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Abstract

Real-time translation of American Sign Language (ASL)
has a been a technical problem of interest, as it provides the
opportunity to assist millions of deaf people in communi-
cating with non-speakers more effectively. Several studies
propose visual recognition techniques using deep learning
that have already shown promise as potential solutions to
the problem. This study, in particular, uses the World-Level
American Sign Language dataset to approach the transla-
tion task from ASL to English. We take inspiration from the
3D Convolution Model developed by Li et al. [9], iden-
tifying and resolving a mathematical error in the evalu-
ation metric presented by the authors. We then propose
novel adaptations to the model through Self-Attention and
Squeeze-and-Excitation mechanisms, which better capture
contextual, long-range dependencies between image frames
and produce more accurate translations.

1. Introduction

The art of language translation has long been a topic of
interest for computer scientists, linguists, and sociologists
alike, as it is a problem that lies at the heart of social in-
terconnectedness. Providing fully accurate translations re-
mains an unsolved problem, especially with non-vocalized
languages such as American Sign Language (ASL).

There are several existing methods of translation be-
tween ASL and English. Many methods perform the sim-
pler task of character-level translation, but word-level trans-
lation—which involves a multitude of physical elements like
facial expression—proves more difficult. However, with
word-level translation, several interesting challenges arise.
For one, the meaning of signs depends on the complex com-
bination of gestures, movements, and expressions, and sub-
tle differences in these aspects can easily translate improp-
erly. Additionally, context is an important factor as signs
may have multiple counterparts that depend on usage. Con-
sequently, these errors are propagated further in small-scale
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datasets.

In this project, we approach the word-level translation
task between ASL and English from a computer vision
perspective. As inputs for the models, we use video data
containing signs from the Word-Level American Sign Lan-
guage (WLASL) dataset. These videos are monocular RGB
recordings collected from the internet, showcasing differ-
ent signers performing various ASL words in near-frontal
views. As a baseline method, we use the 4 models described
in the WLASL paper [9] as they have been tested on the
same dataset we use.

We will quantitatively evaluate the performance of our
model against existing approaches proposed by the WLASL
creators. We compare the precision of each baseline model
and our model at various subsets of the dataset, the top-1,
top-5, and top-10 precision (where top-k references the top
k nearest words). Qualitatively, we visualize heatmaps to
gain insights into semantic similarities, assess the strengths
of our model, understand the performance trajectory, ad-
dress failures cases, and conduct a holistic analysis of our
model within the context of ASL.

2. Related Works

To provide more context for this study, we take from pre-
existing insights on word-level and sentence-level transla-
tion.

There have already been several approaches to translat-
ing American Sign Language and other sign languages in
general. One popular approach used for translation is the
use of recurrent neural networks (RNNs), which we be-
lieve underscore the importance of context and continuity
in signed language. For example, [8] creates an application
prototype for learning ASL by using an RNN for an em-
bedded sign language recognition mechanism. Similarly,
[3] performs sign language translation for Chinese sign lan-
guage, using an RNN-based model to map extracted video
features to sentence-level labels.

Another popular approach is that of convolutional neu-
ral networks (CNNGs) for both sign language translation and



recognition. [7] attempted to embed a CNN within a hidden
Markov model with success, although the computational
inefficiency of training the model poses a challenge. On
the other hand, [1 1] uses an entirely convolutional structure
to perform Indian sign language translation in selfie mode,
achieving high recognition accuracy. Despite training costs,
authors from both papers highlight the promising perfor-
mance of CNNs within the problem setting.

In our paper, we take inspiration from the convolutional
approaches to sign language translation. First, the paper by
Li et al. on word-level deep sign language recognition pro-
vides the Word-Level American Sign Language (WLASL)
dataset that we will be using in this project to evaluate the
performance of our deep learning models [9]. Moreover,
the authors compare several deep learning models for word-
level sign recognition, including a baseline using VGG and
GRU architectures, as well as 3D convolution networks and
a novel pose-based temporal graph convolutional network
(Pose-TGCN) which captures spatial-temporal dependen-
cies in human pose trajectories. We use their 3D-CNN ar-
chitecture, which they found to produce the highest accu-
racy in translation among all their models tested, as is de-
scribed further in the technical approach section.

