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Abstract

Estimating carbon stock is an important step for prop-
erly understanding and preventing environmental degrada-
tion and climate change. We propose a low-cost CNN-based
approach to estimating carbon stock using existing, read-
ily available Sentinel satellite data in the state of Sabah,
Malaysia. Using continuous semantic segmentation meth-
ods, we generate per pixel carbon stock predictions. We
experiment with several existing regression and tree-based
baselines and conduct feature importance analyses to de-
termine that the water vapor, green, and red-edge bands
from Sentinel-2 along with the Enhanced Vegetation Index
(EVI) are the most important predictors. We then utilize
the embeddings from the ResNet encoder as features to a
shallow-CNN, and we also experiment with fine tuning pre-
trained segmentation model UNet. Additionally, we design
a custom five convolutional layer CNN architecture with a
skip connection. All layers have BatchNorm and ReLU ac-
tivation, while the first three are followed by pooling for
downscaling before upscaling in the last two layers. We
achieve the best performance with red, green, blue, red-
edge, near-infrared (NIR), and water vapor bands as input
to our custom CNN, obtaining a test R2 of 0.438, which
outperforms all non-deep learning methods. Since this per
pixel estimation task is essentially image generation, future
work can incorporate deep learning methods made specif-
ically for generation. Then, our model can be used to cre-
ate aboveground carbon density maps for similar regions to
Sabah, such as Sarawak and Kalimantan.

1. Introduction

Estimating carbon stock is important for climate change
mitigation efforts, conservation and management, and for
informing carbon-related and regulation policy. Quantify-
ing carbon stock helps us understand the role of carbon
sinks for climate change mitigation and better understand
the impact of deforestation. It can also demonstrate the

value of different forests, which leads to more conserva-
tion and biodiversity protection. With growing efforts to
reduce carbon emissions, quantifying carbon stock makes
potential solutions such as carbon trading and investment
in carbon protection possible. These efforts are even more
important in Borneo because of its rich biodiversity and the
crucial role the island plays in sequestering carbon. Borneo
comprises only 1% of land mass yet hosts 6% of all species
according to WWF. Unfortunately, logging for economic
opportunity such as oil palm has caused significant defor-
estation. By quantifying the carbon stock, this can lead to
more sustainable economic opportunities for local commu-
nities because of the potential for investment to protect these
globally-important forests.

Previous research on carbon stock estimation relies on
costly and time-intensive data gathering on the ground. Re-
searchers sample the height and width of trees and extrap-
olate their measurements to estimate the carbon stock of a
region. Newer research reduces the time and cost by using
lidar to map the height and width of trees, though this still
requires tens of thousands of dollars and many labor hours.
We exclusively use Sentinel-2 satellite imagery, which is
freely available to all. This removes any cost and labor con-
straints, while also allowing for more generalizability be-
cause Sentinel-2 imagery is freely available for the entire
globe. We build upon previous efforts by using the esti-
mates from Asner et al. [2018] as our training labels.

1.1. Problem Statement

Our goal is to directly estimate carbon stock for every
30mx30m area in Sabah, Malaysia from satellite imagery.
We use Sentinel-2 spectral-data and calculate additional
vegetation indices from these data as our inputs. Our out-
put is an above-ground carbon density (ACD, MGCha−1)
map. Specifically, our input to all following models will be
a 256x256 image with channels comprised of spectral-data
and vegetation indices from Sentinel-2. Our output will be
a 256x256 image with a predicted value at each pixel of the
ACD from the continuous range of 0-400 MGCha−1.

We use linear regression, random forest, and XGBoost as
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baselines. We evaluated the use of pre-trained models and
finetuned a UNet model with a ResNet encoder and UNet
decoder on our dataset. We also evaluated ResNet embed-
dings, using the embeddings of each 256x256 image as in-
puts for a custom shallow CNN to predict ACD. Finally, we
developed a custom CNN with five convolutional layers that
utilizes upsampling, downsampling, and a skip connection.

