CNN model. The extracted feature maps, shaped
(T,C ′, H ′,W ′), are flattened and passed into subsequent
fully connected layers to predict a single emotion label. The
structure of late fusion model is demonstrated in Figure 2.

Figure 2. The structure of late fusion model. Each frame will be
passed into a 2D CNN, and the resulting features extracted from
all frames will be concatenated, flattened, and passed to fully con-
nected layers to output prediction label

In contrast to early fusion model in which all raw
frames are combined directly, late fusion models merge
the extracted feature maps from each image, allowing each
modality to be processed independently before integration.
This approach facilitates the model’s ability to learn better
temporal features from the original video clips. By focus-
ing on refined feature maps rather than raw data, late fusion
can capture the temporal dynamics and interactions more
effectively, leading to improved performance and a more
nuanced understanding of the video content. This indepen-
dence and specialization in processing also make late fusion
models more adaptable and robust to variations and noise in
the data.

The parameters in the 2D CNN used in our late fusion
model are specified in Table 2.

Similar to the early fusion structure, the parameters in
the late fusion model are designed to increase the recep-
tive field and optimize the trade-off between training time

# Kernels Kernel Size Stride Padding
Conv1 16 3 2 1
Conv2 32 3 2 1
Conv3 64 3 1 1
Conv4 128 3 1 1
FC1 output size: 512
Concat output size: 512*num frames
Dropout p = 0.5
FC2 output size: 1024
Dropout p = 0.5
FC3 output size: 8

Table 2. Late fusion Architecture

and model performance. Additionally, batch normalization
and dropout are incorporated to enhance model training and
prevent overfitting.

5.3. 3D CNN

Both the late fusion model and the early fusion model
fuse the frame sequences at certain stages before passing
them into the final prediction layer. However, their ability
to extract insightful and meaningful temporal information
from video frames remains limited because they rely on a
single layer to combine all frames, thus learning very little
in the temporal dimension. To address this issue, we imple-
ment a 3D CNN model, which places greater emphasis on
learning temporal features from the sequences.

Figure 3. The structure of 3D CNN model. Instead of fusing
frames or features extracted from all slices, 3D CNNs take into
the video frames matrix directly without reshaping or concatena-
tion. In each 3D convolution layer, the input is convolved with a
group of three-dimensional kernels, enabling the model to learn
and extract both spatial and temporal features. Fully connected
layers are added at the end of the model to flatten the feature maps
and predict class labels

3D Convolutional Neural Network (3D CNN or C3D)
extends the capabilities of traditional 2D CNN by convolv-
ing three-dimensional kernels with 3D inputs, making them
ideal for applications involving temporal sequences. Un-
like 2D CNNs, which process spatial features in each frame
independently, 3D CNNs analyze sequences of frames si-
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multaneously, capturing both spatial and temporal informa-
tion. This allows 3D CNNs to recognize motion patterns
and temporal dependencies directly from the data, leading
to more accurate and robust predictions in video classifi-
cation tasks. Thus, we believe the 3D CNN model can
offer more comprehensive insights about the relationship
between neighboring frames, consequently learning more
complex patterns and features along the temporal axis. The
overall implementation of 3D CNN model is illustrated in
Figure 3

The parameters used in our structure are listed as in Ta-
ble 3. Batch normalization and ReLU activation are applied
after all layers but the last fully connected layer. We also
implement a 3D Max Pool layer after each 3D convolu-
tion layer to reduce the sizes of extracted feature maps, and
dropout layers were added after the first two fully connected
layers to prevent overfitting.

# Kernels Kernel Size Stride Pad
3D Conv1 16 3 (1, 2, 2) 1
3D Conv2 32 3 (1, 2, 2) 1
3D Conv3 64 3 (1, 1, 1) 1
3D Conv4 128 3 (1, 1, 1) 1
FC1 output size: 1024
Dropout p = 0.5
FC2 output size: 512
Dropout p = 0.5
FC3 output size: 8

Table 3. 3D Convolution Neural Network

5.4. RNN-CNN

While 3D Convolutional Neural Networks (3D CNNs)
excel at capturing temporal features in video data by pro-
cessing sequences of frames simultaneously, they are lim-
ited in their ability to capture relationships beyond a few
neighboring video slices. This limitation arises because
3D CNNs primarily focus on local temporal dependencies
without considering long-term sequential information.

