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Abstract

Accurate segmentation of lesions in Positron Emission
Tomography (PET) and Computed Tomography (CT) scans
benefits cancer diagnosis and treatment planning. How-
ever, this task faces significant challenges due to the lim-
ited availability of annotated data. In this work, we pro-
pose a novel framework that leverages Maximum Intensity
Projection (MIP) images to improve the segmentation per-
formance of 3D PET-CT scans. Our approach combines a
2D MIP segmentation model, trained on synthetic data gen-
erated by a diffusion model, with a 3D multi-modal refine-
ment model that integrates information from PET, CT, and
the reconstructed MIP segmentation mask. Through exten-
sive experiments on a dataset of whole-body PET-CT scans,
we demonstrate that our method outperforms the baseline
by achieving higher DICE scores and lower false positive
volumes, indicating improved overall segmentation perfor-
mance. We provide insights into the key components of our
framework and discuss strategies to mitigate failure cases.
Our work contributes to the development of more accurate
and reliable lesion segmentation techniques, ultimately en-
hancing cancer diagnosis and treatment planning.

1. Introduction

Positron Emission Tomography (PET) is a medical
imaging modality that enables the detection of abnormal
metabolic activities in cancer lesions. In clinical practice,
PET scans are performed in conjunction with Computed To-
mography (CT) scans, referred to as PET-CT, to align PET
signals with anatomical locations on CT images. This align-
ment allows for precise localization of metabolic abnormal-
ities and differentiation of true lesions from false positives,
such as organs with naturally high metabolic activity.

Machine learning approaches have been introduced to
address the challenges of lesion segmentation in PET
scans [7, 9], where the goal is to predict the presence or
absence of a lesion at every location in the 3D image. How-

ever, the segmentation of abnormal lesions in PET scans
poses significant challenges due to the inherent noise in the
PET images and the limited availability of PET-CT data.
Furthermore, the limited study of enhancement approaches,
including a synthetic generation of 3D medical images, fur-
ther compounds the difficulties in developing accurate and
reliable lesion segmentation techniques.

To address the limitations in the 3D segmentation of
PET-CT scans, we propose a novel framework that lever-
ages the nnUNet model architecture, designed for 3D med-
ical image segmentation tasks, as the backbone. Our ap-
proach extends the vanilla nnUNet by introducing a Max-
imum Intensity Projection (MIP) module to improve the
learning capability of the model by incorporating 2D seg-
mentation results. The MIP module generates 2D maximum
intensity projections along the axial, coronal, and sagittal
axes from the 3D PET scan, which are then segmented
using a 2D segmentation model trained on synthetic data
generated by diffusion models. The segmentation results
from the 2D projections are combined back into a 3D mask,
which is then utilized as an additional input modality, along
with the PET and CT scans, to the nnUNet model for 3D
segmentation. Through this framework, we aim to over-
come the challenges associated with limited PET-CT data,
improve the accuracy and reliability of lesion segmentation,
and remove organs that naturally exhibit high metabolic ac-
tivity on PET scans but are not indicative of cancer lesions,
thereby enhancing the overall reliability of the segmentation
process.

2. Related Works

Lesion segmentation in PET and PET-CT scans. In the
field of medical imaging, PET/CT segmentation tasks play
a crucial role in diagnosis and treatment planning. How-
ever, as Prevedello et al. [7] highlight, the availability of
high-quality, annotated whole-body PET/CT data is often
limited, posing significant challenges for developing robust
diagnostic and segmentation algorithms. Furthering the de-
velopment of segmentation models, our approach modifies
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the 2D and 3D U-Net frameworks, which Ronneberger et
al. [9] established as the current de facto standard for pre-
cise biomedical segmentation. We adapt these models to
focus on the 2D MIP space, which, despite its potential, has
been under-explored in the field as noted by Toosi et al. [11]
and Girum et al. [3]. These sources point out that nuclear
medicine physicians often use 2D PET MIP views for vi-
sual interpretation due to the noisy nature of 3D volumetric
PET data. Leveraging this insight, our project utilizes MIP
views not only for visual interpretation but also for synthetic
image generation and segmentation tasks, addressing both
computational efficiency and data scarcity.

