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1. Abstract

In pediatric patients, bone fractures can account for 25%
of all childhood injuries, and approximately 1 in 3 children
experience at least one bone fracture before age 17 [7].
Given the frequency of bone trauma in youth and the limited
availability of trained radiologists for image interpretation,
effective treatment is dependent on accurate and prompt
diagnosis [15]. Thus, object detection via deep learning
CNNs can serve as effective supplementary information for
diagnosing bone fractures. There are two significant chal-
lenges of performing object detection on medical imaging
datasets: 1) class imbalance, where the rarity of certain
medical conditions leads to limited availability of images
[8], and 2) the prevalence of noisy bounding box annota-
tions in medical images that are difficult to interpret [32]. In
this paper, we finetune state-of-the-art RT-DETR [35] and
YOLOv9 [28] end-to-end object detection models on the
GRAZPEDWRI-DX pediatric bone fracture X-ray dataset
[18] and obtain increases in model performance compared
to baseline results after utilizing data augmentation tech-
niques to mitigate class imbalance. We additionally analyze
the robustness of these models to erroneous/noisy labels by
further perturbing the bounding box annotations of training
images, and find that model performance is generally robust
to label noise for this dataset.

2. Introduction

Since bone fractures and other forms of bone trauma are
common in young patients, an accurate and timely diagno-
sis is crucial to ensuring successful treatment. As Lindsey
et al. demonstrate, the supplementary information provided
by automated diagnosis tools can improve the accuracy of
fracture detection and diagnosis by emergency medical clin-
icians [15]. Often, these medical professionals need to in-
terpret X-rays and make a speedy diagnosis in emergency
situations where radiologists may not be available, but they
are not trained in orthopedics or radiology; thus, deep neu-
ral network models could provide valuable information to
prevent misdiagnosis [15].

In this project, we finetune the state-of-the-art RT-DETR

[35] and YOLOv9 [28] object detection models and utilize
data augmentation techniques to perform object localization
on a dataset of pediatric bone fracture X-rays, in order to
generate bounding box labels for 9 classes (bone anomaly,
bone lesion, foreign body, fracture, metal, periosteal reac-
tion, pronator sign, soft tissue, text) corresponding to loca-
tions of interest. We apply and compare both one-shot and
two-shot object detectors to analyze the tradeoff between
accuracy and efficiency.

We perform bone fracture localization on pediatric bone
X-ray images by predicting the bounding boxes for different
instances, including fractures, lesions, metal (e.g. implants
from previous orthopedic surgeries), periosteal reactions
(new bone formation), or other abnormalities in the bone
structure, using the GRAZPEDWRI-DX dataset [18] as de-
scribed in the Datasets section. Specifically, we finetune
CNN object detection models (RT-DETR [35], YOLOv9
[28]) on the input of each train X-ray image, which is an-
notated with bounding box coordinates for each object of
interest and the corresponding class label for each set of co-
ordinates; the output consists of all predicted bounding box
coordinate(s) and class(es). Each image can have multiple
instances of multiple classes. We evaluate model perfor-
mance primarily using mAP (Mean Average Precision) at
IoU thresholds of 50 and 50-95, and secondarily using pre-
cision and recall.

2.1. Related Work

2.1.1 One-Stage Detection

Figure 1: YOLOv8-AM model architecture with additional
attention modules. Source: Chien et al. [6]

The YOLO models are a series of one-stage object de-
tection systems that simultaneously predict object classes
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and bounding boxes through one regression task [20]. The
current SoTA model on the GRAZPEDWRI-DX dataset
is Chien et al.’s YOLOv8 with Attention Mechanisms
(see Fig. 1), which experiments with adding four atten-
tion modules (i.e., Convolutional Block Attention [30],
Global Attention [16], Efficient Channel Attention [29],
and Shuffle Attention [34]) to the original YOLOv8 model
[6, 21]. These variations on attention mechanisms can
help the model focus on the relevant parts of the im-
age across different dimensions, and thus predict bound-
ing boxes more accurately [6]. Out of these four models,
YOLOv8+ResCBAM performs best, achieving an overall
mAP-50 score of 0.658 on GRAZPEDWRI-DX using an
image size of 1024 [6].