The paper by Huang et al. also employs the use of 3D
CNNs in capturing the spatial-temporal features directly
from raw videos [4]. However, for this architecture, ele-
ments like color information, depth clue, and body joint
positions are inputted into the 3D CNN to integrate color,
depth and trajectory information. This model provides in-
sights into the optimization of certain model parameters and
features, but because it was adapted and tested on small-
scale datasets, it may lack the generalizabiilty we wish for
our model to have when used in practical settings.

Finally, we also inspect a significantly different approach
presented by Fang et al. in their paper on Non-Intrusive
Word and Sentence-Level Sign Language Translation [2].
While the other models focus on word-level translation,
their model DeepASL targets both by using infrared light
as the sensing mechanism. In doing so, they opt for a
novel hierarchical bidirectional deep recurrent neural net-
work (HB-RNN) for word-level translation and a proba-
bilistic framework based on Connectionist Temporal Clas-
sification (CTC) for sentence-level ASL translation. In this
project, we focus on word-level translation, but it would be
insightful to compare RNN models to CNNs in not only
their fundamental approaches but the extent and accuracy
to which they can translate ASL.

We expect several challenges with respect to creating an
effective model that can recognize sign language. Impor-
tantly, [5] identifies that one critical challenge is with rec-
ognizing features not just of the hands but of facial expres-
sions, involving minors details with eye brows or slight eye
widening, and other subtle body motions. This adds a layer
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Figure 1. The architecture of the baseline 3D convolutional net-
work used for video classification. Image taken from [9].

of complexity when modeling as it increases the diversity
of ways in which an individual can sign a single gesture.
Another challenge identified by [6] is in being able to dis-
tinguish a sign from several different perspectives, whether
it is a close up of only the hands or an angled perspective of
the person, for instance. We suspect that the breadth of the
WLASL dataset we use will be highly useful in adapting to
these challenges.

3. Technical Approach

We create a pipeline that allows for real-time word-level
translation of ASL. Initially, we convert ASL image se-
quences to text. Our ASL-to-English word-level translator
will be modeled as a 3D convolutional network, which al-
lows us to handle the continuity present in the time dimen-
sion for the video segments. These segments will be dis-
cretized into images on a per-frame basis to serve as input
to the model, as illustrated in Figure 1.

3.1. 3D Convolutional Model

To develop and train the translator, we use the World-
Level American Sign Language (WLASL) video dataset [9]
and implement the 3D convolutional model as developed
by the creators of WLASL. We primarily investigate this
model, as it demonstrates better performance on the classi-
fication task.

The model processes video frame sequences through a
series of 3D convolutional layers, max-pooling layers, and
inception modules to extract spatio-temporal features. Ini-
tially, 3D convolutions with large kernel sizes capture com-
prehensive features from the input frames, which are then
followed by max-pooling to reduce spatial dimensions. Fur-
thermore, the model enhances feature extraction with con-



volutions and inception modules, which are designed to
capture multi-scale features by applying multiple convolu-
tion operations with different kernel sizes in parallel. Fi-
nally, it concludes with average max-pooling and a final
convolution to produce the logits for classification. This
model structure can be visualized in a simplified form via
Figure 1. Performance is ultimately evaluated using binary
cross entropy loss and the top-k accuracy metric, which is
explained in Section 5.2.

3.2. Self-Attention and Squeeze-and-Excitation

To augment the performance of the convolutional net-
work, we explore the addition of two attention mechanisms,
namely

¢ Self-Attention. By implementing self-attention, we
enable the model to focus on different parts of the input
video and dynamically weigh the importance of each
part. For our ASL-to-English translator, this is useful
for allowing the model to understand long-range de-
pendencies between different video frames, which aids
in capturing the complexity of poses, movements, and
hand gestures.

The self-attention mechanism computes the attention
score using the following formula:

. QKT
Attention(Q, K, V') = softmax 1%
Vi,
where @, K, and V represent query, key, and value ma-
trices respectively, similar to standard attention mech-
anisms, and dy, is the dimension of the key vectors.

This mechanism allows the model to focus on different
parts of the input sequence and thus helps the model
better understand the context in which each sign oc-
curs. As mentioned before, it is inserted after the in-
ception blocks to capture long-range dependencies in
the feature maps.