Synthetic data generation for medical imaging. To
overcome the scarcity of high-quality annotated PET/CT
data, our project draws inspiration from the synthetic im-
age generation techniques discussed by Chambon et al. [1]
and Tanenbaum et al. [10]. These methods have success-
fully augmented data in various modalities such as chest
X-ray and brain MRI, enhancing the robustness of machine
learning models. Similarly, we aim to use synthetic 2D MIP
images to augment our PET/CT data, navigating around the
computational intensity and resource demands that Man et
al. [5] indicate as barriers in generating synthetic 3D im-
ages. By incorporating synthetic data generation into our
approach, we aim to improve the performance and robust-
ness of our segmentation models, ultimately contributing to
more accurate and efficient medical imaging diagnostics.

3. Dataset

We used a dataset of 1,014 whole-body FDG-PET/CT
scans collected at the University Hospital Tübingen [2] be-
tween 2014 and 2018. The dataset comprises 1,014 imag-
ing studies, consisting of 501 scans from patients with con-
firmed malignant lesions, including malignant lymphoma
(145), melanoma (188), and non-small cell lung cancer
(NSCLC) (168), as well as 513 negative control scans
from patients without PET-positive malignant lesions. Each
study contains CT, PET, and segmentation files, totaling
916,957 individual slices. The files are provided in the
processed NIfTI format [6], commonly used to store brain
imaging data. Each file has dimensions of 400 × 400 × z,
where z represents the number of slices, varying based on
the patient and the machine’s configuration. We randomly
split the dataset into train/test sets with an 80/20 ratio, en-
suring a similar distribution of disease types and negative
studies in each split. The splitting process was done at the
patient level, such that studies from the same patient were
always in the same set. The inclusion of both positive and
negative cases provides a representative dataset for devel-
oping and evaluating lesion segmentation models. See Fig-
ure 1 for an example of the imaging study.

Figure 1: An example of coronal slice from CT (left), PET
(middle), and segmentation (right).

For data normalization, we mainly employ two methods
from nnUNet: CT normalization for CT modality and Zs-
core normalization for the others. CT normalization collects
intensity values from the foreground class from all training
cases and computes the mean and standard deviation. It then
clips every intensity value of every training case with the 0.5
and 99.5 percentiles of all values. Each clipped value is fol-
lowed by a subtraction of the mean and division with the
standard deviation. Zscore normalization is applied to each
training case separately, where each value is subtracted by
its mean and divided by its standard deviation. The train/test
splits we used for all training steps are the same 80/20 splits
at a patient level, ensuring no patient leakage and similar
disease distribution between splits.

4. Methodology
In this section, we present an overview of our framework

for improving lesion segmentation in PET-CT scans through
MIPs. The proposed methodology consists of two main
components: MIP Segmentation (Section 4.1) and Multi-
modal Refinement model (Section 4.2). The MIP Segmen-
tation focuses on generating a 3D segmentation mask by
projecting the PET scan into 2D MIP images, performing
segmentation on each MIP, and reconstructing the results
back into a 3D mask. The Segmentation Model refines the
3D segmentation mask by incorporating information from
the corresponding PET and CT scans.

4.1. MIP Segmentation

The MIP Segmentation component aims to generate a
3D segmentation mask by leveraging the information from
2D MIP images. The key insight behind this approach is
that with an adequate number of 2D MIP projections, re-
construction of the 3D segmentation mask can be done ac-
curately.

MIP generation. The PET scan is transformed into mul-
tiple 2D MIP images from different angles, capturing the
maximum intensity values along various projection planes
(Figure 3). To create the MIP images, the 3D PET scan
is rotated by different degrees around a rotation axis and
projected onto a perpendicular axis, selecting the maximum
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Figure 2: Proposed framework for improving 3D lesion segmentation in PET-CT scans using 2D synthetic data. The process
involves projecting the 3D PET scan into 2D MIP images, segmenting each 2D image, and combining the results into a 3D
mask, refined with corresponding PET and CT scans.

Figure 3: MIPs along different projection axes (different
rows). For each projection axis, the 3D PET scan is ro-
tated by different degrees (different columns) before apply-
ing maximum intensity projection.

intensity value. This process is repeated for the x, y, and z
projection axes. A hyperparameter, degree increment, de-
termines the number of 2D MIPs; smaller increments yield
more MIPs, resulting in a more accurate 3D reconstruction
of the segmentation mask. Let R be the number of rotations
per each projection axis. The total number of MIPs for each
3D PET scan is 3R.