This is followed closely by Chien et al.’s adapted
YOLOv9-E model with additional brightness/contrast data
augmentation, which achieves a mAP-50 score of 0.6562 on
GRAZPEDWRI-DX with an input image size of 1024 [4],
although YOLOv9-E outperforms YOLOv8+ResCBAM on
the lower-resolution input image size of 640 (mAP-50 score
of 0.6546 vs 0.6295). The performance of these two mod-
els is comparable, but YOLOv9-E requires more compute
resources due to its increased complexity [4].

Dibo et al. also proposed the DeepLOC model (Deep
Learning-based Bone Pathology Localization and Classifi-
cation) which is based on YOLOv7 and achieves a mAP-50
score of 0.654 on GRAZPEDWRI-DX [9]. The YOLOv7
architecture is mainly characterized by model reparame-
terization and dynamic label assignment [27]. DeepLOC
modifies YOLOv7 by adding Shifted Window Transformer
blocks [17] and Global Attention blocks [16] in order to
lessen the computational complexity of the original Trans-
former module and calculate attention across the channel
dimensions of the input image [9].

2.1.2 Two-Stage Detection

Other general bone fracture detection systems have focused
on transfer learning through finetuning two-stage detectors,
with a main focus on Faster-RCNN [22]. The Faster-RCNN
model is a two-module network (region proposal, detec-
tor) that improves upon R-CNN [11] and Fast-RCNN [10]
through a Region Proposal Network (RPN) [22]. The RPN
uses a CNN to first identify potential regions where any in-
stances of objects of interest may be located in the input
image, and then only retains the regions that it is most con-
fident about [22].

One benefit of the Faster-RCNN model is that the RPN
backbone can be substituted with many known CNN net-
works. The original Faster-RCNN authors [22] experi-
mented with using backbones such as ZF [33], VGG-16
[23] and ResNet101 [12]. Tabarestani et al. further applied
this experimentation to fracture detection by finetuning

Faster-RCNN with InceptionV2 [13], ResNet101 [12], and
Inception-ResNet V2 [24] backbones on the MURA dataset
[19] of upper-body bone X-rays to achieve an AP@0.5 of
0.634 [25]. Abbas et al. also successfully finetuned the
last layers of Faster-RCNN to detect lower-body bone frac-
tures [1]. However, Faster-RCNN can be more inefficient to
train due to the large number of parameters in most back-
bone models (e.g., approximately 138 million parameters
for VGG [23]). Furthermore, through our own experimenta-
tion with finetuning Faster-RCNN on GRAZPEDWRI-DX,
we were not able to achieve reasonable mAP scores, sug-
gesting that two-stage detectors may be more challenging
to finetune than one-stage detectors for our dataset, espe-
cially when compute resources are limited.

2.1.3 Noisy Medical Image Annotations

As Xue et al. notes, the quality of object detection is signif-
icantly biased by the quality of bounding box annotations,
and such noisy annotations are common for medical imag-
ing datasets where the inherent ambiguity of images can
lead to errors in expert labelling [32]. Thus, robust medi-
cal image object detection is a crucial area of study, espe-
cially in scenarios where there is class imbalance or a lack
of easily-accessible expert-annotated medical data [32].

Research in this area has primarily centered on repre-
senting model uncertainty about labels for training images,
modifying loss functions to account for noisy labels, or fil-
tering out noisy samples [32]. For instance, Xue et al. pro-
poses a skin lesion classification network to detect images
with noisy labels through online uncertainty sample mining
[31]. Since noisy labels are a general issue in deep learn-
ing that can lead to networks overfitting erroneous labels,
Tanaka et al. also proposes a joint optimization framework
that continuously updates and potentially corrects noisy la-
bels, which has proven to be effective [26].

3. Technical Approach

3.1. YOLOv9 Baseline

The baseline is obtained by finetuning a pretrained
YOLOv9 model on GRAZPEDWRI-DX. Compared to pre-
vious YOLO models, YOLOv9 is unique as it introduces
the Programmable Gradient Information (PGI) framework,
which attempts to solve potential information loss issues as
denoted by the Information Bottleneck Principle [4]. Al-
though issues with deep network training are typically at-
tributed to vanishing/exploding gradients, the Information
Bottleneck Principle describes another issue with training
deep neural networks where the various many layers of
transformations applied to the input data, especially for
larger models, can cause certain information to be lost from
the original image [4].



