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Abstract

Chart-to-text conversion is a challenging task that aims
to generate natural language descriptions from graphical
representations of data. While recent advances in vision-
language pretraining have shown promising results, cur-
rent approaches often struggle to capture the intricate de-
tails and relationships present in charts. In this paper,
we explore techniques to enhance the chart-to-text conver-
sion capabilities of the Matcha framework, which employs
a Vision Transformer (ViT) encoder and a transformer de-
coder. We analyze the limitations of the pretrained Matcha
model using saliency maps and propose two approaches
to improve the encoder: self-supervised contrastive learn-
ing with SimCLR and replacing the ViT encoder with a
Swin Transformer. Our experiments highlight the poten-
tial of these techniques to capture fine-grained details and
improve chart understanding. However, we also encounter
challenges related to computational efficiency and the need
for further architecture search. The initial experiments with
the Swin Transformer yield a high loss value, indicating the
need for extensive fine-tuning and adaptation to the unique
characteristics of chart data. Despite the challenges, our
work demonstrates the importance of developing special-
ized architectures and training strategies for chart-to-text
conversion tasks.

1. Introduction
Vision-language pretraining has led to remarkable

progress on tasks like image captioning [8], visual ques-
tion answering, and image summarization. However, chart-
to-text conversion, while similar in nature, remains a chal-
lenging open problem. Current work in retrieval augmented
generation (RAG) focuses primarily on text-only setups, ne-
glecting the wealth of information available in charts and
graphs that are common in business and scientific contexts.
Enabling RAG systems to understand and convert charts
into natural language would significantly enhance their ap-
plicability and utility.

Transformers [16] have become the dominant architec-

ture for both the encoder and decoder in these models. They
consist of self-attention layers that allow each token to at-
tend to all other tokens in the sequence, enabling efficient
parallel computation and capturing long-range dependen-
cies. Large language models (LLMs), such as GPT-4 [1],
are transformer-based models trained on vast amounts of
text data, allowing them to generate human-like text and
perform various language tasks. A Vision Transformer
(ViT) is a type of transformer architecture specifically de-
signed for processing visual data[3]. It divides the image
into a grid of fixed-size patches (e.g., 16x16 pixels). Each
patch is flattened into a 1D vector and treated as a ”token”
(analogous to words in a text sequence). Then embeds the
path vector into a higher-dimensional space using a learned
embedding matrix and add positional embeddings. These
encoded path are then sent a stacked of transformer encoder
layers and generates hidden vector representations.

The machine learning community has explored chart un-
derstanding from multiple angles. ChartOCR [12] and the
approach in [6] leverage OCR tools to extract key points and
numbers from chart images. More recently, there has been a
shift towards end-to-end deep learning methods. Pix2struct
[7] and Matcha [10] use a vision transformer (ViT) encoder
to process the input chart image and a transformer decoder
to generate the corresponding text or structured represen-
tation. They demonstrates the effectiveness of incorporat-
ing ViT structure in encoder-decoder network for vision-
language models.

The goal of our model is to convert input chart images
into a structured table format, with delimiters denoting the
chart type and values on the x and y axes. We train and
evaluate on datasets the Benetech Kaggle competition [5],
which contains over labeled 60000 charts. Performance is
measured using the cross-entropy loss between the model’s
predicted token scores and ground truth labels, to quantify
the accuracy of the generated structured tables.

In this work, we first analyze the behavior of the pre-
trained Matcha model by generating saliency maps to visu-
alize where the model attends in the input image. We then
explore two approaches to improve the encoder: 1) self-
supervised contrastive learning with augmentations suitable
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for chart images, and 2) replacing the ViT encoder with
a Swin Transformer to better capture fine-grained details.
Our experiments demonstrate the potential of these tech-
niques to enhance chart understanding while highlighting
challenges related to computational efficiency and the need
for architecture search.

