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Abstract

Gathering comprehensive data on plant traits is key to
understanding how plants and entire ecosystems are adapt-
ing to climate change. Currently, there is very little data on
plant traits. Our goal is to predict a broad set of 6 plant
traits (leaf area, plant height, specific leaf area, leaf ni-
trogen concentration, seed mass, and stem specific density)
from crowd-sourced plant images and some ancillary data.
Their traits hold the key to understanding ecosystems, e.g.,
in terms of their diversity, productivity, or how these plants
face the challenges brought on by climate change. We ap-
plied state-of-the-art image classification architectures and
developed a fine-tuned ensemble transformer architecture
with the Vision Transformer and Swin Transformer for solv-
ing this problem. Using a SmoothL1Loss loss function, we
achieved a final R2 score of 0.346 on the test set. We show-
case visualizations of the transformer model on a variety of
input images to validate that the model is generalizing well
to the plant traits for each image.

1. Introduction
From wildfires and floods to tropical storms and heat-

waves, climate change is directly responsible for numerous
humanitarian emergencies. Research shows that between
2030 and 2050, climate change is expected to cause ap-
proximately 250 000 additional deaths per year, from un-
der nutrition, malaria, diarrhea and heat stress alone [1].
With the biosphere transforming at an alarming rate, plants
have undergone numerous adaptations and the function-
ing of ecosystems have also been effected by changes in
species distribution and corresponding plant trait modifica-
tions. However, predicting the global-scale impact of such
phenomena is difficult to quantify due to insufficient data on
plant traits. Hence, the primary objective of this project is
to employ deep learning-based regression models, includ-
ing Convolutional Neural Networks (CNNs) like Resnet,
and Vision Transformers to predict plant traits from pho-
tographs.

Specifically, the input to our algorithm is an image of a
plant (512 × 512 pixels). We then use CNN Architectures,
Vision Transformers, and Swin Transformers with shifted
windows to output 6 predicted values for the 6 plant trait
measurements. Since this is a regression problem, we eval-
uate our model with R2 and mean absolute error (MAE)
metrics.

However, it is important to note that these plant traits,
although available for each image, may not yield excep-
tionally high accuracies due to the inherent heterogeneity
of citizen science data. Furthermore, many of the plant
traits we want to predict, such as stem specific density, seed
dry mass, and leaf nitrogen concentration, describe chem-
ical tissue properties that are loosely related to the visible
appearance of plants in images. Hence, we will be training
a multi-modal model that can also integrate available an-
cillary geodata, including multitemporal optical and radar
satellite data (MODIS, VOD, respectively), climate data,
and soil information to supplement plant photographs, of-
fering valuable contextual information.

1.1. Kaggle Competition

Our project serves as an entry for the Kaggle compe-
tition PlantTraits2024 - FGVC11, which aims to “advance
our understanding of the global patterns of biodiversity” [5].
Kaggle is a platform that allows data scientists and machine
learning engineers to find datasets, build AI models, and
enter competitions to solve data science challenges [5].

2. Related Work
The field of plant trait predictions have recently under-

gone a transition from using purely statistical methods of
prediction with aerial hyperspectral images of plants grown
on plots of land to machine learning and computer vision
approaches using regular plant images. Historically, Par-
tial Least Squares Regression (PLSR), a statistical tech-
nique that finds a linear regression model by projecting ob-
servable and predicted variables to new spaces, was a pop-
ular approach for analyzing spectral data from aerial hy-
perspectral images that measure the optical reflectance of
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plants from above using many different wavelengths [6, 8].
Then, plant trait prediction research transitioned to using
traditional machine learning techniques including Random
Forest, Multiple Linear Regression, Support Vector Regres-
sion, and Multilayer Perceptrons using image-based feature
extraction with image analysis software and Principal Com-
ponent Analysis (PCA) [7, 11]. Since the advent of Con-
volutional Neural Networks (CNN) [20] in computer vi-
sion and more recently, Vision Transformers [10], research
in plant trait predictions from images has shifted to using
CNN [27, 26, 8, 25, 19], Transformer [31], and ensemble
approaches [27, 21]. These deep learning methods utilize
the ability of CNNs and Transformers to detect image fea-
tures that can enable improved predictions for plant traits,
especially across multiple plant species.