Although Chien et al. provide the mAP scores obtained
by finetuning YOLOv9 on this dataset [4], we reproduce
their method ourselves as a baseline for a more accurate
comparison based on compute constraints, by finetuning
a YOLOv9-C model using the pretrained weights on our
train split of the dataset. We use an existing off-the-shelf
YOLOv9 implementation provided by the YOLOv9 authors
[3, 4], and the starting code provided by Chien et al. and
Wang et al. [5, 28], for training and evaluation. Ultralyt-
ics is also used to compute evaluation metrics (e.g. mAP,
precision, recall) and visualize results [14].

3.2. RT-DETR

Figure 2: The RT-DETR architecture, which improves upon
DETR by using an efficient hybrid encoder. Source: Zhao
et al. [35]

An issue with the chosen YOLO baseline is that the ac-
curacy and efficiency of YOLO models is somewhat lim-
ited by the Non-Maximum Suppression process, which is
required to filter out incorrect or duplicate object detection
labels [35]. Thus, since Detection Transformer (DETR)
models do not require this NMS step, they are a viable and
potentially more efficient alternative to consider [35].

The RT-DETR model is a realtime end-to-end detec-
tor which does not need to propose regions or filter out
the various bounding box candidates, since it matches the
bounding box predictions with the objects in the image di-
rectly [35]. As shown in Fig. 2, the model speeds up the
original DETR model by using a hybrid encoder, and uses
uncertainty-minimal query selection to determine the ”ob-
ject queries” that the decoder will match to each bounding
box prediction [35]. Uncertainty-minimal query selection
is motivated by the difficulty in concurrently representing
features for both the classification and localization of an ob-
ject, and is empirically shown to produce more meaningful
features [35]. Given X̂ as the encoder feature representa-
tion, P, C as predicted localization and classification, and
Ŷ = {ĉ, b̂},Y = {c, b} as the predicted and ground-truth
categories/bounding boxes, this method adds the minimiza-
tion of the difference between prediction and classification
distributions (Eq. 1) as an objective in the loss function (Eq.
2):

U(X̂ ) = ||P(X̂ )− C(X̂ )|| (1)

L(X̂ , Ŷ ,Y) = Lbox(b̂, b) + Lcls(U(X̂ ), ĉ, c) (2)

To the best of our knowledge, RT-DETR has not yet been
applied to bone fracture detection; thus, we will finetune
RT-DETR on our dataset using the existing off-the-shelf
model implementation as explained by the authors [35] and
provided by the Ultralytics code library for training and
evaluation [14]. We also use Ultralytics for computation
of evaluation metrics (mAP, precision, recall, etc.) and ad-
ditional visualization of results.[14].

3.3. Data Augmentation

One challenge with utilizing medical imaging datasets
is the natural issue of class imbalance: certain medical ab-
normalities, or the lack thereof, may be rarer than others,
and high-quality expert labeled data is difficult to acquire
in large quantities [8]. For object detection, the quality
and accuracy of labels can be especially imperative to the
model performance, as learning incorrect labels is coun-
terproductive. Thus, data augmentation is one proposed
solution - techniques such as random cropping, rotations,
and brightness/contrast adjustments can effectively expand
dataset size and mitigate class imbalance [8].

Thus, we finetune YOLOv9 and RT-DETR on an
augmented GRAZPEDWRI-DX dataset by implementing
data augmentation techniques from scratch. Our proposed
augmentation method is as follows: each training image
is randomly selected for augmentation with a chosen
probability pa. Then, the image undergoes the following
successive transformations, where each probability is a
tunable hyperparameter:

1) random crop with probability pc
2) rotation by 5 degrees with probability pr
3) brightness adjustment:
image ← α · image + β, with α = 1.2, β = 20, with
probability pb (make image brighter)
image ← α · image − β, with α = 0.9, β = 20, with
probability 1− pb (make image darker)

For an image, the random crop procedure is:
1) Obtain (xbl, xbh, ybl, ybh): the minimum x-value, max-
imum x-value, minimum y-value, and maximum y-value
seen out of all bounding box labels for the image.
2) Obtain the newly cropped image coordinates
(xl, xh, yl, yh) from a uniform distribution:
{xl, yl} ∼ Uniform(0,min({xbl, ybl}, 0.2))
{xh, yh} ∼ Uniform(max({xbh, ybh}, 0.85), 1)
0.2 is chosen as the upper bound for lower cropping, and
0.85 as the upper bound for upper cropping, meaning
that the minimum area preserved for a cropped image is
0.65 · 0.65 = 42.25%.
3) Update the bounding boxes:
(x, y, w, h)← (x− xl, y − yl, w, h)



4) Crop the image using (xl, xh, yl, yh).