2. Related Work
There is a growing literature of efforts to use satellite

imagery to estimate carbon stock. Many studies employ
simple, non-deep learning models such as Random Forest
and XGBoost. A smaller set use deep learning methods
such as neural networks and convolutional neural networks.
Furthermore, some studies combine lidar with satellite im-
agery, while others only use satellite imagery. There does
not seem to be consensus on what is the state of the art
method for carbon stock estimation because previous re-
search all apply different methods, with none having supe-
rior results over all others in most cases. However, studies
that try both non-deep learning methods with deep learn-
ing methods all find that the deep learning methods perform
better.

2.1. Overview of methods

Some papers only used non-deep learning methods and
were still successful in estimating ACD with satellite im-
agery. For example, Mngadi et al. [2021] estimated ACD
in urban reforested areas with Sentinel-2 satellite imagery.
With a random forest model, they achieved an RMSE of
0.378 and 0.466 and an R2 of 79.82 and 77.96 on their cali-
bration and validation datasets. In addition, Baloloy et al.
[2018] estimated the biomass of mangrove forests in the
Philippines with a combination of satellite imagery from
Sentinel-2, PlanetScope, and Rapideye. With a multivariate
adaptive regression spline (MARS), they achieved an R2 of
0.89. A more comparable location to Sabah is the heavily
forested Chure region of Nepal where Poudel et al. [2023]
estimated aboveground biomass using only Sentinel-2 im-
agery. They sampled 72 plots in the region and found that
their quadratic model with the normalized difference vege-
tation index (NDVI) performed the best with an R2 of 0.777.

Others are starting to use deep learning approaches. To
estimate forest aboveground biomass in the Huangzhou re-
gion, Tian et al. [2024] uses the Random Forest (RF), Con-
volutional Neural Network (CNN), and Convolutional Neu-
ral Networks Long Short-Term Memory Networks algo-
rithms and finds that the CNN-LSTM performs the best with
a R2 of 0.74. Note that their task was to predict an estimate
for each input image/plot rather than a per pixel prediction.
For estimation in the Zhejiang Province with only Sentinel-
2 imagery, Zhang et al. [2022] designed a custom CNN with
two fully connected layers, a window size of 3x3, ReLU ac-

tivation, RMSE loss, and the Adam optimizer. Their CNN
achieved an R2 of 0.7465 and 24.7745 while their linear re-
gression model only achieved a R2 of 0.3794. Note that they
also predicted by plot/image rather than by pixel. Instead of
creating their own CNN, Reiersen et al. [2022] finetuned
ResNet18 to estimate carbon stock in Ecuador. Although
they do not provide specific results, they note that “our base-
line CNN model outperforms state-of-the-art satellite-based
forest biomass and carbon stock estimates for this type of
small-scale, tropical agro-forestry sites.” Like the other pa-
pers, Reiersen et al. [2022] predicted by plot rather than by
pixel.

Other papers used neural networks rather than CNNs. To
estimate forest biomass by plot in Northeast China with li-
dar combined with Landsat satellite imagery, Wang et al.
[2020] made a fully connected neural net with four layers,
500 neurons in each layer, ReLU activation, and dropout,
which achieved an R2 of 0.84 and an RMSE of 6.28. Csillik
and Asner [2020] combined Planet Dove, Sentinel-1, topog-
raphy, and lidar data to do near real-time estimation of ACD
in Peru. They design a neural net with 5 layers, 3 hidden
layers of 250 neurons each, ReLU activation, a linear out-
put layer, Mean Absolute Error (MAE) loss, and the Adam
optimizer, which achieves an R2 of 0.75-0.78 and an RMSE
of 20.6-22.0 for each month. Csillik and Asner [2020] is the
only example of using satellite imagery to predict ACD at a
per pixel level.

We hope to develop a model able to estimate carbon
stock at a more precise level by predicting ACD values for
each pixel.

