
Enhancing Privacy: Automated Detection and Blurring of Sensitive Information
in Images and Video Feeds

Yanis Najy Miraoui
Stanford University

ymiraoui@stanford.edu

Paul Woringer
Stanford University

paulworinger@stanford.edu

Abstract

The monitoring of urban spaces has become a critical
aspect of modern city management. However, these surveil-
lance systems, which utilize extensive networks of cameras
and sensors, pose significant privacy risks by capturing
sensitive personal information, such as license plates and
facial features. Our project addresses these privacy con-
cerns by developing an innovative solution using advanced
Computer Vision techniques. We focus on real-time detec-
tion and anonymization of sensitive information in urban
surveillance feeds, specifically targeting license plates and
human faces. The input to our system consists of high-
definition images and video feeds from urban environments,
processed using deep learning models to detect and blur
sensitive data. We employ state-of-the-art models for Opti-
cal Character Recognition (OCR) and image segmentation,
integrated into a robust pipeline to ensure privacy protec-
tion without compromising the utility of surveillance data.
Our solution demonstrates high performance and efficiency,
providing a viable approach to enhancing privacy in mod-
ern urban surveillance systems. Through extensive evalua-
tion, we show that our system effectively safeguards privacy
while maintaining the footage’s intended purpose, address-
ing the complex challenges posed by dynamic urban envi-
ronments.

1. Introduction

In an increasingly digital and connected world, the mon-
itoring of urban spaces has become a critical aspect of mod-
ern city management. Surveillance systems are used for var-
ious purposes, including traffic management, public safety,
and urban planning. These systems rely on extensive net-
works of cameras and sensors that continuously capture and
process vast amounts of visual data. Although these tech-
nologies offer significant benefits in terms of efficiency and
security, they also pose substantial privacy risks.

The inadvertent capture and dissemination of sensitive

personal information, such as license plates, facial features,
and other identifiable details, are common in monitored en-
vironments. This raises serious privacy concerns, as unau-
thorized access to such information can lead to misuse,
identity theft, and other forms of harm. Moreover, the con-
stant surveillance may infringe on individuals’ rights to pri-
vacy, creating a sense of being perpetually watched.

However, addressing these privacy concerns is not
straightforward due to the complex and dynamic nature of
urban environments. Moving objects, varying lighting con-
ditions (day and night), and diverse backgrounds make it
challenging for conventional static image processing tools
to effectively detect and mask sensitive information. There-
fore, there is a need for the use of advanced Computer Vi-
sion techniques that can operate efficiently and accurately
in real-time to ensure privacy.

Our project aims to develop an innovative solution that
leverages state-of-the-art ML in optical character recogni-
tion (OCR), image segmentation, and deep learning to en-
hance privacy protection in urban surveillance. Our pri-
mary focus will be on detecting and anonymizing two crit-
ical types of sensitive information: license plates and hu-
man faces. By integrating these advanced techniques, we
seek to create a robust system capable of detecting and
anonymizing personal data in real-time video feeds and im-
ages. Our approach will not only safeguard privacy, but will
also maintain the utility of surveillance for its intended pur-
poses.

1.1. Problem Statement

The inadvertent capture and dissemination of personal
data in monitored urban spaces violate privacy norms and
expose individuals to potential misuse of their information.
This is especially critical for sensitive data such as license
plates and facial features. Conventional static image pro-
cessing tools are inefficient in addressing these complex dy-
namics, creating the need for advanced Computer Vision
techniques to detect and mask personal data in real-time
video feeds and images.

1



1.2. Setup

The input to our system comprises high-definition im-
ages and video feeds collected from various urban envi-
ronments, including busy streets and public parks, cap-
tured under diverse lighting conditions and weather scenar-
ios. These images and videos are pre-processed and anno-
tated to mark sensitive information such as license plates
and human faces. Using advanced Computer Vision tech-
niques, particularly object detection and Optical Charac-
ter Recognition (OCR) for license plates and image seg-
mentation for human faces, we train deep learning mod-
els, to detect and anonymize this sensitive information in
real-time. The output of our system is an image or a video
feed in which all detected license plates and faces are ef-
fectively anonymized and blurred, thus protecting individu-
als’ privacy while maintaining the utility of the surveillance
footage for its intended purposes.