In our work, we decided to compare Convolutional Neu-
ral Network, Vision Transfomer, and Swin Transformer [24,
23] approaches given their high demonstrated accuracies
and available pre-trained models.

Past research has often focused on predicting a narrow
set of one or two plant traits, often for a limited number of
plant species [11, 19, 25, 3, 7, 31]. In contrast, our goal is to
predict 6 plant traits simultaneously using one multi-output
model, which has been shown in past research to effectively
leverage correlations between plant traits [26, 27, 6, 8].

While some approaches have used image segmentation
to isolate the plant image from its background [3, 19], we
decided to not use segmentation because the background
can provide useful contextual features such as plant envi-
ronment and climate, which can better predict plant traits.

The article “Deep learning and citizen science enable
automated plant trait predictions from photographs” by
Schiller et al. lays the foundation for our work by combin-
ing photographs from citizen science (iNaturalist dataset)
with trait observations (TRY database) based on plant
species [27]. We leverage the positive results shown in [27]
of using species-specific trait distributions, adding climate
data, and utilizing ensemble methods.

3. Dataset
The dataset consists of over 60,000 high resolution

plant images gathered from the iNaturalist database.
Using the species names found in both the iNaturalist
and TRY databases, trait observations obtained from the
TRY database (with species-specific mean and standard
deviation for each plant trait) were linked with the plant
photographs (iNaturalist). Additionally, based on the
location of where each photograph was taken, we also have
geodatasets for each plant photograph, including temper-
ature and precipitation data from WORLDCLIM, sand
content and pH value from SOIL, optical reflectance of
sunlight from MODIS satellite data, and radar constellation
data from VOD, to serve as supporting information for our

plant trait predictions. From this database, our goal is to
predict information on 6 different plant traits, which are
summarized in the table below:

trait ID trait name
X4 Stem specific density (SSD) or wood density

(stem dry mass per stem fresh volume)
X11 Leaf area per leaf dry mass (specific leaf area,

SLA or 1/LMA)
X18 Plant height
X26 Seed dry mass
X50 Leaf nitrogen (N) content per leaf area
X3112 Leaf area (in the case of compound leaves:

leaf, undefined if petiole in- or excluded)

Figure 1. Visualization of sample images from the dataset.

Figure 2. Sample image with corresponding traits.

Figure 3. Visualization of geodata samples from the dataset.

3.1. Data Loader

We will be using a data loader that can simultaneously
process JPEG images and tabular features as inputs. It
will also be responsible for applying augmentations such
as flip, random-sized crop, brightness, image compression,
and normalization in batches to speed up training and re-
duce CPU bottleneck. Furthermore, we ran our training at
various input sizes including 224 × 224, 256 × 256, and
the original image size of 512 × 512. Our goal for these
alterations is help to the model learn to generalize better to
unseen data during the testing phase.
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For a long time, we struggled with poor model perfor-
mance, focusing solely on optimization efforts until we re-
alized the necessity of examining our dataset. Upon closer
inspection, we identified numerous outliers and observed
significant variability within the plant trait data. To address
these issues, we implemented specific preprocessing tech-
niques tailored to each trait’s data distribution. These tech-
niques were applied exclusively to the training data and in-
cluded:

• Filtering outliers using a quantile range (0.005, 0.995)
for all traits.

• Applying a logarithmic base 10 transformation to
right-skewed trait data, which included the five plant
traits except trait X4 (stem specific density).

• Normalizing data to achieve a mean of 0 and standard
deviation of 1 across all traits.

During inference, we apply the inverse transform, and
then exponentiate the 6 outputs using base 10 to arrive at
the predicted plant trait outputs. This structured approach
resulted in a more optimized workflow and significantly less
variability in the model’s predicted plant trait outputs, sig-
nificantly improving model performance during prediction.