¢ Squeeze-and-Excitation (SE). This technique
prompts the model to focus primarily on the impor-
tant features in the video while de-emphasizing the
relevance of others. This is achieved by inspecting the
inter-channel dependencies, then performing a rescal-
ing of the weight matrix along the channel dimension.
Rescaling the weights improves the model’s attention
towards key motions, consequently yielding more
accurate translations. Squeeze-and-excitation has the
additional advantage of being less computationally
expensive than self-attention.

We calculate the SE mechanism as follows:

SE(z) = o(WoReLU(W; Fyy())) -

where F, is the global average pooling layer, W; and
Ws are fully connected layers, o is the sigmoid acti-
vation function, and - denotes element-wise multipli-
cation. This process scales the input features based on
their importance. Like self-attention, the SE block is
integrated within each inception module to emphasize
important features at various depths in the network.

In addition to testing the performance of the techniques,
we alter the existing hyperparameters such as the batch size,
dropout rate, learning rate, and learning rate decay, as illus-
trated in Section 5.2. Given that there is a diverse array of
individuals signing within the dataset, dropout is particu-
larly important for ensuring that the model is generalizable.

4. Dataset and Features

For this project, we use the Word-Level American Sign
Language dataset (WLASL) [9] which consists of over
20,000 videos with each containing one sign in ASL. The
119 signers signed 2,000 different words in ASL with each
sign being performed by at least 3 individuals in order to
include for inter-signer variations and allow for generaliz-
ability of the trained sign recognition models. The WLASL
dataset only contains videos from the near-frontal position
to achieve the highest quality, as people typically commu-
nicate in frontal perspective.

In creating the dataset, the authors used YOLOV3 detec-
tion tool to identify and isolate the body boundaries of each
of the signers in the video which helps to standardize videos
across different filming setups. Additionally, it contains an-
notations for dialects that are commonly found in ASL. We
chose this dataset amongst others as it is the standard for use
as a large scale word-level dataset and contains three times
as much data as the next largest dataset, the American Sign
Language Lexicon Video Dataset [1].

Other common word-level ASL datasets, such as the Pur-
due RVL-SLLL ASL Database and Boston ASLLVD, were
also considered for this project, but they proved unsuitable
for large class training as they were sizably smaller than
the WLASL with many words only having a few examples
[10] [1]. Figure 2 demonstrates an example from the dataset
with the time-series frames from the video data, where two
different signers sign the word “scream.”

In the study that created the WLASL dataset, the authors
conducted testing on datasets of different sizes, selecting
top-k words for dataset subset sizes of 100, 300, 1000, and
2000. In this project, because of limitations in computation
with only one GPU, we are unable to elect to evaluate on
the WLASL2000 subset and instead opt for the WLASL100
subset. However, with on average 10.5 samples for each
word, we are able to properly train the model for repro-
ducible results.



Figure 2. Two signers signing the word “scream” in different ex-
aggerations and manners. Image taken from [9].

5. Results

We now present our results, assessing the validity of pub-
lished results, demonstrating the top-k precision metrics of
our various models, and conducting a qualitative analysis of
our findings.

5.1. Discrepancy in Per-Class Accuracy Calculation
in Published Work

As one principal result, we first take note of a mathemat-
ical error in the paper presented by [9]. The authors claim
that they report the accuracy of the 3D convolutional model
in their paper. However, the authors calculate the precision
of the model in their codebase instead of accuracy, leading
us to suspect that the true accuracy differs from the results
published in the paper.

To see this error, we define by TP, F'P, TN, and FN
the number of true positive, false positive, true negative, and
false negative predictions. Here, positive indicates that the
example is predicted to belong to the top-k classes, whereas
negative indicates that the example is predicted to not be-
long to the top-k classes. True and false refer to the correct-
ness of the prediction, and ¢ refers to the ¢th class. We note
that, as per the codebase, the authors attempt to calculate
the per-class accuracy as

TP,
TP, + FP;’

However, this is not calculating the per-class accuracy but
rather the per-class precision. While precision is a highly
useful metric for providing a better understanding of how
often predictions for the positive class(es) are correct, it
is an entirely different metric from accuracy, which evalu-
ates the correctness of predictions for all classes. Accuracy
should, instead, be calculated as

TP, +TN;
(TPi + FPZ) + (TNZ‘ + FNZ-)’

thus accounting for all true predictions made by the model,
not only true positives.