2. Related Work
2.1. Face and object detection

Haar Cascades One of the first breakthroughs in object
detection was brought about by Viola and Jones (2001) [20],
who combined increasingly complex classifier models to
discard background zones efficiently and only dedicate re-
sources to zones that have been deemed likely to contain
said objects. These models use Haar features to classify ob-
jects. This increase in efficiency allowed for face detection
to be performed in real time. We will be using this pre-
trained model as our first baseline for face detection. This
was a great step forward at the time of its publication, but
its performance does not hold up well against more recent
advances.

Deep Learning and Convolutional Neural Networks
(CNN) Haar cascades, as efficient as they were, relied
on predefined Haar features that limited the expressivity of
the models. More recently, the boom of deep learning has
led to the development of convolutional neural networks,
which automatically learn hierarchical feature representa-
tions from the data. They are also more robust to variations
in lighting, pose, and occlusions. This allowed for signifi-
cant improvements in performance, as displayed with Gir-
shick et al. (2013) [4], Ren et al. (2016) [18], and Red-
mon et al. (2016) [17] (that we have studied in class). We
will be using the YOLO model introduced by Redmon et
al. in our pipeline to detect vehicles (see below). Ap-
proaches like Zhang et al. [23] leverage multitask train-
ing for increased performance in face detection and align-
ment. Transfer learning is also often used to take advantage
of large pretrained models and applying them to more spe-
cific problems. This is an approach that will be central in
our project.

Recent advances Recently, the focus seems to have
shifted from CNNs to models with attention mechanisms
and based on transformers, as introduced by Dosovitskiy
et al. (2021) [2], as they have brought considerable in-
creases in performance. Increasing attention is also given
to lightweight models, which allow for increased portabil-
ity to devices with limited resources (such as smartphones),
as presented by Howard et al. (2017) [6]. There is also
research being done in privacy-preserving face-detection in
order to comply to regulations and ethics, using federated
learning and differential privacy to ensure the privacy of the
people displayed in the training set. While these techniques
are all very promising and relevant to our task, as of now
we are not considering including them in our project due to
our limited time.

2.2. OCR

While there has been considerable focus on Optical
Character Recognition long before face detection was even
thought to be possible, recent trends in this task have fol-
lowed closely the advancements made for object detection.
However, specific research is also dedicated to this task,
with a focus on robustness and multilingual systems. Some
very powerful implementations such as Tesseract [11] and
EasyOCR [8] are readily available. The Tesseract model has
an architecture based on CNNs followed by a deep bidirec-
tional LSTM. EasyOCR on the other hand uses a ResNet for
feature extraction (also followed by an LSTM layer). Both
models also include a postprocessing layer.

2.3. Applications to Privacy

The methods described above have been collated and ap-
plied to the task of blurring out sensitive information to pre-
serve individual privacy. For example, the paper Frome et
al. (2009) [3] which describes the initial process used in
Google Street View was the inspiration for our project. The
main objective of this paper is to maximize its recall on face
and license-plate detection, in order to avoid leaking private
information. To do so, they use a two-step process with a
sliding-window detector tuned for high recall, followed by
a fast post-processing stage that includes domain-specific
information to mitigate the number of false positives given
by the first detector. One limitation of this paper is that it is
rather domain-specific, in that the paper only uses data from
Google Street View, which is usually pretty controlled (for
example images are only taken during the day in relatively
clear weather).