2.2. Overview of predictors

Previous research uses a variety of inputs from lidar, field
measurements, and imagery from different satellites. For
the research based on satellite imagery, they all used a com-
bination of spectral bands and vegetation indices as inputs
to their model. The best predictors of ACD and biomass
differed by paper. Mngadi et al. [2021] found that vegeta-
tion indices were most important. Specifically, they iden-
tified the red-edge normalized difference vegetation index
(NDVIre), enhanced vegetation index (EVI), modified sim-
ple ratio index (MSR), and normalized difference vegeta-
tion index (NDVI) as the most important variables. Baloloy
et al. [2018] found that the red, green, blue bands, red-edge
band, NDVI, soil adjusted vegetation index (SAVI), Green
NDVI (GNDVI), simple ratio (SR), and red-edge simple ra-
tio (SRre) were most important. Tian et al. [2024], which
used the CNN-LSTM found that the red-edge band and
NDVI were most important, whereas Ghosh et al. [2021]
determined that NDVI and GNDVI along with TNDVI were
the most important.

Wang et al. [2020] found that hydro and thermo-
variables were the most important. This is in line with what



Asner et al. [2018] found for what was most important for
our ground truth labels—relative elevation which is “a hy-
drological metric related to water and nutrient availability.”

3. Dataset and Features
We use the aboveground carbon density (ACD) mask for

Sabah, Malaysia that was generated by Asner et al. [2018]
as our “ground truth” data. This mask estimates the ACD
for all of Sabah at a 30m spatial resolution and can be
seen in Figure 1. One main purpose of our work is to
make carbon stock estimation generalizable and accessible
to all. As a result, our input data is multispectral data from
Sentinel-2 accessed through Google Earth Engine and pro-
vided by Copernicus, which is accessible to all [Gorelick
et al., 2017].

Figure 1: ACD mask generated by Asner et al. [2018], in
MGCha−1

3.1. Preprocessing

Using Google Earth Engine [Gorelick et al., 2017], we
extracted images from October 15, 2015 to October 15,
2017 from Sentinel-2 to align with the date range of data
gathered by Asner et al. [2018] for the mask. We filtered
out all images with a cloudy percentage above 20 then took
the median value of all images at each pixel for each band
to form one median image. We then reprojected the me-
dian Sentinel image to align with Asner et al. [2018]’s ACD
mask so each pixel of the Sentinel input aligned with each
pixel of the mask where each pixel is a 30mx30m area.

We then split the image into 256x256 pixel tiles. We
exclude tiles that contain over 25% NaN values, since there
are several almost entirely blank regions, especially near the
corners, due to the irregularity of the Sabah border (Figure
1). Out of the resulting 1106 image tiles, we then randomly
sample 60% of the tiles (663 images), which we use as our
primary dataset for the remainder of the project due to com-
pute limits. We partition this into a 60%-20%-20% train-
validation-test split. Since there are still a few NaN values

Figure 2: Feature importance tests using a) RF and b) XG-
Boost on all Sentinel-2 bands and vegetation indices that
were deemed important by at least one previous paper

in the labels, when we compute the loss during training, we
also mask out the NaN labels so that it does not influence
gradient descent, while allowing the model to retain spatial
information by not simply dropping these values.

3.2. Feature Selection

To select our input channels of our models, we first
turned to the literature. We run a feature importance test
on every Sentinel-2 band or vegetation index that was
deemed important for at least one paper’s results—red,
green, blue, red-edge, water vapor, NDVI, EVI, MSR, SR,
SAVI, GNDVI, SRre, TNDVI, and NDVIre. We run one
test using Random Forest and another with XGBoost.

As we can see in Figure 2, water vapor, EVI, and the
green band are the top three most important in both the
RF and XGBoost importance tests and the red-edge band
is also very important in both. This aligns with the liter-
ature because Wang et al. [2020] and Asner et al. [2018]
found that hydro variables were the most important. The
Enhanced Vegetation Index (EVI) is made specifically to
improve sensitivity in high biomass regions according to



Figure 3: Custom CNN architecture with skip connection.