Finally, we finetune each model on the original training
set combined with the augmented image set.

(a) before
augmentation

(b) after
augmentation

Figure 3: Sample image before and after crop, brightness,
and rotation augmentation with noisy bbox annotations.

Another aspect of interest in this project is how robust
the model is to noisy annotations. Although research in this
area primarily focuses on modifications based on model un-
certainty, loss functions that account for noisy labels, or fil-
tering out noisy samples [32], we wish to analyze the degree
to which this noise negatively affects model performance,
and whether this effect is significant enough for concern. In
the above data augmentation scheme, the random rotation
of 5 degrees can cause bounding box labels to be inaccu-
rate. Figure 3 displays such an example where the bound-
ing boxes become noisy as a result of augmentation. This
noise is intentionally added to analyze whether the model
can still maintain reasonable performance despite the pres-
ence of noisy or erroneous annotations. We do not perform
any augmentation or noising on the validation or test sets.
Thus, if we select pr > 0, then the training data is aug-
mented with a number of noisy annotations approximately
proportional to pr.

3.4. Additional Noising

To further evaluate model robustness, we implement
another method to add ”noise” to the training labels through
perturbation. In our proposed method, each training image
is randomly selected for ”noising” with probability pn.
Then, the chosen image is ”noised” as follows:

1) For each bounding box annotation (x, y, w, h), compute
perturbation:
wperturb ∼ Uniform(0, wperturb max)
hperturb ∼ Uniform(0, hperturb max)
2) Adjust out-of-bounds annotations:
If x+ wperturb ≥ 1 : wperturb ∼ Uniform(0, 1− x)
If y + hperturb ≥ 1 : hperturb ∼ Uniform(0, 1− y)
3) Set new x and y:
x, y ← x+ wperturb, y + hperturb

(a) before noising (b) after noising

Figure 4: Sample image before and after noising with bbox
annotations.

Figure 4 displays the effect of adding perturbations on
the bounding box labels. The ground-truth labels have been
shifted enough to be considered erroneous.

4. Dataset

Split anom. lesion foreign fracture metal perios. pronat. tissue text
train 184 26 8 12612 567 2409 408 316 16588
train+aug
v1 YOLO 202 28 11 13834 622 2623 448 343 18238

train+aug v1
RT-DETR 202 30 8 13814 616 2627 455 347 18235

val 53 8 0 3740 168 697 104 89 4754
test 39 11 0 1738 83 347 55 59 2380

Table 1: Instances of each class for each data split.

We use the GRAZPEDWRI-DX dataset, which consists
of 20,327 grayscale pediatric wrist X-rays annotated with
bounding boxes for 9 classes: bone anomaly, bone lesion,
foreign body, fracture, metal, periosteal reaction, pronator
sign, soft tissue, and text [18]. The annotations are val-
idated by pediatric radiologist experts with board certifi-
cations [18]. We use the YOLO bounding boxes format:
(x, y, w, h), where x, y are the center coordinates of the
bounding box in the horizontal and vertical directions re-
spectively, w is the box width, and h is the box height. All
bounding box values are in decimal form.

We divide the dataset into train, validation, and test sets,
using a random 70/20/10 split, as done in previous works by
Chien et al. [4, 6]. There are 14204 train examples, 4094
validation examples, and 2029 test examples in the original
split. For training and evaluation, we use an image size of
640 pixels. No additional data preprocessing was necessary.

Table 1 displays the number of instances of each class in
each given data split: we note that each image can have mul-
tiple instances of multiple classes. Given the severe class
imbalance, data augmentation was performed through the
methods discussed in Section 3.3. Thus, we also provide the
class breakdown of augmentation runs on the training set for
two models to further illustrate the augmentation method.
Because an image can have multiple bounding box annota-
tions, and fractures/text are by far the two most prevalent



classes and occur in almost every image, we choose to aug-
ment each class with an equal probability instead of only
augmenting images with underrepresented classes, and find
the former is empirically more effective.