2. Related Work
Chart understanding has been approached from multiple

angles in prior work. ChartOCR [12] and [6] use OCR-
based techniques to extract key information from chart im-
ages, while more recent methods like Pix2struct [7], Matcha
[10], GIT [17] and Deplot [9] employ end-to-end deep
learning with transformer architectures. Pix2struct [7] is
a pretraining approach for learning visual representations
from web page screenshots, with the goal of improving
performance on downstream vision-language tasks. The
model is trained to predict the DOM (Document Object
Model) structure of a web page from its screenshot, using
a transformer encoder-decoder architecture. The encoder
processes the screenshot image, while the decoder generates
a linearized representation of the DOM tree, capturing the
hierarchical layout and content of the web page elements.
Starting from Matcha, The model architecture consist of a
vision transformer (ViT) encoder that processes the input
chart image and a transformer decoder that generates the
corresponding text or structured representation. To improve
performance, Matcha enriches its visual reasoning capabili-
ties through tasks including Language modeling, which pre-
dict the next word in a text sequence, given the preceding
words and the chart image; Math reasoning, which solve
mathematical problems that are grounded in the chart, such
as finding the minimum, maximum, or average value of a
data series; And chart derendering, which generate a struc-
tured representation of the chart, such as a table of data
points or a JSON object capturing the chart type and at-
tributes. The Matcha framework demonstrates the effective-
ness of incorporating domain-specific reasoning tasks into
the pretraining process for vision-language models. Con-
tinuing on this trend, GIT trained on a massive dataset of
30 million image-text pairs to improve accuracy. In Deplot
work, people trained with both supervised learning, which
is to minimize the cross-entropy loss between the generated
table and the ground truth table on a dataset of real chart
images that have been manually annotated with their cor-
responding tables; and self-supervised learning, where they
reconstructed the input image from the generated table and
predicting masked tokens in the table.

Our work builds most directly on Matcha [10]. We ex-
perimented to improve the model’s encoder through self-
supervised learning and architecture changes. This is in-
spired by the success of contrastive learning in computer
vision [2] and the Swin Transformer’s [11] ability to cap-

Figure 1: Vision Transformer Encoder Block .[3]

Figure 2: Encoder Block with Transformer Decoder Block
[16]

ture both local and global information .

Compared to prior work, our approach focuses on en-
hancing the feature extraction capabilities of the encoder
through self-supervision and architecture search rather than
scaling up pretraining data/model size or introducing addi-
tional task-specific modules. We evaluate on standard chart
image datasets and metrics to facilitate comparison with ex-
isting methods.
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3. Data

We utilize the kaggle Benetech Charts Dataset [5], which
contains approximately 65,000 annotated scientific figures
across four chart types: vertical and horizontal bar graphs,
dot plots, line graphs, and scatter plots. Each figure is anno-
tated with the chart type, axis values, and natural language
summaries.

Some preprocessing steps were required, including fil-
tering out figures with missing annotations and resizing im-
ages to a consistent resolution. data augmentation such as
change hue, saturation and value, and shift RGB values are
done, also applied standard normalization to the input im-
age. We split the data into training, validation and test sets
using an 80/10/10 ratio.

4. Methods

Matcha is a standard encoder decoder model which does
Image Patching, Patch Embedding and add Positional Em-
beddings, Encoding with transformer blocks, decoding with
transformer blocks. We’ve showed the Vision Transformer
encoder block in Figure 1 and the transformer decoder block
which takes the hidden states as input and generate text in
Figure 2.