Figure 4. Training Data Plant Trait Distributions Before Data Pre-
Processing

Figure 5. Training Data Plant Trait Distributions After Data Pre-
Processing

3.2. Data Split

The training data set contains 55,500 plant images. We
use a 4:1 split of the training set into training and validation
for a good measure for validation. Specifically, we use a
Stratified K Fold with k=5 to maintain similar distributions
of plant traits between the training and validation sets. This

leaves us with 41,797 images for the training set and 11,098
images for validation.

4. Methods

4.1. Framework and Setup

We use a Kaggle notebook, specifically utilizing Keras
(TensorFlow) and PyTorch to train our network [4]. Keras
offers a user-friendly framework for creating and adjust-
ing CNN architectures. Moreover, since some of the ad-
vanced CNN architectures have readily available Keras im-
plementations, this facilitates swift modifications to meet
our project needs. Additionally, Keras simplifies image
loading and resizing using OpenCV within manageable
memory constraints, provides a straightforward method for
loading and saving models, and allows for layer freezing.
We also use PyTorch because we utilize pretrained Trans-
former models from Hugging Face. We run our models
on Kaggle, Google Colab, and GCP with one NVIDIA T4
GPU.

4.2. Pre-trained CNN Architectures

Today, the state-of-the-art CNN architecture for feature
extraction with highest-performing Imagnet classification is
ResNet-50 and VGG-16.

Figure 6. Residual learning: a building block. Image taken from
[14]

ResNet-50 is a CNN architecture that introduces resid-
ual mappings between layers, as depicted in Figure 6, to
allow for better fitting in deeper architectures. Formally,
denoting the desired underlying mapping as H(x), ResNet
allows the stacked nonlinear layers fit another mapping of
F (x) := H(x) − x. The original mapping is recast into
F (x) + x. The original authors hypothesize that it is eas-
ier to optimize the residual mapping than to optimize the
original, unreferenced mapping. In the extreme case, if an
identity mapping were optimal, it would be easier to learn
weights close to zero for computing F (x) ≈ 0 than to fit
an identity mapping with a stack of nonlinear layers [14].
In ResNet-50 specifically, for each residual function F , we
use a stack of 3 layers which are 1×1, 3×3, and 1×1 convo-
lutions, where the 1×1 layers are responsible for reducing
and then increasing (restoring) dimensions, leaving the 3×3
layer as a bottleneck with smaller input/output dimensions.
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Figure 7. ResNet-50 Architecture [14]

On the other hand, the VGG-16 is a much simpler ar-
chitecture consisting of 16 layers (13 convolutions and 3
fully connected layers) that is renowned for its effective-
ness despite its simplicity [28]. Using transfer learning and
full random initialization of the last fully connected layer,
we first try these two CNN architectures on the plant trait
prediction problem as they appear to be good options for
feature extraction from images. Each of the two networks
outputs a 3-dimensional tensor, so we used a global 2D av-
erage pooling of these CNN feature detectors and added one
fully connected and dropout layer to obtain the size of our
output. The resulting length-6 vector was evaluated with
mean R2 on each corresponding ground truth trait.

Figure 8. ViT Architecture: Images are split into fixed-size
patches, linearly embedded, appended with position embeddings,
and fed into a standard Transformer encoder with an extra learn-
able “classification token.” Image taken from [10]

Furthermore, we are also interested in experimenting
with pre-trained transformer models, specifically, Vision
Transformer (ViT) and Swin Transformer, a vision trans-
former model using shifted windows. Although transformer
models were firstly introduced to solve NLP (natural lan-
guage processing) problems where the input is sequential
data (text), it does a great job on computer vision problems
tasks with multiple development in recent years.