5. Experiments, Results, Discussion
5.1. Experimental Details

5.1.1 Training

Hyperparameters We train all models on AWS using a
NVIDIA A10G GPU. All YOLOv9 models are trained for
20 epochs and RT-DETR models are trained for 10 epochs.
All models are trained and evaluated using a batch size
of 16. For the YOLOv9 model, we use the same start-
ing hyperparameters provided by Chien et al., given the
proven success of these chosen values from Chien et al.’s
YOLOv9 experimentations on this dataset: SGD optimizer
with momentum=0.937, starting lr=0.01, weight decay=5e-
4 [4]. For RT-DETR, Ultralytics [14] auto-determined the
best optimizer as AdamW, with the chosen hyperparameters
of starting lr=0.000769, momentum=0.9.
Augmentation V1 For augmentation as described in sec-
tion 3.3, we experiment with different choices and ulti-
mately find the most success with pa = 0.1, pr = 0.1, pb =
0.9, pc = 0.2. We run data augmentation separately for
each model. For YOLOv9, we train on 14204 original ex-
amples and 1399 augmented images, for a total of 15603
images. For RT-DETR, we train on 14204 original exam-
ples and 1388 augmented images, for 15592 images total.
Augmentation V2 We choose pa = 0.1, pr = 0, pb =
1, pc = 0 to observe the effects of brightness augmenta-
tion only without adding noise to bounding box labels. For
YOLOv9, we add 1497 augmented images, for 15701 im-
ages total. For RT-DETR, we add 1406 images and train on
15610 images total.
Noise We choose pn = 0.2 and produce a noised
training set still with 14204 images, where each im-
age has probability pn of having noisy labels. We set
wperturb max, hperturb max both to 0.1.

5.1.2 Evaluation

The primary evaluation metric is Mean Average Precision
(mAP), where mAP = 1

N

∑N
i APi for N classes and AP

is average precision. mAP 50 indicates the mAP value at
the IoU threshold of 0.5, whereas mAP 50-95 indicates
the mAP at the IoU thresholds of 0.5 to 0.95, and IoU =
|X∩Xt|
|X∪Xt| for predicted bounding box X and ground-truth box
Xt.

Precision and recall are used as secondary evaluation
metrics, where Precision = TP

TP+FP and Recall = TP
TP+FN .

We additionally use the Ultralytics library [14] and the
starter code of YOLOv9 [28, 5] for further evaluation

of our models (confusion matrices, PR curves, batch la-
bels/predictions, feature visualizations).

5.2. Results and Discussion

Model mAP 50 mAP 50-95 Precision Recall
YOLOv9* (BL) 0.569 0.373 0.723 0.516

RT-DETR 0.571 0.379 0.702 0.537
YOLOv9+AugV1 0.612 0.400 0.590 0.592
RT-DETR+AugV1 0.624 0.413 0.665 0.616
YOLOv9+AugV2 0.604 0.403 0.683 0.576
RT-DETR+AugV2 0.61 0.396 0.642 0.61
YOLOv9+Noise 0.589 0.384 0.631 0.571
RT-DETR+Noise 0.607 0.403 0.694 0.583

Table 2: Model performance evaluated on the test set.

Table 2 displays the results of all models evaluated on the
test set using the model weights that achieved the highest
mAP scores on the validation set.

5.2.1 YOLOv9 Baseline and RT-DETR

We were unable to replicate the mAP@50 of 0.6562 ob-
tained by Chien et al. using YOLOv9-E [4], potentially due
to GPU compute limitations allowing us to only train for
20 epochs, compared to 100 epochs in the original paper.
Additionally, RT-DETR slightly outperforms our baseline
on mAP and recall despite being finetuned for 10 epochs
compared to 20 for YOLOv9. We observe that during train-
ing, RT-DETR converges faster than YOLOv9, and takes an
average of 7 minutes to train on each epoch, compared to
approximately 10 minutes per epoch for YOLOv9. As de-
scribed in section 3.2, the ability of RT-DETR to potentially
converge faster than YOLOv9 could be due to the efficiency
speed-ups brought by the hybrid encoder and because RT-
DETR does not run the NMS algorithm [35].

