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Abstract

In this paper, we explore the domain of Visual Com-
monsense Reasoning (VCR) within Visual Question An-
swering (VQA) systems by leveraging and evaluating sev-
eral prominent computer vision architectures and train-
ing paradigms. Utilizing the Synthetic Visual Reasoning
Test (SVRT) dataset, which comprises various classifica-
tion tasks designed to test visual reasoning capabilities,
we implement and compare multiple approaches: a base-
line Convolutional Neural Network (CNN), a hybrid CNN-
Transformer model, contrastive learning techniques, and
advanced feature extraction methods. Our goal is to ascer-
tain which methodologies best enhance the model’s ability
to interpret and respond to complex visual inputs in a man-
ner akin to human cognitive processes. Preliminary results
suggest varying levels of effectiveness across different mod-
els, but emphasize the value of CNN and feature extraction
in the development of more intuitive and accurate VQA sys-
tems. This work not only benchmarks current strategies but
also contributes to the ongoing discussion about the opti-
mal integration of architectural innovations and learning
paradigms in the field of computer vision.

1. Introduction
Visual question answering (VQA) encompasses the abil-

ity to distinguish and group relationally similar objects and
images. For humans, visual reasoning and question answer-
ing is a critical part of general intelligence and fast reaction
time, allowing us to identify, remember, and communicate
about the differences and similarities in our environment.
For Computer Vision, achieving state-of-the-art visual rea-
soning is essential and applicable to ongoing tasks like ob-
ject detection, anomaly detection, or classification. Accord-
ingly, better understanding of ’Visual Question Answer-
ing’ (VQA) and ’Visual Commonsense Reasoning’ (VCR)
strategies can help AI algorithms better capture some of the
complex visual and cognitive processes that humans do ef-
fortlessly.

Building off of work by Messina et. al., we run exper-

iments using images from the Synthetic Visual Reasoning
Test (SVRT) dataset [2]. The black and white images from
this dataset are used as input for our algorithms. For each
experiment, we do a binary classification to identify a spe-
cial type of spatial relationship. The output is 1 when the
model(s) determines that the spatial relationship is present
in the image and 0 when the model determines the relation-
ship is not present. We run this for four different types of
relationships as discussed in section 2.

Our motivation for this research is to identify the
strengths and weaknesses of CNNs and hybrid-CNN archi-
tectures on the SVRT dataset and by extension VCR tasks
more broadly. With our investigation, we can identify and
optimize state of the VCR systems, focusing on resource ef-
ficiency and optimized complexity. Doing so can make way
for a growing body of work in Computer Vision that consid-
ers problem-suitability and innovative architectural applica-
tions.

2. Dataset
For our dataset we will be using the Sythetic Visual

Reasoning Test (SVRT) dataset [1]. This dataset is com-
prised of 23 classification based tasks using image frames
(128 x 128, binary pixels) where multiple shape outlines
are drawn. These classification tasks were originally ad-
ministered to humans to test visual reasoning faculties and
image associations. Each type of classification task is meant
to target the compositional arrangements and relationships
between the shapes in the image. For example, one type of
classification task might be recognition that all the shapes in
two images are the same, but are in a different orientation.
Another might contain the same shapes but be positioned in
a different sequential ordering. Another may be whether
the shapes are concentric in the same way as the shapes
in another image etc. For each problem, we have 400k in
training, 100k in test, and 100k in val with even distribution
between two labels.

2.1. Selected Problems and Classification

Of the 23 classification tasks, we chose to focus on the
4 prevalent SVRT problems that feature prominently in the
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literature: Problem 1, Problem 5, Problem 20, and Problem
21. [2]. Descriptions of each task can be reviewed in Ta-
ble 1. Unless otherwise specified, we trained our models
one problem at a time, using the set of positive sample
images and negative sample images as input. As output,
each sample received a 0 or 1 classification label.

Positive
Sample

Negative
Sample

Summary

1 True labels contain two
identical shapes that
are translations of each
other.

5 True labels contain two
sets of identical shape
pairs.

20 True labels contain two
sets of identical shapes
that are reflections of
each other.

21 True labels contain two
shapes that are scaled,
rotated, or translated
versions of each other.

Table 1. SVRT Problems and Descriptions

2.1.1 Data Preparation and Features

In order to prepare our data, we ensured that all images were
sized at 128 x 128 if they were not already. We then normal-
ized images with a standard deviation of 0.5 and mean of 0.5
such that all pixel values fell into the range of [−1, 1]. In
our model architectures we used an image to tensor conver-
sion and then handled feature extraction at the architecture
layer. For example, feature extraction is described in 4.2.3
as one of our studied methods while for CNN and CNN-
Transformer Hybrid experiments the CNN layers operate as
inherrant feature extractors.