The ViT transformer encoder (Vaswani et al., 2017)
consists of alternating layers of multiheaded self-attention
(MSA) and MLP blocks (Eq. 2, 3). Layernorm (LN) is ap-
plied before every block, and residual connections after ev-
ery block [10]. The MLP contains two layers with a GELU
non-linearity.

z0 = [xclass;x
1
pE;x2

pE; . . . ;xN
p E] + Epos (1)

where E ∈ R(P 2·C)×D, Epos ∈ R(N+1)×D

z′l = MSA(LN(zl−1)) + zl−1, l = 1, . . . , L (2)

zl = MLP(LN(z′l)) + z′l, l = 1, . . . , L (3)

y = LN(z0L) (4)

Figure 9. Swin Architecture [23]

Meanwhile, Swin Transformers rely on hierarchical fea-
ture extraction, where features are firstly extracted at differ-
ent scales, and then combined to form a holistic represen-
tation of the image. At each level, features are split into
non-overlapping patches and then processed by a series of
transformer blocks before being fed into the next level of
the hierarchy [24, 23].

Our results depicted in Table 1 showed that transformers
outperformed CNNs, hence we chose to move forward with
optimizing transformers as our final architecture.

4.3. Simple Architecture

To establish a baseline performance, we designed and
trained a simple CNN model to predict the 6 plant trait mean
values from only the images, without ancillary geodata. The
architecture includes two 3x3 convolution layers, one 2x2
max pooling layer, and two fully connected layers, as de-
picted in 10. We use ReLU activations, batch normaliza-
tion after the convolutional layers, and dropout. We trained
the model using the Adam optimizer with an initial learning
rate of 1e-4, step learning rate scheduler, and dropout for
regularization.

Figure 10. Simple Architecture
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4.4. Evaluation & Loss Metrics

Our model will be evaluated against the independent test
data provided by Kaggle. The evaluation metric for this
competition is the mean R2 (R-Squared) over all 6 traits.
R2 shows how well a regression model output (independent
variable) predicts the outcome of observed data (dependent
variable), and takes on values ranging from 0 to 1 (0 mean-
ing a 0% relationship between the dependent and indepen-
dent variables, and 1 indicating a 100% relationship) [2].
The equation is as follows:

R2 = 1− RSS

TSS
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

,

where RSS = sum of squares of residuals, TSS = total sum
of squares, n is the number of samples, yi is the true value
of the ith sample, ŷi is the predicted value of the ith sample,
and ȳ is the mean of the true values.

The R2 is commonly used for evaluating regression
models and is equal to 1 minus the ratio of the sum of
squares the residuals (RSS) to the total sum of squares
(TSS). Since R2 can result in large negative values, we
only consider R2 values greater than 0 for the test set. Fur-
thermore, we will use RSS

TSS as the loss function for the CNN
models and use R2 as the evaluation metric. For auxiliary
task of predicting the standard deviations of each plant trait,
where some samples don’t have target labels, we will ex-
clude them from the loss calculation using the use mask
argument.

For our transformer models, we found that using the
SmoothL1Loss as our loss function performed better, as
was used in [12]. The SmoothL1Loss is defined as

SmoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise.

We selected the SmoothL1Loss because it achieves a bal-
ance between the Mean Squared Error (MSE), or L2 loss,
commonly used in regression tasks, and the Mean Absolute
Error, or L1 loss, which means the SmoothL1Loss is less
sensitive to outliers.

Furthermore, we compute the coefficient of determina-
tion R2 in two different ways: first, in the space after apply-
ing the log10 transformation (often for training), which we
denote as R2

log, and second, in the original space before any
transformation is applied, which we denote as R2

orig (often
for validation and inference).

5. Experimental Results
5.1. Training Details

Table 1 summarizes our various model performance met-
rics compared to our baseline simple CNN model depicted
in 10, which performed worse than simply predicting the

Optimized
Models

Train
Loss

Train
R2

Valid
Loss

Valid R2 Test
Score

Simple CNN in
10 (12 epochs)

1.1592 −0.0186 1.0570 −0.0126 N/A

Original VGG16
(12 epochs)

1.2751 0.0112 1.2649 0.0131 N/A

VGG16 w/
Pre-trained
weights
(12 epochs)

0.9360 0.0269 0.9253 0.04956 N/A

ResNet-50
(11 epochs)