4.1. Saliency Map Analysis

To understand how well it performs on existing chart
to image task and the limitations, we first generated the
saliency maps for input images. The concept of saliency
maps was introduced by Simonyan [15], where they pro-
posed a technique called ”gradient-based saliency maps,”.
It computes the gradient of the output class score with re-
spect to each input pixel. The magnitude of the gradient
indicates the importance of each pixel for the model’s pre-
diction. Overall Saliency map is a visualization technique
that highlights the regions of an input image that have the
greatest influence on the model’s output or prediction. It
helps to understand which parts of the image are most im-
portant for the model’s decision-making process. For trans-
former blocks one can look through the attention weights to
get a hint on what the model is looking at. However, this
approach can only check with respect to input patch size,
and doesn’t provide information over all transformer layers.
Here instead we use the occlusion approach, where to gen-
erate a set of occluded images from the input image (10x10
patches here) and run the occluded image through the net-
work. By comparing the loss difference relative to the orig-
inal loss, we are able to visualize which regions caused the
largest changes in loss when masked-off.

Figure 3: A simple framework for contrastive learning of
visual representations[2]

4.2. Performance Tuning Through Contrastive
Learning

Our first approach to address the task was through self-
supervised contrastive learning on the ViT encoder using a
SimCLR [2] objective. SimCLR, which stands for Simple
Contrastive Learning of Visual Representations, is a self-
supervised learning framework for learning visual repre-
sentations from unlabeled images. Although we have la-
beled data here, the decoder model itself has over 1 mil-
lion paramters which incurs additional time to train. That
why we consider only training the encoder module with
self-Supervised Learning. Similar to the original paper, Our
SimCLR approach is formulated with 6 steps 3.

We first generated augmented views of each chart image
through cropping, scaling, and rotations up to 180 degrees
(to preserve axis label orientation). The goal is to create two
different views of each image, referred to as the ”positive
pair; Then Encoding using the VIT encoder captured from
Matcha model; A projection head, which is a linear layer
to map the encoder output to a one dimension vector; Then
calculates the contrastive Loss over the batch of augmented
data considering all the positive pairs within the batch. The
contrastive loss function is a normalized temperature-scaled
cross-entropy loss. For each positive pair of augmented
views, the loss encourages their projected representations to
be similar while pushing apart the representations of differ-
ent images. The loss is then backward propagated to update
the weights of the encoder, forcing the encoder to produce
similar representations for different augmented views of the
same image and dissimilar representations for different im-
ages. Lastly we update the Matcha’s encoder module with
this newly trained weights.
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4.3. Swin Transformer as Encoder

When analyzing a chart to extract and interpret the un-
derlying data, humans typically employ a systematic ap-
proach that focuses on several critical aspects. Initially, at-
tention is directed towards the numerical values and tex-
tual labels on the axes, which provide essential information
about the scale and context of the data being represented.
This step is crucial for establishing a foundational under-
standing of the chart’s scope and the range of values be-
ing depicted. Subsequently, the focus shifts to the visual
elements within the chart, such as bars, lines, or markers,
which represent the individual datapoints. By assessing the
length, height, or position of these elements relative to the
axes, one can discern the relative magnitudes and relation-
ships between different datapoints. This visual comparison
allows for a quick grasp of the overall trends and patterns
present in the data. Finally, to determine the precise values
associated with each datapoint, a process of interpolation is
employed. By considering the position of a datapoint in re-
lation to the labeled values on the axes, one can estimate its
exact value. This interpolation step involves mentally sub-
dividing the intervals between the axis labels and aligning
the datapoint with the corresponding subdivisions. These
observations means the task needs to capture the detailed
information on the axises, measure position of points com-
pared to axises in the chart, and understand the values for
the posistion. This involve fine grained local details, cross
communication among different set of patches and a global
view of the chart.

Vision Transformer architecture, although has shown im-
pressive performance on various computer vision tasks, has
a limited capability of capturing fine-grained visual de-
tails. This is because ViT processes images as a sequence
of fixed-size patches and relies on global self-attention to
model the relationships between these patches. In the ViT
architecture, an image is divided into a grid of fixed-size
patches (e.g., 16x16 pixels), and each patch is linearly pro-
jected into a token embedding. These token embeddings
are then processed by a stack of transformer encoder layers,
which apply global self-attention to model the dependencies
between all pairs of patches. While this global self-attention
mechanism allows ViT to capture long-range dependencies
and global context, it may struggle to capture fine-grained
local details within each patch.