Jiang et al. [2008], which applies to the densely forested re-
gion of Sabah. We use the following formula for EVI with
Sentinel-2 data:

EVI = 2.5 ∗ NIR−Red

NIR+ 6 ∗Red− 7.5 ∗Blue+ 1

Due to the literature and our feature important results,
we choose the green band (B3), red-edge band (B5), wa-
ter vapor band (B9), and EVI as our four channel inputs to
all of our models. We also experimented with directly us-
ing the raw inputs of EVI (blue, red, NIR) as a second set
of features, including the red (B4), green (B3), blue (B2),
water vapor (B9), red-edge 1 (B5), and NIR (B8) bands.

4. Methods
We use R2 and RMSE as evaluation metrics and the

mean squared error loss: MSE = 1
N

∑N
i=1(yi − ŷi)

2 as
they are used in all previous literature we have encountered.
Specifically, we used the r2 score and mean squared error
from the metrics library in scikit-learn [Pedregosa et al.,
2011]. We also use accuracy as defined by Ming et al.
[2021] for predicting continuous values in depth estima-
tion, which is another regression-based per pixel computer
vision task: accuracy = % of di s.t. max( di

dgt
i

,
dgt
i

di
) = δ <

threshold , where di and dgti are the predicted value at pixel
i and the ground truth value at pixel i, respectively. We used
a threshold of 1.25.

4.1. Baselines

We establish three baselines: a linear regression, ran-
dom forest (RF), and XGBoost (XGB). We fit each base-
line on two sets of features: set 1 includes the green, red
edge 1, EVI, and water vapor bands, while set 2 includes
the red, green, blue, red edge 1, water vapor, and NIR. For

set 1, we had 3 estimators in RF and 10 estimators in XGB,
and for set 2, we had 2 estimators in RF and 8 estimators
in XGB. We used LinearRegression and RandomForestRe-
gressor from scikit-learn [Pedregosa et al., 2011], and XG-
BoostRegressor from XGBoost [Chen and Guestrin, 2016].

4.2. Finetuning with UNet

UNet is a semantic segmentation model trained for med-
ical computer vision tasks. UNet consists of a pre-trained
encoder, such as ResNet, VGG, or others, followed by 1
x 1 bottleneck convolutional layers, and finally a custom
decoder that upsamples with convolutional tranpose lay-
ers and more 3 x 3 convolutional layers, with intermittent
skip connections between the encoder and decoder Huang
et al. [2020]. Because this model is a widely used seman-
tic segmentation model for satellite imagery due to its abil-
ity to handle irregular shapes [Khryashchev et al., 2018],
we experiment with fine tuning UNet. After loading the
pretrained model from the pytorch segmentation models li-
brary [Iakubovskii, 2019], we remove the multi-class clas-
sification activation in the segmentation head to apply U-
Net to our continuous segmentation task. After initial ex-
perimentation, and due to compute constraints, we decide
to finetune the final two decoder blocks on feature set 1,
the four features determined by feature importance analy-
ses conducted during the baseline experiments. For hyper-
parameters, we experiment with the Adam optimizer and
SGD with Nesterov momentum. Additionally, we conduct
a search over learning rates of 1e− 4 to 1e− 2 and save the
model with the lowest validation MSE over all pixels per
sample.

4.3. Embeddings with Shallow CNN

We also experimented with using ResNet embeddings
for extracting features from satellite imagery. We used



LinReg RF XGB
Bands Train

RMSE/R2/Acc
Validation
RMSE/R2/Acc

Train
RMSE/R2/Acc

Validation
RMSE/R2/Acc

Train
RMSE/R2/Acc

Validation
RMSE/R2/Acc

Set 1 63.9/.139/.18 63.5/.132/.172 34.2/.75/.52 68.9/-.02/.174 58.6/.276/.198 59.4/.242/.186
Set 2 63.2/.158/.184 62.6/.157/.175 37.4/.706/.576 69.5/-.04/.182 58.1/.289/.199 58.8/.257/.188

Table 1: Baseline results for linear regression, random forest, and XGBoost models. Set 1 includes 4 features: green, red
edge 1, and water vapor bands as well as EVI. Set 2 includes 6 features: red, green, blue, red edge 1, water vapor, and NIR.
Accuracy was calculated with a threshold of 1.25.