The published figures are not in themselves numerically
incorrect, but rather provide discrepant labels that may mis-
lead readers regarding their interpretation of the results. We
correct this discrepancy by calculating the precision as the
authors report in their paper, which provides a better under-
standing of intra-class accuracy since precision is a measure
of the accuracy of positive predictions.

5.2. Experimental Hyperparameters and Evalua-
tion Metrics

To assess the performance of our model, we evaluate the
precision of the model on a test dataset of 2,000 video sam-
ples. As briefly discussed in Subsection 5.1, we evaluate
three different types of precision, being the top-k precision
metrics, where k is either 1, 5, or 10. This metric signi-
fies whether the ground truth word lies within the top k
predicted words for the example, with k& = 1 referencing
the word itself. We also reference the semantic similarity
of words, where the notion of closeness is determined by
measuring the cosine similarities of all pairs of word vec-
tors within the dataset. The cosine similarity between word
vectors A and B is calculated as

A-B

Cosine Slmllarlty = W

Thus, the words closest to the ground truth words are the
word whose cosine similarities are the largest.

In addition, we carefully tuned our hyperparameters for
optimization. We selected the Adam optimizer, a standard,
robust, and versatile optimizer that is applied within a va-
riety of problem settings. Furthermore, we worked with a
relatively small mini-batch size of 6. This small batch size
allows for more accurate albeit slower training, but since
the dataset was relatively small and contained a subset of
100 classes, execution of the code with this batch size still
proved computationally efficient. We used a learning rate
of 1073 with a decay of 1078 to allow the model to over-
come plateaus that were often experienced during training.
Lastly, we applied dropout with a probability of p = 0.25
to aid in regularizing the model.

5.3. Model Performance

We highlight the performance on the WLASL100 subset
of our data (consisting of the top-100 most common words)
via the top-k precision metrics as follows:

Model Top-1 | Top-5 | Top-10
3DConvNet 0.22 0.35 0.46
3DConvNet+SelfAttn || 0.23 0.42 0.55
3DConvNet+SE 0.24 | 0.40 0.53
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Figure 3. Confusion matrices (heatmap) of the 3D convolutional model during training for epochs 1, 8, and 50.

Ground Truth:
“candy” “cool”

Prediction:

Figure 4. Individual signing the ground truth word (candy) versus
the predicted word (cool) during test time.

We can see that for each value of £ in the top-k pre-
cision metrics, the addition of self-attention and squeeze-
and-excitation blocks improves the precision. In the case
of squeeze-and-excitation blocks, we surmise that the pre-
cision improves because they aid in modelling inter-channel
dependencies and re-weight channels to focus on more im-
portant features, which is useful in the multi-modal case of
sign language. Moreover, for self-attention blocks, we sus-
pect that the precision improves because self-attention aids
in capturing the long-range dependencies between frames,
since one sign lasts the length of the entire video example.
It is likely that self-attention does better than squeeze-and-
excitation because the latter may struggle with spatial de-
pendencies.

Note that the increase in precision is more pronounced
for the top-5 and top-10 precision metrics. This highlights
how, although squeeze-and-excitation and self-attention can
improve the classification precision for the ground truth,
the improvements are most pronounced in the model’s abil-
ity to better capture general semantic relationships between
words.

5.4. Analysis

The convolutional follow interesting trajectories in train-
ing when classifying examples. We illustrate this by inves-
tigating a heatmap of several different epochs on the vali-
dation set for the 3D convolutional model, as depicted by
Figure 3.

Ground Truth:

Prediction:
“dog” “thin”

Figure 5. Individual signing the ground truth word (dog) versus
the predicted word (thin) during test time.

Notice how, as the number of epochs increase, the pre-
diction of correct words expectedly increases as evidenced
by the increasingly darker diagonal. However, we also no-
tice that the heatmap starts to illustrate semantic similarities
between words, allowing us to see hints of what the seman-
tically nearest words may be. For instance, looking at Class
3 during Epoch 50, which corresponds to the word “before,”
we see that one of its nearest often predicted neighbors is
“last” in Class 65. “Last” happens to be semantically close
to “before” with a cosine similarity of 0.678, which is the
third closest word to “before” in the WLASL100 dataset.