3. Methods
Our objective is to accurately detect sensitive informa-

tion, with a primary focus on identifying faces and li-
cense plates for the purpose of blurring them. We will
address both static images and dynamic content such as

2



Figure 1. Our proposed pipeline to process an input image

video surveillance footage. To achieve this, we have de-
signed a multi-component pipeline that includes a license
plate/vehicle detection model, an OCR model, and a face
detection model. This fully autonomous pipeline will be ca-
pable of processing inputs, such as street images and video
clips, and producing outputs of blurred and desensitized im-
ages and video clips. Note that this pipeline architecture and
modules is ultimately what we aim to achieve.

3.1. Pipeline Components

The pipeline, described on Figure 1, is structured into
several key components, each with specific responsibilities:

1. License Plate/Vehicle Detection Model: This model
uses pre-trained YOLO-V8 fine-tuned for our task to
identify and locate vehicles and license plates in the
input data.

2. OCR Model: The OCR model ensures the accurate
identification of license plates by reading and recog-
nizing alphanumeric characters, distinguishing them
from other textual elements such as highway signs.
This verification step allows precise anonymization
and blurring.

3. Face Detection Model: This component utilizes deep
learning techniques, specifically Convolutional Neural
Networks (CNNs), to detect and locate human faces
within images and video frames. We will consider
models like Haar Cascades but also fine-tuned pre-
trained model and compare their accuracy as well as
efficiency for our task.

4. Blurring Module: After detecting sensitive informa-
tion, the blurring module processes these areas to
obscure identifiable features using methods such as
Gaussian blurring, pixelation, or synthetic overlays,
ensuring privacy without compromising the footage’s
overall utility.

3.2. Baselines

Each component of our pipeline are evaluated against a
baseline model. These baselines include:

• For detecting vehicles: Haar Cascades and a pre-
trained YOLO-V8 model.

• For detecting persons and faces: Haar Cascades and
MTCNN.

• For Optical Character Recognition (OCR): EasyOCR
and Tesseract OCR.

These baselines have been established in past work and
are described in details in the Literature Review section.

In the following subsections, we will provide detailed
explanations of each component of our pipeline and their
functionalities.

3.3. License plate and vehicle detection

As described earlier, our first module is composed of
a license plate and vehicle detection model. This compo-
nent takes as input an image or video and returns the loca-
tion and bounding box of the license plate or vehicle if one
those is present in the image. For this purpose, we trained
and evaluated a fine-tuned YOLO-V8 model. We compared
its performance to other baseline models such as Haar Cas-
cades and a pre-trained only YOLO-V8 model. In fact, the
YOLO-V8 model operates by dividing the input image into
a grid and predicting bounding boxes and class probabilities
for each grid cell, allowing it to accurately detect and local-
ize vehicles and license plates in real-time. Mathematically,
the YOLO model optimizes the following loss function:

L = λcoord

S2∑
i=0

B∑
j=0

⊮obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+ λcoord

S2∑
i=0

B∑
j=0

⊮obj
ij

[
(
√
wi −

√
ŵi)

2 + (
√

hi −
√
ĥi)

2

]

+

S2∑
i=0

B∑
j=0

⊮obj
ij

[
(Ci − Ĉi)

2
]

+ λnoobj

S2∑
i=0

B∑
j=0

⊮noobj
ij

[
(Ci − Ĉi)

2
]

Where:

• S is the number of grid cells.

• B is the number of bounding boxes per grid cell.

• ⊮obj
ij indicates if the j-th bounding box in the i-th grid

cell is responsible for the object.

• xi, yi, wi, hi are the coordinates and dimensions of the
bounding box.

• Ci is the confidence score for the bounding box.

3



• λcoord and λnoobj are hyperparameters to balance the
loss terms.

The loss function ensures that the predicted bounding box
coordinates and dimensions match ground truth values (lo-
calization loss), penalizes incorrect confidence scores (con-
fidence loss), and includes a classification loss component
to penalize incorrect class predictions, ensuring accurate
object classification. Hyperparameters λcoord and λnoobj
balance the importance of localization accuracy and back-
ground detection. Overall, By optimizing this composite
loss function, YOLO effectively learns to predict accurate
bounding boxes, high confidence scores for objects, and
correct object classifications. All of these properties are par-
ticularly valuable for our task.