UNet Encoder Train Samples Train RMSE/R2/Acc Validation RMSE/R2/Acc
ResNet34 5 30.783 / 0.427 / 0.341 74.633 / -3.904 / 0.129
ResNet34 397 69.144 / -132.010 / 0.148 68.063 / -124.038 / 0.138

MobileNet v2 397 69.039/-111142.742/0.141 68.179/-82766.547/0.131

Table 2: Results for fine tuning the last two decoder blocks of UNet on the green, EVI, water vapor, and red-edge 1 bands of
our dataset. Accuracy was calculated with a threshold of 1.25. For models on 397 train samples, we use a batch size of 64.
We use a learning rate of 1e− 2 for the 5 sample model, and a learning rate of 1e− 3 for the 397 sample models, with SGD
with Nesterov momentum= 0.95.

feature set 1 (green, red edge 1, EVI, and water va-
por) to generate embeddings. Specifically, we used a
ResNet encoder from the segmentation models pytorch li-
brary [Iakubovskii, 2019], with a depth of 4 encoder blocks.
This encoder generated embeddings of four sizes (CxHxW):
64x128x128, 64x64x64, 128x32x32, and 256x16x16, of
which we experiment with the 64x64x64 embeddings. We
then trained a shallow, custom CNN which intakes these
embeddings. The shallow CNN consisted of two upsam-
pling layers (each with a convolutional transpose 2d layer,
followed by ReLU activation and BatchNorm), and a final
convolutional layer to output a 256x256 ACD map. We ex-
periment with using an Adam optimizer and SGD with Nes-
terov Momentum, and also conduct a search over learning
rates of 1e−4 to 1e−2. We save the model with the lowest
validation MSE over all pixels per sample.

4.4. Custom CNN

We also design our own custom CNN architecture, as
shown in Figure 3. With the idea that we first want to iden-
tify basic features of the image, we downsample using con-
volutional layers with BatchNorm and ReLU activation. We
also reduce the dimensions in each layer using pooling to
combat overfitting. We then upsample with transposed con-
volutional layers with BatchNorm and ReLU activation to
return the image to the original resolution so that we can
predict a value for each pixel. Essentially, we are generat-
ing a predicted image. We add a skip connection to allow
the model to reuse basic features from the start and combine
them with the more complex features developed later in the
net.

5. Results

5.1. Baseline

As seen in Table 1, all baseline models achieved compa-
rable performances when fitted on the two different sets of
features. While the LinReg and XGB models performed
similarly on the train and validation sets, RF had severe
overfitting likely because of our limit of 2-3 estimators
due to compute constraints. The best baseline model was
XGBoost with 10 estimators using the first set of features
(green, red edge 1, water vapor, EVI), and it achieved a val-
idation RMSE and R2 of 59.4 and .242, respectively.

5.2. UNet Finetuning

To verify model applicability, we initially attempted to
overfit the finetuned UNet model with the ResNet34 en-
coder on 5 training samples with the green, water vapor,
and red-edge 1 bands and EVI as features. While the train-
ing loss (MSE) did not decay to 0, we did notice the train
loss rapidly decrease, then plateau to an RMSE of 30.783,
an R2 of 0.427, and an accuracy (threshold 1.25) of 0.341
(Table 2). As expected, this overfit model had poor perfor-
mance on the validation set, with an RMSE of 74.633 and a
negative R2 that indicated no correlation.

