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Abstract

Magnetic resonance fingerprinting (MRF) is a novel
quantitative imaging technique, while its relatively long
scan time make its sensitive to motion artifacts. These ar-
tifacts can obscure critical anatomical details, potentially
leading to misdiagnosis or necessitating repeated scans.
The most conventional method to resolve motion artifacts in
MRF involves estimating motion from navigator images and
performing motion correction during reconstruction. How-
ever, acquiring relatively high-resolution navigator images
impairs overall scan efficiency. Therefore, this study aims
to improve the performance of motion estimation in MRF
using lower-resolution, more scan time-efficient navigator
images through a deep learning-based approach. A Con-
volutional Neural Network (CNN), inspired by ResNet, was
designed and trained using an in vivo brain MRF dataset.
Preliminary results indicate a better performance in motion
estimation compared to traditional algorithms and a reduc-
tion of motion artifacts in brain MRF parameter maps. On
top the network, data consistency loss and semi-supervised
learning were explored to improve the performance and en-
hance the generability of the approach.

1. Introduction
Magnetic resonance fingerprinting (MRF) is a robust

quantitative imaging technique [13]. An example of MRF
sequence is presented in Figure 1, where high resolution
spiral readout is repeated with varying scan parameters,
such as flip angle (FA) and repetition time (TR), to achieve
temporal incoherence so that tissues with different tissue
parameters, such as T1, T2 and proton density (PD), can ex-
hibit different signal evolution. This signal evolution is the
so-called ”fingerprint” of the tissue. By matching the ac-
quired ”fingerprint” of each image pixel to a pre-calculated
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signal dictionary that contain the signal evolution of all
possible combination of tissue parameters, we can then re-
trieve the information at each image pixel and finally gen-
erate a tissue parameter maps, including T1 and T2 maps,
of the whole object. Due to its robustness and time ef-
ficiency compared with conventional quantitative imaging
methods, MRF has huge potential in the diagnosis and stud-
ies of many neurological disease, such as Parkinson’s dis-
ease (PD)[9], Alzheimer’s disease (AD)[8], multiple scle-
rosis (MS)[14].

Motion is one of the major challenges in obtaining high
quality tissue parameter maps. Due to relatively long scan
time, patients’ involuntary movement, breath, blood flow
will all introduce errors into the acquired data, therefore
compromising the accuracy of the resulting ”fingerprints”
and consequently the estimated parameter maps. Tradi-
tional methods address these challenges by acquiring a low-
resolution water navigator image by the end of each acquisi-
tion group, as shown in Figure 1, and do motion correction
for each group by image registration methods. However, the
precision of the motion estimation is constrained by the res-
olution of these motion navigator images. Low-resolution
navigator images can lead to inaccuracy of motion parame-
ter estimation, thereby resulting in unresolved motion arti-
facts, such as blurring and distortion, in the final tissue pa-
rameter maps, and, more importantly, inaccurate parameter
estimates. On the contrary, acquisition of a high-resolution
motion navigator induces extra acquisition time, therefore
diminishing the overall scan efficiency of MRF.

To balance the trade-off between acquisition time and
precision of motion estimation in MRF, the purpose of this
work is to enhance the accuracy of motion estimation de-
rived from low-resolution but more scan time-efficient nav-
igator images. A Convolutional Neural Network (CNN),
inspired by ResNet, was designed and trained using an in
vivo brain MRF dataset. The inputs of our model were
low-resolution motion navigator images with and without
simulated motion, and the outputs were estimated motion
parameters, including translation and rotation along three
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Figure 1. MRF Data Acquisition Pipeline. (A) Illustrates the entire MRF data acquisition process, while (B) zooms in on each acquisition
group, displaying the specific acquisition patterns.

directions perspectively.

By obtaining more precise rigid motion parameters, we
expect enhancing the overall quality of MRF tissue pa-
rameter maps in terms of high-resolution and artifact-free
depiction, which can potentially enhance both the clini-
cal feasibility and research significance of MRF. This work
can further motivate for self-navigated MRF, wherein low-
resolution navigator images could be extracted directly
from the high-undersampled MRF data itself and be used to
correct its corresponding acquisition group, therefore sig-
nificantly improve the scan efficiency of MRF.