3.4. Optical Character Recognition (OCR)

To verify and read license plates, we employ OCR mod-
els such as EasyOCR and Tesseract OCR. These models are
crucial for distinguishing license plates from other textual
elements like highway signs. EasyOCR and Tesseract OCR
use Convolutional Neural Networks to extract features from
the input image and a sequence-to-sequence model for char-
acter recognition. The performance of OCR models is eval-
uated using metrics such as accuracy, precision, and recall
(as described in Section 3.7).

3.5. Face Detection

The face detection component leverages advanced deep
learning techniques, particularly CNNs. We compare vari-
ous models, including Haar Cascades, MTCNN, and Deep-
Face, to identify the most performant model for our task.
These models mainly work by detecting facial landmarks
and using these landmarks to predict the bounding box of
the face. Mathematically, the face detection models gener-
ally optimize the following loss functions:

1. A localization loss using the Mean Squared Error
(MSE):

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2

where yi is the ground truth coordinate and ŷi is the
predicted coordinate for the i-th landmark.

2. A classification loss using the Cross-Entropy loss:

LCE = −
N∑
i=1

yi log(ŷi)

where yi is the ground truth label and ŷi is the pre-
dicted probability for the i-th class.

These loss functions help ensure that the detected facial
landmarks and bounding boxes closely match the ground
truth values. By focusing on accurate localization of facial
landmarks and minimizing classification errors, these face
detection models can reliably identify human faces in var-
ious lighting and pose conditions. All of these properties
are particularly valuable for our task, making these models
essential for accurate and reliable face detection in images
and videos.

3.6. Anonymizing and Blurring Sensitive Informa-
tion

Once sensitive information such as faces and license
plates are detected, the anonymizing and blurring module
processes these regions to ensure privacy. Methods such
as Gaussian blurring and pixelation are applied to obscure
identifiable features without compromising the overall util-
ity of the footage. Gaussian blurring uses a Gaussian func-
tion to smooth the image, defined as:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

The pixelation method, on the other hand, involves re-
ducing the resolution of the detected regions by averaging
the pixel values within a block. This can be represented as:

Pij =
1

n2

n−1∑
m=0

n−1∑
n=0

I(i+m)(j+n)

where Pij is the pixel value in the pixelated image and
I(i+m)(j+n) are the pixel values in the original image within
the n× n block.

These anonymization techniques ensure that the sensi-
tive regions are obscured efficiently while maintaining the
integrity of the surrounding image.

3.7. Evaluation and Metrics

We evaluate our pipeline in 2 steps:

1. The first step is to evaluate each component and model
of our pipeline separately only based on the specific
task they aim to achieve. For instance, we evaluate
the performance of the License Plate/Vehicle Detec-
tion model alone on its own for its specific task first:
detecting when there are and where are the vehicles.

2. The second step consists of testing and evaluating our
whole pipeline as a whole. This involves a more quali-
tative analysis of our results and allows us to conclude
on the overall performance of our system.

For comparing the models to the baselines for each com-
ponent, we used multiple different metrics:

• Accuracy = Number of Correct Predictions
Total Number of Predictions

4



Task Model Accuracy Precision Recall

License Plate Detection
Haar Cascades 0.62 0.82 0.58

YOLO-V8 0.91 0.91 0.90
YOLO-V8 (fine-tuned) 0.94 0.95 0.94

Vehicle Detection
Haar Cascades 0.56 0.85 0.62

YOLO-V8 0.84 0.88 0.75
YOLO-V8 (fine-tuned) 0.86 0.90 0.87

Person and Face Detection
Haar Cascades 0.44 0.62 0.58

MTCNN 0.82 0.80 0.79
DeepFace 0.84 0.81 0.80

OCR Tesseract OCR 0.76 0.58 0.82
EasyOCR 0.81 0.64 0.85

Table 1. Performance metrics of baseline models and our method in italic for each task.