2D segmentation. A 2D segmentation model is used to
segment the lesions in each MIP image. The model is de-

signed to accurately identify lesion boundaries within the
MIP images. The input of the model is the extracted MIP,
and the prediction ground truth is the projected lesion mask
at the same angle and rotation axis. We employ the nnUNet
framework [4] to train this 2D segmentation model. nnUNet
is an automatic framework for UNet-based segmentation,
renowned for its robustness and flexibility in medical imag-
ing tasks1.

The 2D U-Net architecture [9] with 7 stages for both
downsampling and upsampling. The number of features per
stage is defined as [32, 64, 128, 256, 512, 512, 512], with
the number of features increasing in the downsampling path
and decreasing in the upsampling path. Each stage consists
of two convolutional layers with a 3 × 3 × 3 kernel size.
The strides for the convolutional layers use a stride of 1
for the first stage and a stride of 2 for the remaining stages
to perform spatial downsampling. The model is optimized
using the Adam optimizer with an initial learning rate of
0.01 and a linear learning rate decay schedule. The training
is performed for 1,000 epochs with a batch size of 2 and
leaky ReLU activation. We adopt the same training loss as
described in [4], where the network is trained with a com-
bination of DICE and cross-entropy loss:

Ltotal = LDICE + LCE (1)

LDICE = −2 ·
∑

i∈I uivi∑
i∈I ui +

∑
i∈I vi

(2)

LCE = −
∑
i∈I

vi log(ui) (3)

1https://github.com/MIC-DKFZ/nnUNet
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Figure 4: Ground truth (left) and reconstructed (right) 3D
segmentation masks. To validate the performance of the re-
construction method, we generate MIPs from the 3D ground
truth segmentation mask and then reconstruct the 3D seg-
mentation mask from the MIPs. With 16 rotations per pro-
jection axis, the reconstruction method achieves a DICE
score of 0.86 for this case, which has complex-shape seg-
mentation.

where u is the softmax output of the network, and v is a
one-hot encoding of the ground truth segmentation map.

3D reconstruction. The segmented MIP images are then
reconstructed into a 3D segmentation mask. This involves
aligning the segmented 2D masks back into their original
3D space. The final 3D segmentation mask is then obtained
by taking the intersection of the projected masks, ensur-
ing that only the regions consistently identified as lesions
across all MIP views are included. See an example of re-
constructed MIP of the ground truth in Figure 4. We discuss
the effectiveness of 3D reconstruction in Section 5.2. We
report the performance of 3D segmentation masks recon-
structed from outputs of the 2D MIP Segmentation model
(before going through the Refinement Model) in Table 1,
denoted as MIP Seg.

Improving 2D segmentation model using synthetic MIP
images. To further improve the segmentation perfor-
mance, we introduce synthetic training data in the MIP
space. By generating synthetic MIP images with corre-
sponding segmentation masks, we can augment the training
dataset and aim to enhance the performance of the segmen-
tation model. We employed ControlNet [12], a model based
on latent diffusion, to generate synthetic MIP images. The
model was trained to generate MIP images conditioned on
1) a text description of patient age, sex, cancer diagnosis,
MIP rotation angle and projection axis, and 2) a 2D lesion
mask that was projected by the same method as MIP. Us-
ing these two inputs, the model was conditioned to generate
MIP images that align with the text description and contain
lesion(s) on the locations indicated by the mask.

Briefly, ControlNet [12] adopts layers and pretrained
weights from Stable Diffusion v1.5 [8], and makes a copy of

Figure 5: Examples of generated synthetic MIP im-
ages (middle), along with input conditions including text
prompts (above each row) and lesion masks (left). Real im-
ages are shown on the right.

these layers for receiving an additional Control image. The
layers in the original copy are locked and used for receiving
text prompts, while the additional copy (which receives the
control image) is trainable. In our case, the control image is
the lesion mask. Features from both branches are added to
generate output images conditioned by the text prompt and
control image.

We trained ControlNet using 9744 MIP images in the
training set (812 studies × 3 projection axes × 4 rotations
per axis). To facilitate training on a GPU with limited
VRAM (Nvidia Tesla T4 GPU, 16 GB VRAM), we applied
gradient accumulation by feeding 1 training instance into
the model at each iteration, accumulating gradients over
4 iterations, and updating the model’s parameters every 4
iterations. The model was trained for 10 epochs (total of
10 × 9744/4 = 24360 rounds of parameter updates) with
a learning rate of 10−5. The MIP images and lesion masks
were zero-padded to match ControlNet’s mask and output
image dimension of 512 × 512 pixels. During inference,
the following settings were used: sampling steps = 100,
control strength = 1.0 (range [0.0, 2.0]), guidance scale =
9.0 (range [0.1, 30.0]). Examples of synthetic MIP images,
along with input conditions, are shown in Figure 5.