3. Literature
3.1. “Recurrent Vision Transformer for Solving Vi-

sual Reasoning Problems", 2021

In this paper, Messina et. al. utilize the SVRT dataset
to train a novel vision VQA architecture. The architec-
ture proposed, the Recurrent Vision Transformer (RViT),

is a complex hybrid architecture meant to blend and reap
the benefits of 1) Pre-trained ResNet50 layers, traditional
upstream CNN layers, reccurent connections as one might
find in an LSTM or GRU architecture, and a Vision Trans-
former (ViT) layers. The ResNet50 layers are intended to
serve as a strong initialization method to ensure that com-
plex features are extracted from the raw image data as well
as ameliorate any vanishing gradient issues. Additionally,
recurrent connections are meant iteratively refine observa-
tions and provide more stable conclusions. Therefore, the
overall goal of this hybrid architecture is to refine its internal
representations, while the spatial attention mechanisms en-
able it to focus on relevant parts of the input image, aiming
augment individual technologies by using them in combina-
tion. When compared to other structures, including ResNets
and traditional vision transformers which achieve approxi-
mately 50% accuracy, RViT achieves much better results up
to 99% for certain classifier groups. Taking much of our
inspiration from Messina et. al., we attempt to build and
benchmark more simplified VCR architectures to compare
against their large and high-resource architecture. For train-
ing, Messina et. al. used Adam optimization, a learning-rate
of 0.001 and trained for 200 epochs [2].

3.2. “Contrastive Pre-training and Representation
Distillation for Medical Visual Question An-
swering Based on Radiology Images", 2021

When focusing on VQA and VCA in applied contexts,
particularly focusing on radiology tasks, it is difficult to
accumulate large sets of classified labels. Thus, in order
to promote VCA, Yang et. al. proposed a constrastive
pre-training approach to achieve better results. The model
architecture included contrastive learning as pre-training
on three different classification types involving images of
chest, brain, and abdomen. This contrastive pre-training
was then distilled into a single student model that resulted in
better VQA results when used in combination with ResNets
and ViT style architectures. This likewise reduced the need
for more specific annotations for specialized medical appli-
cations of VQA [3].

3.3. “Multiscale Feature Extraction and Fusion of
Image and Text in VQA”, 2023

In this paper, Lu et. al. acknowledge that state-of-the-art
VQA systems often struggle with accurately representing
scene and object information from images and fully cap-
turing textual information from questions. To address this,
the paper proposes multi-scale feature extraction and fusion
methods, which improve image representation. To resolve
this problem, Lu et. al. summarizes existing literature and
enumerates three primary multiscale feature extraction ap-
proaches, namely, image pyramid, feature pyramid, and the
combined image-feature pyramid. Likewise, Lu et. al. also
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proposes bilinear pooling within CNN feature extraction
layers as an improvement. The ulitmate goal of these modi-
fications are to refine feature extraction techniques in VQA,
aiming to balance model complexity with performance im-
provements. This balance would enhance the system’s abil-
ity to understand and reason about both visual and textual
information. In experiments, these feature extraction tech-
niques offered humble improvements increasing ResNet ac-
curacy from approximately 74% to 75% [4].

4. Methods

4.1. Baseline

In the baseline approach, we utilize a Convolutional
Neural Network (CNN) architecture. Specifically, the net-
work is built using a series of convolutional layers followed
by pooling layers to progressively reduce the spatial dimen-
sions while increasing the depth of feature maps. The archi-
tecture leverages convolutional operations defined as:

Xl+1 = f(Wl ∗Xl + bl),

where Xl and Xl+1 are the input and output feature maps at
layer l, Wl and bl are the weights and biases, and f is an ac-
tivation function such as ReLU. The final layer is connected
to a fully connected layer that maps the high-dimensional
features to the answer space. The model is trained using a
cross-entropy loss:

L = −
N∑
i=1

yi log(ŷi),

where yi is the ground truth and ŷi is the predicted proba-
bility for each class.