• Precision = True Positives
True Positives+False Positives

• Recall = True Positives
True Positives+False Negatives

• F1 Score = 2× Precision×Recall
Precision+Recall

• Mean Average Precision (mAP) =
∑M

k=1(Rk −
Rk−1)Pk where M is the number of recall levels, Rk

is the recall at the k-th threshold, and Pk is the preci-
sion at the k-th threshold.

These metrics are computed using the Intersection over
Union (IoU) between the ground truth bounding boxes
and the ones created by our different models. In fact, IoU
measures the overlap between the predicted bounding box
and the ground truth bounding box. Using these metrics
allowed us to have a better understanding of where our
proposed methods were successful or failing compared to
the baselines.

We evaluated our pipeline comprehensively using these
metrics, and also conducted a qualitative analysis of our re-
sults. This approach is justified by the complexity of our
pipeline, which is composed of multiple different compo-
nents that contribute to a single output. As a result, evalu-
ating each component quantitatively alone might not fully
capture the effectiveness and nuances of the overall system.

4. Datasets
For our analysis, we utilized and compiled multiple

datasets. Again, this was necessary to evaluate both the in-
dividual components of our pipeline and the pipeline as a
whole.

We have used the COCO dataset [14] for face and
car detection (not license-plates directly). It contains
117266 training images and 4952 validation images. They
have varying resolutions (480x640, 335x500, 640x480,

335x500, etc.). Please refer to Figure 7 in the appendix for
examples.

We have used a license-plate specific dataset available on
HuggingFace 1 for the license-plate detection task. Some
examples are displayed in the appendix in Figure 8. Note
that this is a dataset where the license plates are most of
the time relatively well displayed and not too obstructed.
It contains images from different settings: security camera
above the entrance of a parking garage, outside parking lot,
cars and motorcycles. Note also that some images may con-
tain text outside of the license plate, as shown on one of
the example images, which might lead to false positives for
OCR-based approaches to license-plate detection. It is al-
ready split in a three train/validation/test datasets of 6176,
1765, and 882 entries respectively. The majority of the im-
ages have dimensions 472x303, but some larger resolutions
also appear (1024x768, 1024x608, 764x428, etc.).

We have used the TImes Square Intersection (TISI)
video surveillance dataset 2. Note that this dataset contains
videos. In our tests, to make training more efficient and
the visualization of our results simpler, we chose to sam-
ple these videos at regular intervals. The dataset overall
contains 1465 folders, each containing 1000 frames. The
videos are taken at approximately 10Hz. We sample one
image every 50 frames (5 seconds between each image).
This gives the pedestrians and the cars in the images enough
time to move, thus generating diverse examples, while still
keeping a large number of data points (29,300 total). The
resolution of each of these images is 550x960. Please refer
to Figure 9 in the appendix for examples.

1https://huggingface.co/datasets/keremberke/license-plate-object-
detection

2https://xiatian-zhu.github.io/downloads qmul TISI dataset.html

5



5. Results and Discussion
We have built and evaluated each of the models and

methods described in earlier sections. We have compiled
the results and metrics obtained on a separate test set in Ta-
ble 1.

5.1. License plates and vehicles detection

First of all, we notice that as expected, the fine-tuned
YOLO-V8 model performs best for license plate and vehi-
cle detection compared to our baselines. It achieves very
high performance for our task. Comparing our method to
the baseline, we notice that Haar Cascades performs poorly
in terms of accuracy and recall. Note that we have used
Haar Cascades with a scale factor equal to 1.1 and a min-
Neighbors of 5. These hyperparameters were the highest
performing ones on a separate validation set. Additionally,
we can see on Figure 2 that Haar Cascades performs only
relatively well qualitatively: it is not able to accurately de-
tect a car and the bounding boxes are much larger than the
size of the vehicle.

Figure 2. Outputs from Haar Cascades and examples of common
unsuccessful predictions.