The generated synthetic MIP images along with their
corresponding lesion masks serve as additional training data

4



for the 2D MIP segmentation model. These generated syn-
thetic MIP images are then combined with the original MIP
images in different proportions p to train the 2D MIP seg-
mentation model, leveraging the augmented data to improve
its performance. We discuss the effectiveness of the syn-
thetic MIP generation approach in Section 5.2.

4.2. Multi-modal Refinement Model

The multi-modal refinement model aims to refine the
3D segmentation mask by incorporating information from
the corresponding PET and CT scans. The original PET
scan highlights areas with high metabolic activity, which
can indicate the presence of lesions, while the CT scan pro-
vides anatomical context and helps to remove false positives
caused by organs with naturally high metabolic activity. By
combining these two complementary imaging modalities,
the Refinement Model can leverage the strengths of each
modality to produce a more accurate and robust 3D seg-
mentation mask. We employ a 3D nnUNet architecture for
this component where the inputs are the PET scan, the CT
scan, and the 3D segmentation mask obtained from the MIP
Segmentation component.

To train the multi-modal refinement model, we used the
3D reconstruction of output segmentation from the 2D MIP
segmentation model, with p = 15% (our best params). To-
gether with 3D PET and CT scans, these images form the
input data for our training process. CT scans were normal-
ized by CT normalization. PET and reconstructed MIP seg-
mentation were normalized by Zscore normalization. The
model uses a 3D U-Net architecture [9] with 6 stages for
both downsampling and upsampling. The number of fea-
tures per stage is defined as [32, 64, 128, 256, 320, 320],
with the number of features increasing in the downsampling
path and decreasing in the upsampling path. Each stage
consists of two convolutional layers with a 3× 3× 3 kernel
size. The strides for the convolutional layers use a stride
of 1 for the first stage and a stride of 2 for the remaining
stages to perform spatial downsampling. The training loss
used in the model is described in Equation 1. The model is
optimized using the Adam optimizer with an initial learning
rate of 0.01 and a linear learning rate decay schedule. The
training is performed for 1,000 epochs with a batch size of
2 and leaky ReLU activation.

5. Experiments
This section presents empirical experiments to evalu-

ate the effectiveness of our proposed method. In partic-
ular, we aim to show that the inclusion of MIP can ef-
fectively improve the overall lesion segmentation perfor-
mance and provide a discussion on the success and failure
modes of our framework. Our code is released publicly
for reproducible research at https://github.com/
Top34051/lesion-segmentation-mip.

5.1. Experiment Details

Baseline. Our baseline is nnUNet receiving two modali-
ties as inputs: PET and CT scans. This model is based on a
3D U-Net architecture and provides a comparison with our
proposed method. The inputs were 3D PET volumes con-
verted to SUV units and CT volumes of the same resolution.
The training was performed with the train split (80% of pa-
tients) with a max epoch set to 1,000 and an initial learning
rate of 10−4.

Evaluation metrics. We consider three metrics to evalu-
ate the performance of the methods: DICE score, False Pos-
itive Volumes (FPV), and False Negative Volumes (FNV).
While the DICE score is the default metric for the segmen-
tation task, the latter two are also important in biomedical
domain.

• DICE score: This metric is commonly adopted for
evaluating segmentation models. The DICE score
measures the overlap between the predicted segmen-
tation and the ground truth segmentation. It is defined
as:

DICE =
2|A ∩B|
|A|+ |B|

where A is the set of predicted lesion voxels and B
is the set of ground truth lesion voxels. DICE score is
defined as 1 when |A|+ |B| = 0. A higher DICE score
indicates better overlap and, thus, better segmentation
performance.

• False Positive Volume (FPV): FPV measures the vol-
ume of non-lesion tissue that is incorrectly classified as
lesion by the segmentation model. Specifically, FPV
is defined as the volume of false positive connected
components in the predicted segmentation mask that
do not overlap with tumor regions in the ground truth
segmentation mask. This can include areas of physi-
ological FDG uptake (e.g., brain, heart, kidneys) that
are erroneously classified as tumors.