5.2.2 Models with Data Augmentation

Figure 5 compares the PR curves of our YOLOv9 base-
line with RT-DETR+AugV1. We observe the baseline
has trouble predicting bounding boxes especially for bone
anomaly (mAP@50=0.03), bone lesion (mAP@50=0.016),
and soft tissue (mAP@50=0.197), which are also among
the classes with the least number of instances (see Ta-
ble 1). Thus, it is very likely that the baseline perfor-
mance suffers from class imbalance in the dataset. In
contrast, RT-DETR+AugV1 achieves a mAP@50=0.043
on bone anomaly, mAP@50=0.315 on bone lesion, and
mAP@50=0.284 on soft tissue, which are significant im-
provements arising from simple data augmentation, despite
the inclusion of erroneous or noisily labelled training data
due to our random rotation augmentation method. Further-
more, the AugV1 YOLOv9 and RT-DETR slightly outper-



(a) baseline

(b) RT-DETR+AugV1

Figure 5: PR curves of baseline vs RT-DETR+AugV1.

Figure 6: RT-DETR+AugV1 confusion matrix on test set.

form the AugV2 models, suggesting that the addition of
randomly cropped and rotated images improves model per-
formance compared to brightness adjustments alone. We
hypothesize that these erroneous labels help regularize the
model and prevents train set overfitting to some degree,
since a select subset of the original train images are aug-
mented with incorrect or noisy bounding box annotations.
Furthermore, only adjusting image brightness might not be
enough to offset overfitting, as RT-DETR and YOLOv9 can
likely easily learn an affine transformation of pixel values.

From Figure 6, we observe that although classes such

(a) batch labels

(b) batch predictions

Figure 7: RT-DETR+AugV1 test batch labels vs predic-
tions.

as fracture and metal are mostly classified correctly, RT-
DETR+AugV1 confuses the bone anomaly class with the
fracture class most often, and the soft tissue class is often
undetected. Figure 7 displays a side-by-side comparison of
ground-truth (left) and predicted bounding boxes (right) by
the RT-DETR+AugV1 model on a sample batch of images
in the validation set. We observe that RT-DETR+AugV1
is generally able to label the locations of objects accurately,
but occasionally incorrectly adds extra bounding box labels,
especially for the periosteal reaction class. It is mostly con-
fident in labelling text annotations, likely due to text labels
being surrounded by dark pixels in most radiograph images
and being easy to distinguish due to the distinctive and stan-
dardized shapes of letters. However, it often errs by predict-
ing multiple bounding boxes of the same class in overlap-
ping regions, such as seen in the image in row 2, column 3.
This could be due to the model’s lack of confidence in its
prediction, and/or its erroneous determination that there are
multiple instances of fractures in this region.

Figure 8 displays the bounding box ground truth and
predictions by the YOLOv9 baseline and YOLOv9+AugV1
models on a particularly challenging example image. The



(a) ground-truth (b) baseline (c) YOLO+AugV1

Figure 8: Image with bbox annotations for ground truth,
baseline YOLOv9, and YOLOv9+AugV1.

(a) baseline (b) YOLOv9+AugV1

Figure 9: Feature visualizations after the first SPPELAN
block in the YOLOv9 head (stage 10) for Fig. 8.

(a) baseline (b) YOLOv9+AugV1

Figure 10: Feature visualizations after the last ELAN block
before the detection head (stage 37) for Fig. 8.

baseline completely fails to detect the bone anomaly
instance, while YOLO+AugV1 incorrectly localizes the
anomaly in the left bone instead of the right bone and
also fails to capture the entirety of the metal in the image.
We additionally use the YOLOv9 starter code for detec-
tion [5, 28, 4] to produce feature visualizations at various
stages of the YOLOv9 models. Figure 9 shows the fea-
ture visualizations of the two YOLOv9 models after the
first SPPELAN block in the head, and Figure 10 visual-
izes the features in the stage immediately before the detec-
tion head. We observe that in earlier stages and layers of

the YOLOv9 models, the features are more generalized and
span larger areas of the image, while later stages tend to ex-
tract more fine-grained and localized features, as indicated
by the more pixellated bright regions of images in Figure
10. We also note that in Figure 9, the YOLOv9+AugV1
model tends to extract features in the upper left region of
the image, potentially explaining the erroneous localization
of the boneanomaly instance; contrastingly, the features ex-
tracted in Figure 10 tend to be similar for both models.