We make another interesting observation during the early
to middle stages of training. As observed in the heatmap
during Epoch 8, we see that Class 33, which corresponds
to the word “blue” in American Sign Language, is often
incorrectly predicted for a wide range of words. When we
look at how “blue” is signed in Figure 6, we notice that the
right hand is placed in an open and relaxed configuration
that serves as a general template for many other signs, like
“fine,” which has a close appearance to “blue.” The model
overgeneralizes in the early to middle stages of training and
predicts “blue” since it has similar positional foundations to
other words in the vocabulary.

Additionally, in classifying examples, our models en-
counter several interesting failure cases. One failure case
for all models is that of the class for “candy,” which is fre-
quently mispredicted as “cool” during testing. We can see
the reason for the failure case by inspecting the hand posi-
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Figure 6. Individual signing “blue” (top left), “fine” (top right),
“who” (bottom left), and “candy” (bottom right). These examples
are all predicted to be ”blue” in early-to-mid stage training.

tions illustrated in Figure 4, in which the hand is up near the
right side of the face in both images, which are both in a fist.
Another failure case is that observed for the class “dog,”
which is mispredicted as “thin.” In Figure 5, we can see that
the hands are oriented with the pointer finger and thumb
out. Although the hand positions differ subtly, the models
struggle to detect the differences between them. This high-
lights the difficulty in feature engineering and in managing
the complexity of the input that is inherent to ASL videos.

5.5. Discussion

Although squeeze-and-excitation and self-attention
blocks have shown to be useful in classification, there is
certainly substantial room for further improvement, espe-
cially considering that this is a model that has a real-world
application, as is the case with all models designed for sign
language translation.

One limitation that we feel our models have encountered
is that, despite the addition of more complex layers, the fea-
ture space of the videos is quite large, and videos feature a
lot of complexity in the form of ethnicity, body type, cloth-
ing, hand positioning and size, and even background color.
While this level of representation is absolutely necessary to
guarantee an equitable model, our lack of attention to the
feature space made making substantial improvements diffi-
cult. Perhaps one solution to this problem could be drawing
more focus on the individual by using a form of facial track-
ing and hand tracking so that the model is not unnecessarily
distracted by irrelevant and frequently changing features.

Another limitation that our models have encountered is
that the parameter space of self-attention and squeeze-and-
excitation blocks is particularly large. Although we desired
to use a small batch size of only 6 for training regardless,

using batch sizes any larger resulted in out-of-memory er-
rors on a computational device with a standard disk quota.
Therefore, our proposed modification of the model, while
effective from a numerical perspective, lacks the compu-
tational efficiency necessary for easy accessibility with re-
spect to training. One solution would be to further explore
the optimization of these layers or running the model of
more advanced hardware, although the latter option is not
always feasible.

6. Conclusion and Future Work

In this paper, we highlighted the mathematical error pre-
sented by Li et al. in computing the accuracy. We resolved
the issue by adjusting the accuracy metric to be mathemati-
cally consistent with its definition and computing the preci-
sion as the authors may or may not have intended to do. We
then implemented adjustments to the existing 3D convolu-
tional architecture proposed by the authors by adding two
types of blocks at each point in the model: self-attention
and squeeze-and-excitation blocks.

Self-attention blocks aiding in capturing the long-range
dependencies present in sign language video, whereas the
squeeze-and-excitation blocks emphasize the importance of
relevant features like facial expressions and hand move-
ments by rescaling the channel-wise weights. We illustrated
how these blocks indeed augment the performance of the
baseline model, but still run into interesting failure cases
that were manually inspected in order to understand the sim-
ilarities between the mispredicted class and the ground truth
class.

In future works, we aim to test the architecture against
the WLASL2000 collection—consisting of 2000 classes in
total-when we obtain access to more computational re-
sources. The goal of testing under this dataset is to assess
the generalizability of our results to unseen data within the
ASL lexicon. Additionally, with more computational re-
sources, we will explore training with larger batch sizes that
would be more feasible with more than one GPU. Lastly,
we aim to address the limitations in our current architecture
by considering the feature space, taking into consider facial
expressions, hand tracking, and general body motions. This
will enable us to represent the translational variants that are
common among the diverse array of signers who use ASL.
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