To address this, we transition to Recurrent Convolu-
tional Neural Networks (RNN-CNNs), which combine the
strengths of recurrent neural networks (RNNs) with CNNs
to emphasize the sequential nature of video frames. In an
RNN-CNN, each hidden layer takes two inputs: the feature
map from the same layer at the previous time step and the
feature map from the current time step but from a previous
layer. This dual input mechanism enables the RNN-CNN
to effectively capture both the deep spatial features in each
frame and the long-term temporal dependencies between
video slices. Furthermore, we introduce the Long Short-
Term Memory (LSTM) structure as the RNN component in
our implementation. This aims to enhance the model’s abil-
ity to utilize features extracted from frames that are from

the very beginning of the videos, and mitigate the issue of
gradient vanishing. The structure of our RNN-CNN model
is shown in Figure 4.

Figure 4. The structure of RNN-CNN model. The entire network
uses 2D convolution layers and 2D feature maps. The outputs of
each layer at each time step are dependent of both the feature map
from the last layer at the same time step and the feature map from
the last time step at the same layer. We implement an average layer
and subsequent fully connected layer after the last layer to take all
outputs from last layer into consideration to generate a prediction

The parameters used in our RNN-CNN model are listed
as the following (Table 4). At each layer, the input size and
the hidden size of LSTM are set to be equal to the number
of output channels of that layer.

# Kernels Kernel Size Stride Pad
Conv1 + LSTM 16 3 2 1
Conv2 + LSTM 32 3 2 1
Conv3 + LSTM 64 3 2 1
Conv4 + LSTM 128 3 2 1
AveragePool -
FC1 output size: 1024
Dropout p = 0.5
FC2 output size: 256
Dropout p = 0.5
FC3 output size: 8

Table 4. RNN-CNN model

We initially considered using a transformer to provide
our emotion detection model with long-term memory as
well as self-attention schemes, but eventually we chose to
use RNN-CNN instead. While video transformers have the
advantage of processing all frames in parallel, making them
more efficient for longer sequences, our project involves rel-
atively short video lengths with a limited number of frames.
Therefore, the efficiency gain from using a transformer is
not critical in our case.
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6. Experiments
The experiments section is divided into three sub-

sections. In the first sub-section, we will evaluate the impact
of various data preprocessing techniques on model perfor-
mance. Then in the second sub-section, we will compare
the overall performance of above mentioned architectures:
early fusion, late fusion, 3D CNN, and RNN-CNN. In the
last sub-section, we will provide insightful and deeper qual-
itative analysis on the best model. We use accuracy as our
main evaluation metric for model performance.

For all experiments except image downsize, we trained
each model for 40 epochs, which is sufficient for each
model to converge with no further increase in validation ac-
curacy. We use a batch size of 10, which is not too small to
make training unstable, but also not too large to make train-
ing slow. When evaluating each model on the test dataset,
we take the model checkpoint after the epoch with high-
est validation accuracy. The experiment on image downsize
uses epoch size of 25 and batch size of 3. This is primarily
because models on images of original size (1280*720) has
much more trainable parameters. Hence training is much
slower, and we also get out of memory error on larger batch
sizes.

We employ the Adam optimizer, known for its efficiency
in both computational and memory requirements. After
hyperparameter tuning, we configured the Adam optimizer
with a learning rate of 0.001 and a weight decay of 0.0005
to prevent overfitting. This configuration allows all models
in our experiment to converge at a reasonable speed. Ad-
ditionally, we use a learning rate scheduler to reduce the
learning rate by a factor of 0.5 if the monitored metric does
not improve for 2 consecutive epochs. This helps to fine-
tune the training process and improve model performance.

6.1. data processing techniques

6.1.1 Image downsize

The original image frames extracted from the video have a
very high resolution of 1280 by 720 pixels. Training mod-
els on these high-resolution images is very slow. To address
this, we evaluate the effectiveness of training with original
images (1280x720) versus downsized images (224x224).
We hypothesize that training with downsized images will
be much faster due to the significantly reduced number of
convolution operations. Additionally, we expect that the ac-
curacy on the datasets will remain similar. The image size
of 224x224 is commonly used in pre-trained vision models
such as VGG and ResNet, which suggests that downsizing
to this resolution should still retain the essential facial de-
tails necessary for classifying emotions accurately.