5.2.3 Models with Data Noise

(a) RT-DETR+Noise

(b) YOLOv9+Noise

Figure 11: PR curves of RT-DETR+Noise and
YOLOv9+Noise.

Figure 11 displays the PR curves for the two models
with added data noise. The two noise models underperform
the baseline on bone anomaly, but significantly outperform
the baseline on bone lesion, suggesting that specific classes
benefit more from added bounding box noise.

Although YOLOv9+Noise does underperform most
other models, it notably outperforms the YOLOv9 base-
line on mAP@50, mAP@50-95, and precision; simi-
larly, the RT-DETR+Noise models outperform RT-DETR
on mAP@50, mAP@50-95, and recall. Both underperform
the non-noised models in precision, signifying that adding
noisy labels actually increases the model’s ability to predict
all instances in an image, while sacrificing the accuracy of



the predicted bounding boxes themselves. Again, one hy-
pothesis is that adding noisy/erroneous labels has a regu-
larization effect and reduces the degree of overfitting on the
train data, and in turn, the IoU of predicted and ground-truth
bounding box labels. However, since YOLOv9+AugV1 and
RT-DETR+AugV1 generally outperform the noise models,
this suggests that noisy labels combined with augmenta-
tion methods may be preferable to noisy label perturbations
alone. Overall, the YOLOv9 and RT-DETR models appear
to be fairly robust to erroneous or noisy labels.

6. Conclusion/Future Work
We finetune the RT-DETR [35] and YOLOv9 [28] object

detection models on the GRAZPEDWRI-DX dataset [18] of
pediatric bone fractures with annotated bounding box and
class labels. We additionally implement data augmentation
and noising techniques to offset class imbalance and ana-
lyze model robustness to erroneous labels. Our best model,
RT-DETR+AugV1, achieves a mAP@50 of 0.624 and
mAP@50-95 of 0.413 on the test set. We find that despite
the inclusion of a small number of erroneous/noisy sam-
ples due to random rotation, RT-DETR+AugV1 achieves
the highest mAP@50, mAP@50-95, and recall scores on
the test set, although it achieves lower precision scores than
other models. This is potentially attributed to the ”regu-
larization” effect produced by the addition of noisy labels,
which alleviates overfitting on the train set. Additionally,
when further noising a small number of labels through per-
turbation, we still observe comparable model performance,
suggesting that the models are generally robust to misla-
belled data.

Further work would center around the following areas:
1) Determining the upper bound for the threshold of pn,

the probability that an image’s bounding box coordinates
will be noisily perturbed, without observing significant de-
creases in model performance.

2) Training and evaluating models on at least 10 differ-
ent random seeds to produce results that are robust to ran-
domness, and training for more epochs. Due to compute
constraints, we were unable to do so for this project.

3) Exploring the effects of other forms of data augmen-
tation, such as random flip, translations, and altering image
resolution, on model performance.

4) Analyzing model performance when performing both
noise perturbations and data augmentation on the training
data.
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As I am a one-person group, I finetuned the YOLOv9

and RT-DETR models on the GRAZPEDWRI-DX dataset,
implemented the data augmentation and noise methods for
this project, ran all experiments on AWS, and individually

wrote this report.
This project is solely completed for CS231N with valued
mentorship from Tiange Xiang - a huge thank you for all of
your assistance throughout the project.
1. The project builds on the starter code provided by
Chien et al. in https://github.com/RuiyangJu/
YOLOv9-Fracture-Detection [5] by adding 1) data
augmentation, 2) additional noising, and 3) code to utilize
visualization methods provided by the YOLOv9 repository
and Ultralytics [14]. Chien et al.’s repository utilizes code
from Wang et al.’s YOLOv9 implementation at https:
//github.com/WongKinYiu/yolov9 [28, 3].
2. We use the Ultralytics library provided at https:
//github.com/ultralytics/ultralytics [14]
to write code for RT-DETR model finetuning and evalua-
tion.
3. The above repositories utilize the PyTorch framework for
model training and evaluation from https://github.
com/pytorch/pytorch [2].
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