• False Negative Volume (FNV): FNV measures the
volume of actual lesion tissue that is incorrectly classi-
fied as non-lesion by the segmentation model. Specifi-
cally, FNV is defined as the volume of connected com-
ponents in the ground truth segmentation mask (i.e.,
tumor lesions) that do not overlap with the predicted
segmentation mask. These are tumor lesions that are
entirely missed by the segmentation model.

5.2. Results and Discussion

Inclusion of MIP segmentation helps improve overall
segmentation performance. Table 1 shows that our pro-
posed method, which incorporates MIP segmentation, sig-

5

https://github.com/Top34051/lesion-segmentation-mip
https://github.com/Top34051/lesion-segmentation-mip


nificantly improves overall segmentation performance com-
pared to the baseline methods. The inclusion of MIP seg-
mentation helps the model to better understand the lesion
boundaries by leveraging the maximum intensity projec-
tions from different angles. This multi-view information
enhances the accuracy of the 3D segmentation, resulting in
higher average DICE scores and lower false positive vol-
ume. See Figure 6 for a breakdown of segmentation perfor-
mance.

Table 1: Comparison of segmentation performance with and
without MIP segmentation. Bold values indicate improved
performance from the baseline.

Method Modalities Metrics

PET CT MIP DICE FPV FNV

Baseline ✓ ✓ 0.42 21.11 6.66

MIP Seg. ✓ ✓ 0.64 1.04 39.62
Ours ✓ ✓ ✓ 0.66 4.38 34.83

Ablation study on a number of rotations per axis R.
We conduct an ablation study to investigate the effect of
the number of rotations per axis on the quality of the 3D
reconstructed segmentation. Table 2 indicates that increas-
ing the number of rotations enhances the module’s ability to
capture diverse views of the lesion, thereby improving seg-
mentation accuracy. However, beyond a certain point, the
performance gains diminish, suggesting an optimal number
of rotations for achieving the best trade-off between compu-
tational cost and reconstruction quality. According to these
results, we select R = 4 for our main experiments.

Table 2: Ablation study results on the number of rotations
per axis (R). The table shows the DICE score, FPV, FNV,
and the time to compute MIPs per one 3D image, averaged
over the test set. The compute time grows linearly with R
as expected.

R DICE ↑ FPV ↓ FNV ↑ Compute time (s)

1 0.917 3.905 0.000 15.83
2 0.931 0.620 0.157 31.66
4 0.931 0.230 1.313 63.31
8 0.934 0.127 1.355 126.62

16 0.933 0.066 1.425 233.24

Ablation study on synthetic MIP images proportions p
for the 2D segmentation model. We perform an ablation
study to assess the impact of varying the proportion of syn-
thetic MIP images (p) used for training the 2D segmentation

model. The parameter p indicates that the number of syn-
thetic MIP images is p percent of the real MIP images. As
shown in Table 3, incorporating synthetic MIP images into
the training process improves the segmentation model’s ro-
bustness and generalization capabilities. A moderate pro-
portion of synthetic images provides the best results, bal-
ancing the benefits of data augmentation with the risk of
overfitting to synthetic data characteristics. We select the
best performing p in our experiments based on these results.

Table 3: Ablation study results on the proportion of syn-
thetic MIP images (p).

p DICE Score FPV FNV

0% 0.63 0.61 41.45
15% 0.64 1.04 39.62
50% 0.62 1.03 38.24

Discussion on the failure case. In the case of positive
samples (i.e., samples containing lesion(s)), both MIP seg-
mentation alone and our combined method exhibit lower
DICE scores compared to the baseline, as shown in Ta-
ble 4. These results suggest that while the integration of
MIP segmentation improves overall performance, there are
challenges in training the model to effectively leverage the
information from PET and CT scans, which are included
in the baseline method. Theoretically, the model should
be able to utilize the information from both PET and CT
modalities effectively. This may be attributed to two po-
tential factors: 1) over-reliance on the output from the MIP
segmentation component, as we can see that the model is
improving beyond just taking from them but still relying
heavily on it, as observed from their similar performance;
and 2) the generalized loss function provided by the nnUNet
framework, which may not be optimal for combining the
multi-modal information in this specific task. In figure 7,
high dice score example is provided in panel a. Panel b is
positive case completely missed by the model (FNV only)
whereas panel c is negative case predicted positive by the
model (FPV only).