0.9326 0.0210 0.9220 0.0481 N/A

ViT
(5 epochs)

0.2695 0.4030 0.2919 0.3861 0.286

SwinV2 Tiny
Transformer
(6 epochs)

0.1964
(log)

0.5726
(log)

2827.2
(orig)

0.0402
(orig)

0.267

Swin Large
Transformer
(0.3 train data,
6 epochs)

0.0582
(log)

0.8812
(log)

5937.2
(orig)

0.053
(orig)

0.277

Final Ensemble
Model

N/A N/A N/A N/A 0.346

Table 1. Summary of Model Performance for Experiments

mean for each sample, as indicated by the negative R2

scores.

5.2. ResNet-50

We utilize the ResNet-50 backbone from KerasCV’s pre-
trained models [18] to extract features from images and
Dense (fully-connected) layers to extract features from the
tabular, ancillary data. We then employ two Dense layers as
our final layers (heads): one without activation (for the main
task) and the other with ReLU activation (for the auxiliary
task). We choose ReLU for the auxiliary task because we
are estimating the standard deviation of plant traits, which
is always positive. Our model flow is:

• Image input → Main Task → Head

• Tabular input → Auxiliary Task → Aux Head

Note that we assign more weight to the Head than the Aux
Head since Head is our main task, and our evaluation metric
is calculated for the Head, not the Aux Head.

Furthermore, a well-structured learning rate schedule is
essential for efficient model training, ensuring optimal con-
vergence and avoiding issues such as overshooting or stag-
nation, which we have implemented as shown in Figure 12.

Figure 12. Learning Rate Scheduler
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Figure 11. Architecture with ResNet-50 Backbone

Best Val
R2

orig

Best Epoch Best Val loss # Parameters (Trainable/Total)

0.0481 7 0.9220 24, 255, 090/24, 308, 210

Table 2. ResNet-50 Training Results

Figure 13. Training (blue) vs. Validation (red) Loss for ResNet-50

After extensive hyperparameter tuning, including adjust-
ments to layers, dropouts, and experimenting with freez-
ing and unfreezing techniques in ResNet-50, we found
that these changes did not lead to significant improve-
ments. Consequently, we decided to explore an alternative
backbone architecture and proceeded to evaluate VGG-16,
which is discussed in the following section.

5.3. VGG-16

We employed analogous data preprocessing, optimiza-
tion methods, and a learning rate scheduler during training
with both a custom layer-by-layer implementation of the
VGG-16 backbone as well as with pre-trained weights [30].
Despite significantly increasing trainable parameters to bet-
ter align with the training dataset, improvements remained
limited. After extensive attempts with various other pre-
trained backbones, we encountered persistent challenges.

Hence, we made a strategic shift to adopt transformer ar-
chitectures, prompted by discussions in subsequent lectures
and insights from guest speakers.

Best Val
R2

orig

Best Epoch Best Val loss # Parameters (Trainable/Total)

0.0496 11 0.925 119, 884, 004/134, 598, 692

Table 3. VGG-16 Training Results

Figure 14. Training (blue) vs. Validation (red) Loss for VGG-16

5.4. Vision Transformer

Utilizing a pre-trained Vision Transformer (ViT)
model [10], such as those available from sources like
Google’s version on Hugging Face [33] [9], has enabled
achieving impressive training R2

log scores approaching 0.8-
0.9, within a small number of epochs (fewer than 10). This
initial success underscores the ViT model’s ability to cap-
ture complex patterns in the training data effectively.

Figure 15. Training (blue) vs. Validation (orange) Loss for ViT V1

However, despite achieving high R2
log scores during

training, the model demonstrates significant overfitting
when evaluated on unseen data, leading to markedly worse
performance with R2 values below 0.05 for inference sub-
missions. To mitigate these challenges, several key strate-
gies were implemented:

• Weight Decay Application: Utilizing the AdamW op-
timizer with a weight decay parameter set to 0.01
ensures effective L2 regularization. This regularization
helps prevent the model from relying too much on spe-
cific features of the training data, thereby improving its
generalization ability to unseen data.