2. Related Work

2.1. Conventional Motion Correction in MRF

To our knowledge, the application of deep learning-
based methods in MRF motion correction is very limited.
Conventional MRF relies on specific sequence designs and
sampling patterns to achieve motion insensitivity. Only in
recent has the use of additional motion navigators to bet-
ter address motion artifacts.[10]. The previous works have
only been done on using image processing technique or op-
timization for motion estimation from the navigator images
[6] [2].

2.2. Deep Learning-Based Motion Correction in
MRI

Despite its limited usage in MRF, deep learning-based
approaches are widely adopted for motion correction in
Magnetic Resonance Imaging (MRI). Similar to MRF, MRI
image quality is sensitive to motion during the scan, pre-
senting challenges in clinical diagnosis.

Existing deep learning-based motion correction methods
in MRI can be categorized into: 1) image-based approaches
and 2) k-space (Fourier domain)-based approaches [20].
Image-based approaches use motion-corrupted images as
input with networks trained to detect and reduce the mo-
tion artifact, thereby generating cleaner and sharper images.
Multiple works have been done using the image-based ap-
proach, with different architectures such as fully convolu-
tional network [19], U-Net [16] [12], and encoder-decoder
structures [11]. These methods demonstrate promising re-
ductions in motion artifacts. Advantages of image-based
methods include flexibility in datasets and the simplicity of
models, as the utilization of absolute value images. Training
can be accomplished using most open-source MRI datasets
or previously acquired images. However, image-based ap-
proaches relies on large training datasets, and the absence
of a data consistency term raises concerns about network
hallucination

Despite the image-based approaches, k-space-based
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Figure 2. Simulated data by random translation and rotation to original image.

methods are now more widely used. MRI data is acquired
in k-space, the Fourier domain of MR images, and prop-
erly integrating raw k-space data provides more informa-
tion, enabling more robust performance. Due to the use of
complex-valued k-space data, the output can include both
motion-corrected images and rigid motion parameters. In k-
space-based approaches, data consistency is often enforced
within the models [18] [5] [3] by integrating the reconstruc-
tion forward model. Training can involve adding a data con-
sistency loss term or iteratively performing motion correc-
tion and image reconstruction. Utilizing data consistency
helps mitigate the hallucination effect, which is critical for-
clinical use.

3. Data
3.1. Data Acquisition and Preprocessing

In vivo brain MRF dataset was collected from 10
healthy volunteers on GE Signa Premier 3.0T system (GE
Healthcare, Waukesha, WI) following the same acquisition
scheme in Figure 1. The MRF spiral acquisition is 1-mm
isotropic resolution with matrix size 256 × 256 × 256. The
motion navigator acquisition is 4-mm isotropic resolution
with matrix size 64 × 64 × 64. Each acquisition group con-
tains 540 (500+40) MRF spiral readouts. 16 acquisition
groups in total were collected in each volunteer scan, re-
sulting in a total scan time of (500+40)×16× 12.5

1000 = 108
seconds.

Motion navigator images were reconstructed following
the pipeline of density compensation, gridding to Carte-
sian coordinates, and 2D inverse Fourier transform. Then,
each image was normalized by its maximum value indepen-
dently.

3.2. Data Augmentation

According to our training task, 500 motion navigator im-
age was randomly selected from the collected MRF dataset.
To augment our database, we randomly generated 10 dif-
ferent motion states for each motion navigator image. Each
motion state is represented by six motion parameters, trans-
lation and rotation along x, y, z respectively. The generated
translations range between -5 to 5 mm, and rotations range
from -10 to 10 degrees, reflecting the typical extent of mo-
tion experienced during real MRF scans. We then simulated
navigator images with different motion states using k-space
phase modulation and coordinate rotation.