4.2. Additional Approaches

4.2.1 CNN + Transformer

The second approach combines a Convolutional Neural
Network (CNN) with a Vision Transformer (ViT) to en-
hance the model’s capability in capturing long-range de-
pendencies within the image, based on the approach pre-
sented in Messina et. al’s paper [2]. Initially, a 5-layer
CNN extracts feature maps from the input image, resulting
in an N × N grid of D-dimensional visual tokens where
N = 4 and D = 512. These tokens, along with a class
token ([CLS]), are fed into a Vision Transformer encoder
where the encoder weights are shared across all T layers
where T = 6. The self-attention mechanism within the
Transformer creates short paths between distant patches, fa-
cilitating robust feature extraction. In this architecture, we
utilized 16 4x4 patches and 12 multi-attention heads. We
likewise used query and key dimensions of 768. At each

time step t, the model produces an output yt, and the loss is
calculated using binary cross-entropy:

Lt = BCE(yt, ŷ).

The total loss is aggregated as:

Ltotal =

T∑
t=1

1

2

(
1

est
Lt + st

)
,

where st are learnable parameters representing uncertainty.
During inference, the final prediction y = yt̂ is selected
based on the time step:

t̂ = argmax
t

|yt − 0.5|.

4.2.2 Contrastive Learning

In the third approach, contrastive learning is employed to
pre-train models on large-scale unlabeled image datasets to
capture diverse visual features. We adopt a self-supervised
contrastive learning method, such as Momentum Contrast
(MoCo), where pairs of augmented images x̂i and x̂+

i are
generated alongside a queue of negative samples q̂. The
feature representations zi = Tθ(x̂i) and z+i = T 0

θ (x̂
+
i ) are

learned by minimizing the InfoNCE loss:

L = − log
exp(zi · z+i /τ)

exp(zi · z+i /τ) +
∑M

j=1 exp(zi · z
−
j /τ)

,

where τ is the temperature parameter. After obtaining the
pre-trained models, a lightweight student model is trained
to distill knowledge from these pre-trained models by opti-
mizing a combined loss:

Ldistill = α(Lsim + Ldissim) + (1− α)Lclass,

where Lsim ensures the student’s features are similar to the
pre-trained models’ features, Ldissim ensures features are
dissimilar across different contexts, and Lclass enables the
model to classify different visual contexts effectively.

4.2.3 Feature Extraction + CNN

The fourth approach focuses on multiscale feature extrac-
tion and fusion using a pre-trained ResNet-152 model. The
network extracts features from three different layers: conv3,
conv4, and conv5, with output dimensions of 28×28×512,
14×14×1024, and 7×7×2048, respectively. These mul-
tiscale features are fused using a top-down pathway similar
to the Feature Pyramid Network (FPN). For instance, fea-
tures from conv5 are upsampled and merged with conv4
features, followed by further upsampling and fusion with
conv3 features. This hierarchical fusion is mathematically
represented as:

Fconv3 = Fconv3 + Upsample(Fconv4 + Upsample(Fconv5)).
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The combined features are then fed into a CNN to produce
the final answer prediction (4).

Figure 1. Feature Extraction + CNN architecture.

5. Results & Analysis

Pblm.
1

Pblm.
5

Pblm.
20

Pblm.
21

Hyper-
parameters

CNN 0.98 0.5 0.91 0.8 lr:0.0001,
batch
size:64,
epochs:10

CNN,
Con-
trastive
Learn-
ing

0.5 lr:0.0001,
batch
size:64,
epochs:5

Feature
Ex-
trac-
tion,
CNN

0.9972 0.9986 0.9765 0.9458 lr:0.0001,
batch
size:64,
epochs:5

CNN,
Trans-
former

0.5 0.5 0.5 0.5 lr:0.0001,
batch
size:32,
epochs:10

Table 2. Model Architecture vs. Test Accuracy Performance

Pblm.
1

Pblm.
5

Pblm.
20

Pblm.
21

Test
Acc.