• Dropout Regularization: Incorporating dropout layers
within the model architecture introduces stochasticity

6



during training, effectively reducing overfitting by ran-
domly dropping units and encouraging the network to
learn more robust features.

• Early Stopping Mechanism: Implementing an early
stopping strategy based on validation loss monitoring
helps prevent the model from training excessively and
overfitting by halting training once the validation loss
ceases to improve.

• Batch Normalization: Integrating batch normalization
layers normalizes the input to each layer, stabilizing
learning and accelerating convergence during training.
This technique enhances the model’s ability to gener-
alize by reducing internal covariate shift [16].

The ViTForRegression model architecture exemplifies
these strategies, where batch normalization is applied to the
output of the ViT model’s classification token. This normal-
ization step, coupled with dropout regularization and early
stopping, collectively contributes to enhancing the model’s
performance and mitigating overfitting issues. In fact, in
the early stages of training, the validation loss is lower than
the training loss due to such regularization techniques and
training data augmentation.

Figure 16. Training (blue) vs. Validation (orange) Loss for ViT V2

Best Val R2 Best Epoch Best Val loss
0.3258 5 0.3159

Table 4. ViT V2 Training Results

5.5. Swin Transformer

Inspired by Kaggle user HDJoJo [13], we test the Swin
Transformer, a hierarchical Vision Transformer that uses
shifted windows to limit self-attention to local windows and
enable cross-window connections [24, 23].

Specifically, we fine-tune three different pre-trained
Swin Transformer models from Hugging Face that take in
the plant images as input and output 6 plant trait values:

1. SwinV2 Tiny Window Size 16x16, Image Size
256x256 [23, 32]

• 28.3M parameters, Pretrained on ImageNet-1k
2. SwinV2 Small Window Size 16x16, Image Size

256x256 [23, 32]

• 49.7M parameters, Pretrained on ImageNet-1k
3. [24, 32]Swin Large Window Size 12x12, Image Size

384x384
• 196.7M parameters, Pretrained on ImageNet-22k

and Fine-tuned on ImageNet-1k
With the SwinV2 Tiny pre-trained model, we fine-tune

3 different models. We train our baseline SwinV2 Tiny
model with the 1cycle learning rate policy [29] with maxi-
mum learning rate 1e-4, batch size of 10, for 6 epochs. Af-
ter 6 epochs, it produced a training R2

log = 0.5726, vali-
dation R2

orig = 0.0402, and test R2
orig = 0.26691. Since

the validation R2
orig score was increasing across all epochs

for the baseline model, we decided to train the same model
for longer and with a larger batch size. Thus, we train a
second SwinV2 Tiny model with the same 1cycle learning
rate policy, batch size of 16, for 12 epochs. The resulting
model displayed even more overfitting as it reached a train-
ing R2

log = 0.7448 and validation R2
orig = 0.0367 after 12

epochs. The second SwinV2 Tiny with increased batch size
achieved the best validation R2

orig = 0.03954 after 8 epochs,
and performed with R2

orig = 0.24936 on the test set.
Next, we experiment with integrating the log10 trans-

form directly into the Swin Transformer model instead of
using it in the data preprocessing. To do so, we add a final
layer that performs a 10x operation for all five outputs x cor-
responding to the plant traits X11, X18, X26, X50, X3112
(excluding trait X4). We calculate the loss and R2 in the
original space instead of the log10 transform space. For
this experiment, we only apply the filtering outlier step
for data preprocessing. We train the log-adjusted SwinV2
Tiny model with the same 1cycle learning rate policy, batch
size of 10, for 12 epochs. This resulted in a training
R2

orig = 0.0795, validation R2
orig = 0.0188, and testing

R2
orig = 0.12825. The log-adjusted Swin Transformer V2

Tiny model clearly underperforms the previous SwinV2
Tiny models, which demonstrates how Swin Transformer
models perform best with normalized and more symmetri-
cally distributed outputs that we can produce with our data
preprocessing steps.