Translation in image space is equivalent to adding phase
in k-space, and rotation in image space is equivalent to ro-
tate the k-space, according to basic Fourier Transform prop-
erties.

s (kx, ky, kz) = s (kx, ky, kz) · ei2π(kx·∆x+ky·∆y+kz·∆z)

where s (kx, ky, kz) indicates signal collected at specific k-
space coordinates, ∆x,∆y,∆z are the amounts of transla-
tion in the image domain along x, y and z.

M ′ = Rz(γ) ·Ry(β) ·Rx(α) ·M
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where M and M ′ are the k-space coordinates before and
after rotation, α, β, γ are rotation angle along x, y and z
axis and R is the rotation matrix. Examples of navigator
images with simulated motions, with its ground truth image,
are presented in Figure 2.

After the motion simulation, we had a total of 5000
datasets, each containing a ground truth image, image with
simulated motion, and the corresponding motion parame-
ters. We then randomly split these 5000 datasets into train-
ing, validation, and test sets in a ratio of 7:2:1. Mean value
calculated on the training dataset was subtracted to all im-
ages.

4. Methods
4.1. Baseline Methods

Due to the differences between MRI images and MRF
motion navigators in terms of acquisition schemes (e.g.,
low resolution, non-Cartesian sampling) and the subsequent
interpretation of the image information, existing methods
of resolving motion artifacts and estimating motion pa-
rameters on MRI are not good candidates for the baseline
method. In this work, two open-source neuroimage process-
ing toolbox, MCFLIRT [6] and AFNI[2], which are heavily
used in research of brain MRF and functional MRI, were
used as baseline methods. Both methods follow some op-
timization algorithms to search for the six rigid motion pa-
rameters that are described above. Motion correction were
then applied to the navigator images using the estimated pa-
rameters.

4.2. Network Structure

Figure 3 shows the structure of the neural network. The
input to the network consists of navigator images at dif-
ferent motion states, ground truth motion parameters, and
their motion state 1 image, which is used as the reference of
motion correction. The output of the convolutional neural
network (CNN) is six motion estimation parameters: trans-
lation in the x, y, and z directions, and rotation along the
x, y, and z axes, respectively.

We frame this as a regression problem. The network is
composed of several combinations of convolutional layers,
instance normalization, and ELU activation functions. Fea-
ture maps are reduced by a factor of two after each convo-
lutional layer, followed by a ResNet block to ensure gradi-
ent flow throughout the network. The final output is pro-
duced after a convolutional layer with a kernel size of 1,
an instance normalization layer, and a Tanh activation layer.
Mean Squared Error (MSE) loss is employed, and Adam is
used as the parameter optimizer.
Residual Learning Traditional deep networks often suf-
fer from the vanishing gradient problem, where gradients
become very small, hindering the ability of the network to

Figure 3. Structure of the Convolutional Neural Network.

learn. We here use ResNet [4] to mitigate this degradation
problem by using shortcut connections that skip one or more
layers. ResNet’s architecture, with its residual connections,
enables the network to learn more complex and abstract fea-
tures. This incremental learning approach leads to more ef-
fective feature extraction and representation.
Data Consistency As mentioned previously, enforcement
on data consistency is often used in the application of MRI.
The idea behind it is to minimize the difference between the
results output by the model and the acquired k-space data.
In general, the forward model of MRI reconstruction can be
written as

y = Ex

where x is the reconstructed image and y is the data in k-
space. The gridding operator E of the motion navigator
with spiral trajectory is

E = W ∗NUFFT

W is the density compensation operator and NUFFT rep-
resents non-uniform Fast Fourier transform using k-space
coordinates.

As discussed above, there are many ways of achieve data
consistent result in deep-learning based methods. For the
consideration of training efficiency, we followed the idea in
[18, 3]. No change was made during the training. At the
test time, we used the output of the CNN and optimized the
motion parameters by

argmin
θ

∥y − EA(θ)x∥22

where A(θ) represent translation and rotation correction
with given motion parameters θ.