CNN ✓ ✓ ✓ 0.83
Table 3. CNN with combined training

5.1. CNN Baseline

The CNN architecture consists of 5 convolutional layers
with ReLU activation and max-pooling, followed by 3 fully
connected layers. The performance of CNN varies signif-
icantly across the four classification tasks as seen in Table
2. In Problem 1, which involves identifying two identical

shapes that are translations of each other, the CNN excels
with a high accuracy of 98%, indicating its effectiveness in
capturing simple geometric translations. Similarly in Prob-
lem 20, which requires identifying sets of shapes that are re-
flections of each other, sees a high accuracy of 91%, show-
ing the model’s robustness in detecting reflective symmetry.
We hypothesize that the convulutional layers are well-suited
for detecting direct geometric transformation due to their
ability to capture local patterns and features across different
regions of the input image. However, in Problem 5, where
the task is to identify two sets of identical shape pairs, the
model’s accuracy drops to 50%, as evident in the confusion
matrix of Figure 2a. This may suggest an increased task
complexity, where the CNN needs to simultaneously iden-
tify and match multiple pairs of shapes. The relatively shal-
low design of the architecture may not provide sufficient
hierarchical representation to capture the nuanced relation-
ships between multiple shape pairs. Finally, Problem 21 is
inherently more complex due to the variety of transforma-
tions involved, including scaling and rotation in addition to
translation but still achieves a reasonable accuracy of 80%,
most likely due to the similar learnings found in problems 1
and 20.
In addition to training the CNN architecture on each indi-
vidual problem separately, we also trained the CNN archi-
tecture as seen in Table 3 on problems 1, 20, and 21 at the
same time–100k for train, 12.5k for val, and 12.5k for test
from each problem. The purpose of the combined training
is to learn from a more diverse set of features occurring at
the same time.

Figure 2. Confusion matrix for all experiments on Problem 5.
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Figure 3. Example of a misclassification and classification for
CNN and Feature Extraction + CNN on Problem 5.

Figure 4. Example of classifications for CNN and Feature Extrac-
tion + CNN on Problem 21.

5.2. CNN with Contrastive Learning

Given that we got relatively high-performing results of
the CNN architecture on problems 1, 20, and 21, we sought
to primarily improve the performance on problem 5. An
initial approach we tried was contrastive learning such that
the model could effectively learn the feature representations
of similar vs. dissimilar shapes, which we thought was very
well-suited for the dataset. However, as seen in Table 2,
it did not yield better results, maintaining an accuracy of
50%. Since the effectiveness of contrastive learning relies
heavily on the quality of the positive and negative pairs, it
is possible that the pairs of identical shapes are not well-
defined or there is ambiguity in distinguishing them from
non-identical pairs. Consequently, the model might strug-
gle to learn meaningful feature representations, leading to
poor performance. Perhaps, robust data augmentation is
necessary for the model to generalize well. Furthermore, a
more complex, pretrained model such as ResNET with con-
trastive learning may be better suited to capture rich feature
representations.

5.3. Feature Extraction with CNN

The feature extraction approach with CNN utilized a pre-
trained ResNet-152 model to extract a feature embedding
vector to feed as input to the baseline CNN architecture.

Across all four problems, this approach outperformed the
baseline and other experiments. Compared to the base-
line, we saw the largest increase in performance of prob-
lems 5 and 21, which are of greater complexity than prob-
lems 1 and 20. We also see that overall, problem 5 had the
highest accuracy using this approach, even though it had
the lowest accuracy with the other approaches. The abil-
ity to merge features from different layers of the ResNet-
152 model helps in recognizing and matching the pairs
more effectively, showcasing the robustness of the method
in handling increased task complexity with multiple pairs of
shapes. For problem 21, we see a significant improvement
from the baseline accuracy showing that multiscale feature
extraction helps the model better capture the complexity of
multiple transformations. Yet, the accuracy is still the low-
est across the problems, indicating that the combined trans-
formations are a more difficult task for feature extraction to
generalize.

The hierarchical fusion of multiscale features signifi-
cantly enhances the model’s ability to interpret and respond
to complex visual inputs, making it a powerful technique
for VCR. The accuracy improvements across the problems
highlights the advantages of integrating features from mul-
tiple convolutional layers. This approach allows the model
to capture both local and global patterns, which are crucial
for understanding complex visual relationships.

5.4. CNN + Transformer

Across all four problems, the hybrid CNN + Transformer
architecture showed the least improvement and the low-
est accuracy relative to the other experiments. It was also
the slowest architecture to train, taking between 2 − 2.25
hours to train an epoch. The following list describes the
sub-experiments done to try and improve the results of this
architecture (Note that combinations of the following were
also attempted):

1. Including batch normalization layers after each of the
5 initial CNN layers

2. Including layer normalization layers before and after
transformer layers in ViT

3. He initialization for CNN layer weights and Xavier ini-
tialization for Transformer and MLP weights

4. Gradient clipping during training

5. Various experiments with learning rates, batch sizes,
and momentum

6. Training on smaller sets of data for more epochs (in-
cluding 28k and 100k training set decreases, up to 100
epochs)
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Ultimately, the best results are shown in table 2 and figure 5
show the hyperparameter selection of lr 0.0001, batch size
32, epochs 10. This archictecture included both batch-norm
and layer-norm as described above. While accuracy on its
own was not much improved over the course of training, it
should be noted that training and validation losses contin-
ued to decline over the course of training even though by
small (1e-3-1e-4) drops every epoch. Considerations for
why the CNN-Transformer was not more performant are
discussed at length in the discussion.