5.2. Optical Character Recognition (OCR)

We obtained very promising results for the two OCR
models that we have considered in our analysis. Both
Tesseract OCR (with Legacy Engine and Page segmentation
mode 6 which assumes a uniform block of text) and Easy-
OCR hold very high accuracy and recall scores. However,
they obtained low precision scores because they detected a
lot of false positives. This should not be an issue in our case
for our pipeline as the OCR will only be applied after, we
have detected and determined a bounding box around the
vehicles and license plates present in the image or video.
Some examples of correct license plates detection as well
as OCR detection are presented on Figure 3.

5.3. Face detection

Regarding person and face detection, our experiments re-
veal that the DeepFace model significantly outperforms the
baseline models, especially in scenarios involving multiple
faces in a single frame. DeepFace demonstrates robust ac-
curacy and recall rates, ensuring reliable detection even in

Figure 3. Output from YOLO-V8 (left) and EasyOCR (right) on
the same image for license plate detection. Note that EasyOCR
also flags the timestamp of the image.

Figure 4. Face detection examples using Haar Cascades and a com-
mon failure faced. On the left, a face is correctly detected, while on
the right, there is a false positive and a false negative. In the false
positive, an incorrect bounding box is constructed in the back-
ground, and in the false negative, the main face is not correctly
detected.

complex scenes. On the other hand, Haar Cascades show
noticeable limitations in detecting multiple faces simulta-
neously. This inadequacy is illustrated in Figure 4, where
Haar Cascades often miss several faces or produce impre-
cise bounding boxes around detected faces. In our evalua-
tions, we used Haar Cascades with a scale factor of 1.2 and
a minNeighbors value of 3, which were the optimal settings
determined from our validation set. Despite these tuned hy-
perparameters, Haar Cascades frequently underperformed,
highlighting the superiority of DeepFace in face detection
tasks.

5.4. End-to-end pipeline

Before, putting all the components together, we imple-
mented two blurring methods as described earlier in Section
3.6: Gaussian blurring and Pixelation. We tested it on mul-
tiple license plates and faces and an example of its results
can be found on Figure 5.

Finally, our last step was to put all the different compo-
nents and modules together in order to build and evaluate
our end-to-end pipeline. As it is very hard, in our case,
to obtain quantitative metrics of how well our end-to-end
pipeline performs as a whole, we performed a more quanti-
tative analysis of our results. In fact, as observed on Figure
6, our pipeline performs well. Qualitatively, it is able to

6



successfully detect and blur both the license plates as well
as the faces present on the image.

Figure 5. Output of our pipeline using Gaussian blur (top) or blur
by pixelation (bottom). Note that we also blurred the text from the
timestamp as it was also detected by EasyOCR.

6. Conclusion and Next Steps
In this project, we addressed the critical issue of pri-

vacy protection in urban surveillance systems by devel-
oping an innovative and complete end-to-end anonymiza-
tion tool. Our comprehensive solution leverages advanced
Computer Vision techniques and models in order to detect
and anonymize sensitive information, specifically license
plates and human faces, in real-time video feeds and im-
ages. Our innovative multi-component pipeline integrates
state-of-the-art models for license plate/vehicle detection,
Optical Character Recognition (OCR), and face detection,
demonstrating high performance in safeguarding privacy
while maintaining the utility of surveillance footage.

Our experimental results indicate that fine-tuned YOLO-
V8 models for license plate and vehicle detection, combined
with DeepFace for face detection, provide robust and ac-
curate identification of sensitive information. The integra-
tion of Gaussian blurring and pixelation techniques ensured
effective anonymization, further enhancing the privacy-
preserving capabilities of our system.

Figure 6. Example of final outputs obtained from our end-to-end
pipeline: all of the license plates and identifiable faces have been
successfully blurred.

The proposed pipeline successfully addressed the chal-
lenges posed by dynamic urban environments, varying
lighting conditions, and diverse backgrounds. By opti-
mizing for both accuracy and efficiency, our solution of-
fers a viable approach to privacy protection in modern ur-
ban surveillance systems, potentially mitigating the privacy
risks associated with extensive visual data capture and pro-
cessing.