Replacing reconstructed Predicted MIP segmentation
with reconstructed Ground truth MIP segmentation.
To validate the proposed model’s effectiveness, we replaced
the 3D segmentation reconstructed from the 2D segmen-
tation model’s predictions with a 3D segmentation recon-
structed from 2D ground truth MIP segmentation masks.
This substitution allowed us to assess the model’s upper
bound performance. The results indicated a significantly
high performance, with a DICE score of 0.94, as shown in
Table 5. These findings suggest that using the ground truth
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Figure 6: Distribution of segmentation performance metrics. The plots show the distributions of DICE scores, false negative
volumes (FNV), and false positive volumes (FPV) across all samples, with logarithmic scaling on the y-axes to emphasize
the spread of values.

Table 4: Performance metrics for negative and positive samples. Bold values indicate an improved performance compared to
the baseline. Note that FNV is only defined for positive samples.

Method DICE Score FPV FNV

Negative Positive Average Negative Positive Average Positive

Baseline 0.16 0.69 0.42 29.71 12.17 21.11 13.58

Proposed method
MIP Segmentation 0.99 0.27 0.64 0.02 2.10 1.04 80.84
Ours 0.99 0.32 0.66 0.25 8.68 4.38 71.06

Mitigation strategy
Baseline + MIP Segmentation 0.90 0.49 0.68 23.04 10.24 16.77 18.85
Baseline + Ours 0.91 0.49 0.70 23.28 10.35 16.94 18.80

MIP segmentation sets a high benchmark for our approach,
highlighting the model architecture is appropriate for learn-
ing the final segmentation from the reconstructed 3D seg-
mentation.

Table 5: Performance metrics using 3D reconstruction of
2D ground truth MIP segmentation as input (together with
CT and PET) to the Refinement Model.

DICE Score FPV FNV

Negative 1.00 0.00 N/A
Positive 0.88 0.48 2.73

Total 0.94 0.24 2.73

Threshold selection for mitigation strategy. To mitigate
the identified failure case, we propose a thresholding strat-

egy that leverages the strengths of both methods. Specifi-
cally, we can set a threshold to dynamically decide whether
to trust the outputs from our model or the baseline model. If
the sum of predicted lesion volume from our model and the
baseline model is lower than the threshold, we use the out-
put from our model; otherwise, we use the output from the
baseline model. This volume threshold is selected to max-
imize the average DICE score. This approach aims to uti-
lize the high performance of our model on negative samples
and the high performance of the baseline model on positive
samples, thereby enhancing the overall segmentation per-
formance. We select the volume threshold of 10. By doing
so, we are able to achieve higher performance on negative
samples and comparable performance on positive samples,
compared to the baseline model, as shown in Table 4.
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(a) Case with high overlap between gt and pred (b) Case with FPV only (c) Case with FNV only

Figure 7: Sample visualization for FPV and FNV where red represents prediction mask and green represents gt mask

6. Conclusion and Future Works

In conclusion, this work proposes a novel framework
for improving 3D lesion segmentation in PET-CT scans by
leveraging 2D maximum intensity projections (MIPs). Our
approach combines a 2D MIP segmentation model, trained
on synthetic data, with a 3D multi-modal refinement model
that incorporates information from PET, CT, and the recon-
structed MIP segmentation mask. Through extensive exper-
iments, we demonstrate that our method outperforms the
baseline by achieving higher DICE scores and lower false
positive volumes, indicating improved overall segmentation
accuracy.

We provide insights into the key components of our
framework, such as the impact of the number of MIP rota-
tions and the proportion of synthetic data used for training
the MIP segmentation model. Furthermore, we discuss fail-
ure cases and propose mitigation strategies to leverage the
strengths of different modalities effectively.

One major limitation identified is the multi-modal refine-
ment model’s underperformance on positive cases (samples
with lesions present) compared to the baseline model using
only PET and CT scans. While the integration of MIP seg-
mentation improves overall metrics, the model struggles to
effectively utilize the complementary information from the
PET, CT and reconstructed MIP inputs for accurate lesion
segmentation in positive cases.

The primary challenge in debugging and improving the
multi-modal refinement model lies in the significant com-
putational requirements and limited resources available.
Training the 3D models is extremely computationally in-
tensive, with training times exceeding 10 hours on GPUs,
which severely restricts our ability to extensively explore
different architectures, loss functions, and training strate-
gies tailored to effectively combine multi-modal informa-
tion. We believe that further research with access to in-
creased computational resources holds promise for over-
coming this limitation and achieving even better perfor-
mance, particularly for lesions in positive cases.
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