In this experiment, we trained the early fusion model and
late fusion model on both the original dataset and down-
sized dataset. Table 5 shows the results from both models.

As shown in the table, the training time per epoch is sig-
nificantly shorter for the downsized dataset. Surprisingly,
the test accuracy is also higher for the downsized dataset.
This may be because it is easier for the model to identify
emotion-indicating regions in smaller images.

Due to the overwhelming benefits of using the down-
sized dataset, and given the time constraints in running dif-
ferent models, we decided to use only downsized dataset
(224*224) for all remaining experiments.

Training time per epoch Test Accuracy
Early Fusion 3 minutes → 6 seconds 59.7 → 60.5
Late Fusion 3 minutes → 5 seconds 63.5 → 66.4

Table 5. Image Resize: number before the arrow is result from the
original dataset, and number after the arrow is the result from the
downsized dataset. We see downsize dataset is better in terms of
training time and test accuracy.

6.1.2 Data Augmentation

Data augmentation is a techinique often used for improving
model robustness and generalizability. In this experiment,
we evaluated the model performance on data-augmented
dataset. We apply the following image transformations with
a certain probability during training:

• Randomly adjust the contrast, saturation, hue,
brightness, and also randomly permutes channels
(with probability of 0.5). We used PyTorch’s
RandomPhotometricDistort() function with
default parameters.

• Horizontal Flip (with probability of 0.5).

Table 6 shows the model accuracy without and with
data augmentation for all three models using our downsized
dataset. We see that late fusion performances better with
data augmentation, while the performance deteriorated for
early fusion and 3D CNN. As a result, there is no consis-
tent results that indicate data augmentation improves model
performance. Table 7 provides more results where we do
not see consistent benefit of data augmentation either. This
might be because our model already learns robust feature
representations for each emotion even without data aug-
mentation. It is also possible that our current data augmen-
tation scheme is not optimal, and we need to change the
transformations used in order to get better results.

6.1.3 Sample more frames

Initially, we sampled 6 frames from each video. We also
created additional datasets with 10 and 16 frames per video,
where the frames are equally spaced in time. We hypoth-
esize that including more frames as inputs to the model
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Test Accuracy
Early Fusion 71.1 → 63.4
Late Fusion 66.6 → 72.8
3D CNN 77.4 → 70.4
RNN-CNN 70.4 → 62.7

Table 6. Data Augmentation: number before the arrow is without
data augmentation, and number after the arrow is with data aug-
mentation. We do not see consistent benefit of data augmentation.

will increase its accuracy. This is because a larger num-
ber of frames improves the likelihood of capturing frames
that clearly indicate specific emotions.

Table 7 shows the result with different number of sam-
ples. As expected, for each model architecture, training
with dataset of more frame samples per video leads to
higher test accuracy. This leads us to think that for all com-
puter vision tasks on videos, sampling frequency should
be an important hyperparameter on the final model perfor-
mance. It appears that the model performances is positively
correlated with the number of frames per video, but the per-
formance gain will diminish at some point.

6 Frames 10 Frames 16 Frames
Early Fusion 71.1 74.7 76.5
Late Fusion 66.6 81.3 80.3
3D CNN 77.4 83.7 84.4
RNN-CNN 70.4 76.8 80.6

Table 7. Sample more frames: more frames leads to better perfor-
mance

6.2. Model Comparison

In this section, we conducted thorough experimentation
with all model/dataset combinations. For each model archi-
tecture, we trained it on datasets with different number of
frames and with/without data augmentation. Table 8 shows
the results of all combinations, and it’s very clear that 3D
CNN has the best performance both in terms of best ac-
curacy and average accuracy. Late fusion is the next best,
whereas Early fusion and RNN-CNN has the lowest accu-
racy. The order of accuracies of 3D CNN, late fusion and
early fusion is consistent with what we learned in the lec-
ture on video classifications, though the RNN-CNN per-
formance is worse than expected. We think RNN-CNN
might require more architecture tuning in order to further
improves the accuracy, since its architecture is more com-
plex than the other three models.

6.3. Qualitative Analysis

In this section, we further analyze the performance of the
best model from section 6.2. The best performing model is

3D CNN model trained on dataset with 16 frames and no
data augmentation.