While our project has made significant strides in enhanc-
ing privacy protection in urban surveillance, several areas
for future work remain. Future work could involve further
testing and validation in real-world environments, incorpo-
rating user-controlled privacy settings into the system in or-
der for users to specify their privacy preferences or extend-
ing our pipeline to take into account the temporal aspect of
dynamic video feeds.

7



7. Contributions and Acknowledgements
This project was solely carried for this course and was

not combined with any other course. We wrote and im-
plemented all the code ourselves and did not use any pub-
lic GitHub repository. Regarding the distribution of work,
Paul focused on the OCR, the blurring methods and the
evaluation of our end-to-end pipeline while Yanis focused
on the license plates, vehicles and faces detection models.
The write-up and the figures were collaboratively created
and edited by both of us to ensure consistency and clarity
throughout the project report.

8. Appendices
8.1. Examples of images from our dataset

Figure 7. Example images from the COCO dataset

8.2. Packages Used

Note that we only cite the packages directly imported
into our project, not their dependencies.

Data preprocessing
• Numpy [5]

• Pandas [21]

• Pytorch [15]

• Pillow [19]

• Transformers pipeline [22]

Figure 8. Example images from the license plate dataset from Hug-
gingface

Figure 9. Example images from the Times Square Intersection
dataset

Datasets

• Huggingface datasets [13]

Models and evaluation

• Segment Anything [12]

• YOLO-V5 [9]

• YOLO-V8 [10]

• Open CV (cv2) [1]

• Scikit-learn [16]

• EasyOCR [8]

• PyTesseract [11]

Miscellaneous

• Matplotlib.pyplot [7]

• Built-in libraries:

time

collections

8



References
[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000.
[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,

X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale, 2021.

[3] A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu,
A. Bissacco, H. Adam, H. Neven, and L. Vincent. Large-
scale privacy protection in google street view. In 2009 IEEE
12th International Conference on Computer Vision, pages
2373–2380, 2009.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation, 2014.

[5] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–
362, Sept. 2020.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations, 2017.

[7] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007.

[8] jaided.ai. Easyocr, 2020.
[9] G. Jocher. YOLOv5 by Ultralytics, May 2020.

[10] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics YOLO, Jan.
2023.

[11] A. Kay. Tesseract: an open-source optical character recogni-
tion engine. Linux J., 2007(159):2, jul 2007.

[12] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo,
P. Dollár, and R. Girshick. Segment anything, 2023.

[13] Q. Lhoest, A. Villanova del Moral, Y. Jernite, A. Thakur,
P. von Platen, S. Patil, J. Chaumond, M. Drame, J. Plu,
L. Tunstall, J. Davison, M. Šaško, G. Chhablani, B. Ma-
lik, S. Brandeis, T. Le Scao, V. Sanh, C. Xu, N. Patry,
A. McMillan-Major, P. Schmid, S. Gugger, C. Delangue,
T. Matussière, L. Debut, S. Bekman, P. Cistac, T. Goehringer,
V. Mustar, F. Lagunas, A. Rush, and T. Wolf. Datasets:
A community library for natural language processing. In
Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations,
pages 175–184, Online and Punta Cana, Dominican Repub-
lic, Nov. 2021. Association for Computational Linguistics.

[14] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part V 13, pages 740–755.
Springer, 2014.

[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. In NIPS-W, 2017.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection, 2016.

[18] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works, 2016.

[19] P. Umesh. Image processing in python. CSI Communica-
tions, 23, 2012.

[20] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition. CVPR 2001, volume 1, pages I–I, 2001.

[21] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages
56 – 61, 2010.

[22] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davi-
son, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,
C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, Oct. 2020. Associa-
tion for Computational Linguistics.

[23] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detec-
tion and alignment using multi-task cascaded convolutional
networks. CoRR, abs/1604.02878, 2016.

9