Using the SwinV2 Small pre-trained model, we fine-tune
one model. The SwinV2 Small model is trained with the
same 1cycle learning rate scheduler, batch size of 10, for
6 epochs. This model achieved a training R2

log = 0.6593,
validation R2

log = 0.3640, and testing R2
orig = 0.27308.

The training statistics of loss, R2
log, mean absolute error

(MAE), and learning rate are shown in Figure 17. There is
clear overfitting as the training loss and MAE decrease more
rapidly than the validation loss and MAE, and the training
R2

log increases more rapidly than the validation R2
log.

We see that the larger SwinV2 Small model performs
better than the SwinV2 Tiny models, even though both dis-
play clear overfitting. Thus, so we decide to test a larger
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Figure 17. SwinV2 Small Model Training (blue) vs. Validation
(orange) Statistics of Loss, R2

log, MAE, and Learning Rate

Swin Transformer Model
Train R2 Validation R2 Test R2

R2
log R2

orig R2
log R2

orig R2
orig

SwinV2 Tiny baseline 0.5726 X X 0.0402 0.26691
SwinV2 Tiny second

0.7448 X X 0.0367 0.21284
(12 epochs)

SwinV2 Tiny second
0.6317 X X 0.03954 0.24936

(8 epochs)
SwinV2 Tiny log-adjusted X 0.0795 X 0.0188 0.12825

SwinV2 Small 0.6593 X 0.364 X 0.27308
Swin Large 0.8812 X X 0.053 0.27745

Table 5. Summary of Swin Transformer Models Performance

Swin Transformer model with more dropout layers.
Using the Swin Large pre-trained model, we train it with

the same 1cycle learning rate policy with maximum learn-
ing rate 1e-4, batch size of 10, for 6 epochs, with a random
0.3 sample of the training data due to memory and runtime
constraints. This achieved a training R2

log = 0.8812, vali-
dation R2

orig = 0.0530, and test R2
orig = 0.27745.

After training the Swin Transformer models, we visual-
ize the self-attention saliency maps. We select the SwinV2
Tiny baseline model for visualization because it has the sim-
plest transformer architecture, which means the first Win-
dow Attention layer has a larger contribution to the resulting
plant trait scores, and because it performed the best of the
SwinV2 Tiny models. We display the self-attention maps of
the first Window Attention layer for the validation set with
corresponding R2 scores for each plant trait, as well as for
the test set in Figures 18 and 19.

5.6. Final Ensemble Architecture: Swin Large and
ViTForRegression

We applied ensemble modeling to combine our best
models, the Swin Large Transformer (test R2 = 0.27745)
and ViTForRegression (test R2 = 0.28584). By aver-
aging their predictions, we achieved a final test R2 score
of 0.34612, indicating that the ensemble successfully har-
nessed the complementary feature representations and pre-
dictive strengths of both models, improving our prediction
accuracy compared to using either model alone.

Figure 18. SwinV2 Tiny baseline Validation Attention Maps.
(a) Poor Attention (b) Good Attention

Figure 19. SwinV2 Tiny baseline Test Attention Maps.
(a) Poor Attention Maps (b) Good Attention

6. Conclusion & Future Work

We explored various algorithms for predicting plant
traits from images, including CNN models like VGG16
and ResNet-50, as well as vision transformer models like
ViT and Swin Transformer. While traditional CNN models
struggled to achieve satisfactory performance, transformer
models, especially pre-trained ViT and Swin Transformer,
showed promising results. This discrepancy in performance
can be attributed to transformers’ ability to effectively cap-
ture long-range dependencies in images, which is crucial for
understanding complex visual patterns in plant traits.

Moving forward, further investigation into techniques
like LoRA [15] or DoRA [22] for parameter-efficient fine-
tuning could enhance model performance, particularly in
resource-constrained environments in order to make trans-
fer learning for specific tasks more effective and precise.
Additionally, exploring regularization methods such as the
SMART algorithm [17] may help improve the robustness
and generalization capabilities of the models. These av-
enues of research could lead to even more accurate and ef-
ficient plant trait prediction models.
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