The minimization is performed using a quasi-Newton
search available with the built in fminunc function in
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Figure 4. The network structure used for semi-supervised learning

MATLAB (Mathworks, Natick, MA). Motion parameters
generated by CNN was used as initialization.
Semi-Supervised Learning In the medical imaging field,
obtaining actual clinical data is often challenging. To max-
imize the use of limited datasets, semi-supervised learning
(SSL) is increasingly utilized [15]in the tasks such as im-
age segmentation [7]and reconstruction [21]. Here we also
explored SSL in MRF motion estimation.

The network structure used in this study is shown in Fig-
ure 4. We employ the same CNN architecture as in the
residual learning supervised network. Rotation parameters
estimated by the network were applied to obtain a rotated
k-space grid, followed by an NUFFT operation to correct
the rotation for the motion state 2 image. Translation pa-
rameters were then applied to correct shifts, which should
align perfectly with the motion state 1 image, despite some
minor boundary artifacts.

The loss is expressed as follows,

Loss = 1−SSIM (I1, Icorr)+λ·MSE(MotionParams,Label)

Mean square error(MSE) was used for the supervised
training of motion parameters. For the unsupervised im-
age loss, Structural Similarity Index (SSIM) was used in-
stead of MSE. Unlike MSE, which merely measures pixel-
wise differences, SSIM evaluates the structural similarity
between images, this means that SSIM is more sensitive
to changes in textures and edges, making it better suited
for maintaining visual quality under such conditions. These
factors contribute to higher perceptual quality and more ef-
fective image comparison. The second loss term, which
compares network estimates and labels, is balanced by tun-
ing λ = 100, yielding improved results.

To mimic the scenario where limited number of dataset
was given, we trained our model on 500 datasets, which is

only one-tenth of the training data size used in supervised
residual learning cases.

5. Experiments and Results

5.1. Hyperparameter Tuning

To enhance the robustness of out model and reduce over-
fitting, Weights and Biases (wandb) [1] was applied to tune
the parameters such as batch size, learning rate, weight
decay, and the number of channels in each convolutional
layer. We conducted 100 sweeps, randomly sampling dif-
ferent hyperparameter pairs within reasonable ranges. For
each sweep, we trained the model for 100 epochs. As
shown in Figure 5, batch size and learning rate were the
two most important hyperparameters in our case. The num-
ber of channels in the first few convolutional layers had a
slightly greater influence on model performance compared
to the last few layers. After 100 sweeps, we selected the best
hyperparameter pair, named ”wovensweep-5,” based on the
validation loss, and used for further training.

5.2. Training Results

We trained the model selected after hyperparameter tun-
ing for 2000 epochs. As shown in Figure 6, the validation
loss trend aligns well with the training loss, and the test loss
is 0.003, which falls within the range of the training and
validation losses. This indicates good model performance
and minimal overfitting.

To compare our method with conventional motion esti-
mation approaches, we calculated the mean and standard
deviation of the absolute error on the test data, as shown
in Table 1. Our deep learning approach outperformed
MCFLIRT and AFNI in every motion parameter estimation.
Our network demonstrates a strong capability to automati-
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Figure 5. Hyperparameter Tuning of the propose CNN. The upper image displays the importance and correlation of different hyperparam-
eters in minimizing validation loss, while the lower image shows the combination of different hyperparameters and the resulting validation
loss.

Figure 6. Training Procedure.

cally learn and extract hierarchical features from the data,
capturing both local and global patterns. This allows it to
model complex, non-linear relationships effectively, mak-
ing it highly proficient in understanding and predicting mo-
tion in various contexts. Adding the optimization of motion
parameters with data consistency loss can slightly improve

the performance of the motion estimation on both mean and
standard deviation. The SSL approach gave higher errors on
the estimated motion parameters, compared to the residual
learning CNN. However, it still outperformed the two con-
ventional methods. Considering the very limited data used,
the result is still promising and indicating the feasibility of
SSL in this task.