We then moved onto finetuning UNet with the ResNet34
encoder on a larger training dataset of 397 image tiles. Af-
ter evaluation, we see that there is an overall poor fit on
both the training and validation sets, with a train and val-
idation RMSE of 69.144 and 68.063, respectively (Table
2). Especially given the higher training loss than valida-
tion loss, these metrics seemed to indicate little learning oc-
curring, so we instead test out a separate, more lightweight



Train Samples Train RMSE/R2/Acc Validation RMSE/R2/Acc
5 50.0 / -12.361 / .184 41.8 / -4.249/ .169

20 59.6 / -5.356 / .230 63.2 / -4.884 / 0.281
397 67.8 / -44.6334 / .148 67.4 / -45.174 / .275

Table 3: Results for custom shallow CNN with ResNet embeddings inputs: overfitting on 5 and 20 samples, and training on
the entire dataset. Accuracy was calculated with a threshold of 1.25. For the model on 397 train samples, we use a batch size
of 20. We use a learning rate of 1e− 3 for all models, with the Adam optimizer.

encoder: MobileNet. Again, we achieve similar results,
with a train and validation RMSE of 69.039 and 68.179,
respectively (Table 2). These results closely mirrored those
achieved with ResNet34, indicating that perhaps this spe-
cific encoder-decoder architecture may not be well-suited
to our task. We hypothesize that this may be due to the fact
that both ResNet and MobileNet are trained on ImageNet,
which contains significantly different images content-wise
than our geospatial images.

5.3. ResNet Embeddings with Shallow CNN

For our shallow CNN model with embeddings, we also
first attempted to overfit our model to 5 training examples.
While we observed the MSE loss decrease substantially and
plateau during training, it never decayed to 0, and after 500
epochs and conducting our search over learning rates, we
were only able to achieve a train RMSE of 50.0 and an R2 of
-12.3: another negative R2 which indicates no correlation,
even on the training set. We repeated this experiment on 20
samples, (which yielded train and validation RMSE of 59.6
and 63.2 respectively), and the entire dataset of 397, (which
yielded train and validation RMSE of 67.8 and 67.4). All
experiments yielded negative R2 values, indicating that our
model had a worse fit than a constant function set at the
mean value of the dataset, and that minimal learning oc-
curred (Table 3).

Given the consistently poor results from using ResNet as
an encoder in this shallow CNN and in the fine-tuned UNet,
we decided to investigate our hypothesis that ResNet is un-
able to generalize from standard images to satellite data. To
do so, we manually inspected the ResNet embeddings of the
satellite imagery using a standard PNG image as a control
(Figure 4). In Figure 4a, each channel of the control photo’s
embedding detected a unique texture or edge feature from
the image. On the other hand, Figures 4b and 4c display two
tiles from the train dataset (four channels: green, red edge
1, water vapor, and EVI) and their embeddings. The ResNet
embeddings fail to detect any relevant features in the origi-
nal satellite imagery (such as the river present in subfigure
b). Also, the different channels of the embedding appear to
copy each other, generating only a few unique ‘channels’
per embedding. Thus, it is clear that ResNet is insufficient
to extract rich features from our data, confirming our hy-
pothesis that ResNet does not generalize well to satellite

imagery. As a result, we did not proceed with trying to use
other embeddings of different sizes, finetuning UNet on the
other set of features, or using embeddings calculated with
the second set of features to re-train our shallow CNN.

5.4. Custom CNN

Figure 5: Predictions of our best custom CNN model (left)
compared to the true ADC values (right) on two tiles in the
test set in subfigures a) and b).

We trained our five convolutional layer CNN with a skip
connection on both sets of features, with results shown in
Table 4. With our original selection of four features (green,
red edge 1, water vapor, and EVI), our model did not per-
form well, and obtained more negative train and validation
R2 values of -53.719, -75.817. We hypothesized that the
EVI was not retaining enough information from the bands,
so we separated the bands used to calculate EVI—red, blue,
NIR—and ran our model with our other set of six features
(red, blue, green, red edge 1, water vapor, and NIR). Our
custom CNN outperformed all previous experiments with
these input channels, ultimately obtaining a R2 of 0.459,
0.435, and 0.438 on our train, validation, and test sets, re-
spectively. Our model generalizes well as proven by its high
R2 on the test set of 0.438, which is slightly higher than the
validation R2 of 0.435.



Figure 4: Manual inspection of 64x64x64 embeddings. The top images are the original inputs, and the bottom images
correspond to each channel of the embeddings. a) Control photo of dog (Coal), where different channels detected different
texture and edge features. b, c) 4 channels of tiles from train dataset, from which embeddings do not extract notable features.