Swin Transformer architecture[11] addresses this issue
and captures fine-grained visual details through a set of
modifications to the ViT architecture. That includes Hier-
archical Feature Representation, where it starts with small
patches (e.g., 4x4 pixels) and gradually merges them into
larger patches in deeper layers. This hierarchical represen-
tation allows the model to capture visual details at different
scales and resolutions4; And local Self-Attention, where
each image is divided into non-overlapping windows, and

Figure 4: The architecture of a Swin Transformer[11]

self-attention is computed only within each window. This
enables the model to focus on capturing fine-grained details
within each local region of the image; Shifted Window Par-
titioning, where the windows are shifted by half the window
size in both horizontal and vertical directions to allow for
capturing dependencies between neighboring windows and
maintain the global connectivity of the image; And win-
dow shuffling across different positions in the feature map
to capture the dependencies among distant windows.

The Swin transformer architecture should be ideal for
our task from this logical standpoint.

4.4. Loss Function

The loss is computed by taking the cross-entropy be-
tween the model’s predicted token scores (logits) and the
ground truth labels. The logits represent the raw scores
or log-probabilities over the vocabulary at each position in
the sequence, while the labels contain the target tokens the
model should predict. Cross-entropy measures how close
the model’s predicted distribution is to the true distribution.

5. Experiments
Our model development is done on google colab cpu

nodes, and test run is done on a single NVIDIA A100 80G
GPU. the size of the parameter is reason to chose for a 80G
GPU. although the Matcha network is a 2.8 Million parame-
ter network, which converts to 1.12GB with everything run-
ning fp32. All the intermediate values required for back
propagation easily makes the model occupy 12GB data with
batch size of 2, and grows to over 40GBs with a batch size
of 8.

5.1. Saliency Map Analysis for Matcha Model

Figure 5 presents a line chart image and its correspond-
ing saliency map generated using the pretrained Matcha
model. The saliency map illustrates the difference in loss
values between the occluded and non-occluded regions of
the input image. The model successfully captures the dip on
Thursday and the spike on Saturday, as well as the birth rate
values of 14 and 16 on the y-axis and some ”Day” informa-
tion on the x-axis. However, the model fails to accurately
capture values 10, 12, Saturday, and Sunday. Ideally, all
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(a) A Line Chart Image from Dataset (b) SaliencyMap of the Line chart Image

Figure 5: a line chart image and its corresponding saliency map on Matcha pretrained Model.

x-axis and y-axis values should be precisely captured since
each value has a corresponding datapoint in close proxim-
ity. Out of the total 5 values on the y-axis, 7 values on the
x-axis, and 7 datapoints, the Vision Transformer (ViT) cap-
tures at most 7 of them. The remaining values are either not
captured or have minimal influence on the model’s output.
This observation highlights the inherent limitation of ViT in
capturing a sufficient amount of detailed information that is
spatially distributed in the input image.

5.2. Analysis of SimCLR on ViT Encoder

During the experimentation with the SimCLR frame-
work on the ViT encoder, several challenges were encoun-
tered in guiding the model to learn from the augmented
dataset. One notable issue was that even when the con-
trastive loss decreased, the model’s performance deterio-
rated.

This phenomenon could be attributed to the limited batch
size that our GPU could accommodate. Despite the encoder
portion containing only approximately 1.5 million parame-
ters, its output has a dimension of 1000x768. To compress
this output to a manageable dimension for loss calculation,
a linear layer with a weight matrix of size 1000*768 to 512
was employed, resulting in an additional 393 million pa-
rameters in the forward pass. Given the memory constraints
of an 80GB GPU, a batch of 4 pairs of augmented data (i.e.,
8 inputs) would require 6.4GB of memory (0.4G * 2Byte
* 8), leaving limited space for the weights and gradients of
the encoder network. Consequently, the model could only
be trained with a batch size of 4 pairs of data. Limited batch
size means limited number of negative samples. It would
not provide a stable and consistent reference for the model

to learn from, as their representations also change quickly
over time.