Among all the emotions, the model performs best for
neutral expressions, achieving 100% accuracy, as shown in
Figure 5. It also achieves a high accuracy of 94.7% for dis-
gust expressions. However, the model struggles with sur-
prised and fearful expressions, reaching only about 75% ac-
curacy for these emotions. This difficulty arises because
surprised and fearful expressions have similar facial fea-
tures, making them hard to distinguish. Interestingly, our
model achieved very high accuracy for disgust expressions,
which previous research identified as one of the hardest
emotions to distinguish.

Figure 5. model accuracy on different classes. The model performs
best on neutral expressions and worst on surprised and fearful ex-
pressions.

Figure 6 shows the confusion matrix, where we summa-
rize model prediction in matrix form. We see that two errors
occurs the most (5 times), and these are: predicting calm as
neutral, predicting angry as sad. Calm and neutral are hard
to distinguish with only image input, since they have very
similar expressions. This can be illustrated by their average
images in Figure 7. Angry and sad would be easy to differ-
entiate from human’s perspective, but these two expressions
do have similar features, such as frowned face, where it is
easy for model to get confused.

Figure 8 shows some examples misclassified by the
model. Some of the examples shown are hard for us to clas-
sify as well, such as the fourth and fifth one. It would be
much easier for us if we can listen to the actor’s speech.
This indicates that video-only emotion classification might
not be the most effective, and adding audio as another
modality could greatly improve model accuracy. We also
notice that even though some examples have the same emo-
tion label, the facial expression of the actor can be pretty
different. For example, the true class for second and third
row is ’angry’, though it is much more obvious for a human
to determine third row as ’angry’ than the second row.

7



6 Frames 6 Frames 10 Frames 10 Frames 16 Frames 16 Frames Average
+Augment +Augment +Augment Accuracy

Early Fusion 71.1 63.4 74.7 77.2 76.5 80.3 73.9
Late Fusion 66.6 72.8 81.3 81.7 80.3 77.5 76.7
3D CNN 77.4 70.4 83.7 76.8 84.4 78.5 78.5
RNN-CNN 70.4 62.7 76.8 78.5 80.6 72.0 73.5

Table 8. Model accuracy on datasets with different processing techniques. Best accuracy for each model is highlighted. Average accuracy
is computed per row. The order of performance is: 3D CNN > late fusion > early fusion ≈ RNN-CNN.

Figure 6. Confusion matrix. X axis is predicted class and Y axis is
true class. Two errors that occurs the most are: predicting calm as
neutral, predicting angry as sad.

Figure 7. Average image for each class.

7. Conclusion/Future Work

In this project, we explored four model architectures,
which are early fusion, late fusion, 3D CNN and RNN-
CNN, on the task of emotion recognition on videos. We
found that 3D CNN performs best both in terms of best ac-
curacy and average accuracy. This is expected because 3D
CNN places greater emphasis on learning temporal features

Figure 8. Examples of misclassified images. Due to space con-
straints, only 6 out of 16 frames are shown for each example.

from the sequences than early fusion or late fusion. We
are also surprised that RNN-CNN is not the best perform-
ing model, and it might be because the architecture is more
complex and hence requires more hyperparameter tuning.
We also experimented with different data processing tech-
niques. We found image downsizing and increasing num-
ber of frame samples to be useful in improving test accu-
racy, and image downsizing also reduce training time signif-
icantly. Data augmentation, however, does not consistently
improve test accuracy in our experiments.

In future research, we aim to incorporate more advanced
and powerful models such as Transformers and the Deep
Alignment Network (DAN), which can potentially enhance
our emotion detection system by focusing more precisely on
specific facial features like eyebrows and lips [12]. While
the dataset used in our current project has been beneficial,
it is somewhat simplistic. For future work, we plan to em-
ploy a more realistic dataset, featuring people speaking and
gesturing in natural settings. This will help train our model
to be more reliable and applicable in everyday scenarios.
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Additionally, we intend to integrate multi-modal structures
into our future projects. By combining models that analyze
the emotional content of speech and voice, we can capture
non-visual cues, which play a significant role in revealing
human emotions, and these non-visual information is neces-
sary if we want to build a more comprehensive and nuanced
emotion detection system.
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