We examine the predicted ACD masks for a few test tiles
in Figure 5. The model is able to detect features that are
clearly distinct from one another. For example, in tile B, the
maneuvering river is appropriately detected and the model
correctly predicts the denser forest in the bottom left region.
However, the model struggles more when the features are
less differentiable. Notice in labels for tile A how most of
the image is about the same value of around 350. Our model
still correctly identifies some main features such as the river,
more barren area in the left, and the high carbon area near
the river, but it does so with less precision than in tile B.
We also see that it incorrectly predicts hot spots such as the
bright yellow, curved area in the middle left. In all, our
custom CNN can accurately detect and predict key features
such as rivers and dense forest but struggles with precision
when there is less obvious differentiation.

6. Conclusion/Future Work

We used Sentinel-2 imagery to estimate the aboveground
carbon density (ACD) for every 30mx30m area in Sabah.
We first tried finetuning a pretrained UNet and using em-
beddings trained on ResNet in a shallow CNN. These ef-
forts were unable to produce useful results, which we deter-
mined was due to how the embeddings did not capture key
features of our data. We demonstrated how the embeddings
capture key features of an image of a dog, yet were unable
to identify any features from the images in our dataset. We
believe this is because the embeddings for both the UNet

(which used a ResNet encoder) and ResNet were trained on
the ImageNet dataset, which consists of images unrelated to
a satellite image of a dense, rural forest in Sabah. As a re-
sult, we built a custom CNN with five convolutional layers
with batchnorm and ReLU. We downsample with pooling in
the first three layers then upsample and add a skip connec-
tion. Our best model was our custom CNN, which used the
red, green, blue, red-edge, NIR, and water vapor bands from
Sentinel-2 and achieved a R2 of 0.459, 0.435, and 0.438 on
our train, validation, and test sets, respectively. This per-
formed better than our best non-deep learning model, which
was XGBoost with a R2 of 0.289, 0.257, and 0.249. We see
that our predicted images correctly detect key features such
as rivers and denser forest, demonstrating learning and abil-
ity of prediction.

6.1. Future Work

Our goal was to estimate the ACD for each 30mx30m
area in Sabah. This is a significantly more complex task
than estimating ACD for an entire region. This essentially
makes our task a generation task, where we create a new
image showing the mapping of ACD. In the future, we may
want to simplify the task into one of estimation. For exam-
ple, instead of 256x256 = 65536 predictions for each input
image, we make one prediction for each image that repre-
sents the estimated ACD for that entire area. To improve
upon our current objective, we can apply models specifi-
cally made for generation of satellite imagery such as Dif-



Bands Train RMSE/R2/Acc Validation RMSE/R2/Acc
Set 1 62.9 / -53.719 / .123 64.8 / -75.817 / .165
Set 2 40.9 / .459 / .309 41.4 / .435 / .295

Table 4: Results for custom five-layer CNN. Set 1 includes: green, red edge 1, and water vapor bands as well as EVI. Set
2 includes: red, green, blue, red edge 1, water vapor, and NIR. Accuracy was calculated with a threshold of 1.25. Both
networks were trained with batch sizes of 32, with a learning rate of 1e− 3 using the Adam Optimizer. The model trained on
set 1 trained for 750 epochs, and the model on set 2 trained for 1000 epochs.

fusionSat by Khanna et al. [2024]. We can also continue to
finetune our existing custom CNN architecture and try dif-
ferent input band and vegetation index combinations. Then,
we want to apply our model to other comparable regions,
such as generating per pixel ACD predictions for the entire
island of Borneo.

7. Contributions and Acknowledgements

Link to segmentation-pytorch-models library.

• Amy: Data preprocessing. UNet finetuning. Setting
up CNN architecture and training loop. VM setup.

• Alice: Baselines. UNet setup. Embeddings + shallow
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• Ryne: Project scope, data preprocessing, baselines +
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