Furthermore, the SimCLR architecture has an inherent
instability issue due to the use of an unstable model for the
negative pairs. Here the same encoder is used for all pos-
itive and negative samples, meaning a different encoder is
used to generate the other negative samples. The incon-
sistency in the encoded representations can make it chal-
lenging for the model to learn stable and meaningful rep-
resentations of the input data. We should consider using
the MOCO work[4] instead, where a slowly moving aver-
age of the query encoder were used for the negative sam-
ples to avoid jitter or even none-convergence behavior. It is
also worth noting that self-supervised learning might face
fundamental challenges in chart-to-table conversion tasks.
While rotation and scaling transformations might be easily
interpretable for humans, they pose significant difficulties
for the model to learn since it needs to capture the relation-
ships between different image patches.

5.3. Analysis of Swin Transformer as Encoder

The initial experiments involving the replacement of the
Vision Transformer (ViT) with a Swin Transformer back-
bone in the chart-to-text conversion task yielded a signifi-
cantly high loss value during the first 10 epochs of training.
This suboptimal performance can be attributed to several
factors. Firstly, the pretrained Swin Transformer model was
originally trained on natural image datasets, such as COCO,
which exhibit substantially different visual characteristics
and patterns compared to charts and graphs. Charts are
composed of distinct elements, including lines, key points,
and numerical values along the axes, which are not com-
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monly found in natural images. Consequently, the Swin
Transformer requires extensive fine-tuning to adapt to these
novel visual features, necessitating a considerable number
of training iterations to effectively capture and represent the
unique properties of charts.

Secondly, to the best of our knowledge, the application
of Swin Transformers to chart-to-text conversion tasks is a
novel research direction that has not been extensively ex-
plored in the existing literature. As a result, there is a pos-
sibility that the architectural properties of the Swin Trans-
former may not be inherently well-suited for this specific
task. However, to thoroughly investigate this hypothesis
and determine the effectiveness of the Swin Transformer in
capturing the numerical values and relationships between
image patches, it is essential to analyze the saliency maps
generated by the model after it has converged. The saliency
maps will provide valuable insights into the model’s atten-
tion distribution and its ability to focus on the relevant chart
elements, such as numbers and key points, enabling a com-
prehensive assessment of the Swin Transformer’s suitability
for chart-to-text conversion.

Table 1 shows our preliminary results on a subset of the
Chart-to-Text dataset:

Model Cross-Entropy Loss
Matcha (ViT) 0.8922
Matcha (ViT) + SimCLR 0.92
Matcha (Swin) 13

Table 1: Training Loss results on Chart-to-Text dataset.
Cross-entropy loss is computed between the model’s pre-
dicted token scores and ground truth labels. Lower is better.

Future work will include 1) training the new swin-
transformer network thoroughly, 2) conducting neural ar-
chitecture search to optimize the Swin Transformer for chart
data, and 3) evaluating our approach on additional datasets
like ChartQA [13] and PlotQA [14] to assess generaliza-
tion. Integrating with downstream RAG systems is another
important direction to demonstrate the practical value of our
work.

6. Conclusion
In this paper, we explored techniques for improving

chart-to-text conversion in the Matcha framework through
self-supervised learning and architecture search. Our ex-
periments with Swin Transformers show promising results
in terms of cross-entropy loss reduction and detail capture.
However, due to limited time and computation resource
constraints we are not able to improve on the final results.

This effort should further extends to work on better de-
signed architectures for chart to text conversion tasks, neu-
ral architecture search, and the integration of chart under-

standing into downstream retrieval-augmented generation
systems. By enabling machines to reliably understand the
wealth of information stored in charts and graphs, this work
steps toward on making these resources more accessible and
useful for a variety of real-world applications.
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