To further visualize the motion estimation results, we
compared the performance of MCFLIRT, AFNI, and our
proposed method in estimating motion between two given
motion states, as shown in Figure 7. We used the estimated
motion parameters to transform the motion state 2 images
back to motion state 1. To prevent from too many dupli-
cated images, only the results of the residual learning CNN
are shown here. The results demonstrate that, using the mo-
tion parameters estimated by our method, the motion state
2 images were accurately transformed back to motion state
1, showing the good performance of our approach.

5.3. Motion Correction in MRF Parameter Maps

To further evaluate the robustness of our method, we ap-
plied our model and the baseline methods to the postpro-

6



Absolute Translation Error (mm) Absolute Rotation Error (◦)
MCFLIRT 0.64± 0.44 0.47± 0.31 0.46± 0.33 0.32± 0.23 0.41± 0.30 0.32± 0.21

AFNI 0.23± 0.18 0.23± 0.16 0.21± 0.16 0.24± 0.21 0.43± 0.31 0.46± 0.41
RL 0.15± 0.12 0.19± 0.15 0.15± 0.13 0.16± 0.11 0.22± 0.17 0.21± 0.18

RL + DC 0.11± 0.08 0.14± 0.12 0.15± 0.10 0.14± 0.12 0.22± 0.14 0.15± 0.11
SSL 0.24± 0.16 0.25± 0.16 0.27± 0.15 0.22± 0.21 0.31± 0.23 0.27± 0.19

Table 1. Absolute Mean and Standard Deviation of the Error in x, y, z Translation and Rotation Estimation.

Figure 7. Estimation of Motion Parameters Using Different Approaches. Motion parameters are estimated from state 1 to state 2 and used
to convert state 2 images back to state 1.

cessing of a brain MRF data. Given the motion navigator
images from each acquisition group, we estimated the mo-
tion parameters relative to the first acquisition group using
our network. These estimated motion parameters were then
used to correct the acquired MRF data for each group, fol-
lowed by SENSE image reconstruction [17] and MRF dic-
tionary matching [13].

Figure 8 shows the quantitative parameter maps (T1, T2,
and PD) generated without motion correction, with con-
ventional motion estimation, and with our proposed meth-
ods. Conventional motion correction methods select the
best correction results using traditional motion estimation
approaches. The parameter maps corrected using our pro-
posed method show significant reduction of motion artifacts
and clear delineation of tissue structures, particularly near
the cerebrospinal fluid and gray matter areas indicated by
red arrows.

6. Discussion and Conclusion
In this work, we explored the potential of using deep

learning-based methods to estimate and correct motion in
MRF. A CNN architecture was proposed and trained, which
demonstrated superior performance compared to two con-
ventional methods. The accuracy of the estimated motion
can be further improved by enforcing data consistency at
test time, which provides a slight enhancement in motion
estimation.

Given the limited size of the simulated training data
and the absence of labeled navigator images in real-world
scenarios, we also investigated the feasibility of semi-
supervised learning approaches to enhance the performance
and generality of the model. With a very small training
dataset, our SSL shows promising results.

One of the limitations of this method is its reliance on
labeled data for guidance during training. An interesting
angle for future research involves using more advanced net-
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Figure 8. Quantitative Parameter Maps Before and After Motion Correction (MOCO).

work architectures, such as transformers or pretrained mod-
els, to eliminate the need for supervised loss and transition
to a self-supervised learning paradigm. This shift would
be particularly beneficial in scenarios where abundant unla-
beled data is available, further enhancing the applicability
and effectiveness of the model.

For the purpose of this project, all the motion-corrupted
images were simulated in order to acquire the ground truth
motion parameters. However, in realistic cases, patient mo-
tion often includes a mix of rigid and non-rigid movements,
and these are further complicated by other hardware imper-
fections and field inhomogeneity during scaning. All these
factors might bring significant challenges to the robustness
and applicability of the proposed method. Therefore, fur-
ther work can be done by evaluating the motion correction
performance on a large amount of in vivo case and improve
the generality of the methods.
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