Figure 5. Describes micro-decline (order of 1e-3 to 1e-4) in loss
function for CNN-Transformer Architecture

6. Discussion
6.1. Assessment CNN + Transformer

While the CNN-Transformer architecture did not yield
results as promising as the pure CNN architecture or fea-
ture extraction architecture, we consider and compare this
architecture relative to results in Messina et. al. to better un-
derstand why this might be the case [2]. Messina et. al. ran
comparable experiments on ViT without any CNN layers
and on RViT which included both pre-trained ResNet lay-
ers, traditional CNN layers, recurrent connections, and ViT.
Our CNN-Transformer hybrid after 10 iterations is directly
comparable to Messina et. al.’s ViT findings which achieved
at best 50% accuracy on the four problem types. We would
expect our hybrid structure to outperform the sole ViT ex-
periment however it should be noted that our architecture
was only capable of being trained for 10 epochs while the
ViT was given 160 epochs. We discuss the reasons for the
limited epochs as one of time and compute availability de-
scribed at length in 6.2. The RViT structure however greatly

outperformed our CNN-Transformer hybrid, though was
comparable to our CNN and Feature-Extraction architec-
tures. One reason why the CNN-Transformer hybrid might
have been less successful than RViT is because it did not in-
clude the pre-trained ResNet50 layers which were included
before CNN and followed by transformer. Our thought is
that these pre-trained layers might have provided a better
initialization structure than CNN in isolation or CNN with
He initialization. It is possible that our learning overall was
slower and unable to compensate for this poor initializa-
tion through training. Additionally, in order to make this
experiment novel and test simplified structures, we did not
include any recurrent connections, which may have shown
to add a much needed benifit during training. Lastly, RViT
also had the benifit of training over 200 epochs while our
CNN-Transformer hybrid only trained for 10 epochs.

As for why the CNN-Transformer architecture did not
outperform the other experiments (CNN and Feature-
Extraction + CNN), we have a few hypotheses. For one,
the alternative two architectures are smaller and typically
converge faster during training. Thus, if limitations were
not at play, it may have been appropriate to compare after
a longer duration of training with the CNN-ViT. That be-
ing said since strong results on the VCR task were achieved
with these smaller structures, it also questions the theoreti-
cal need for a ViT at all for these types of problems. While
different applications will require more bench-marking and
research, it is possible that VCR tasks are ill-suited to large
hybrid structures and both RViT and our CNN-Transformer
hybrid may be overkill in these specific use-cases.

6.2. Limitations

Through most of this research, due to compute credits
offered during the 231n class as well as general GPU short-
ages (especially for faster V100 and A100), we were only
able to acquire NVDIA T4 GPUs. Operating with this com-
pute meant that training time for our architectures took any-
where between 1hr-2hrs per epoch. Moving at this pace
made it harder to improve and fully train our models to our
satisfaction. Especially, for the CNN-Transformer hybrid,
we would have liked to assess and improve model perfor-
mance with greater efficiency. (Note Colab VMs were not
an option for us, as Colab VMs did not have enough persis-
tent memory to store the SVRT dataset).

7. Future Work
If we had access to more computational resources, we

would like to run extensive experiments with various hyper-
parameters. We want to explore advanced data augemention
methods to improve model robustness, especially in relation
to improvements of contrastive learning. We would also like
to explore how this dataset can be used for multi-task learn-
ing where a model can to learn to classify as well as perform
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object detection or segmentation to enrich feature represen-
tations, especially since such a dataset could be potentially
useful for geographic segmentation.

8. Conclusion
Our study explores the effectiveness of various ap-

proaches to the SVRT dataset, including a baseline
Convolutional Neural Network (CNN), a hybrid CNN-
Transformer model, contrastive learning techniques, and
advanced feature extraction methods. Overall, we found a
feature extraction + CNN approach to be the most effective
across the board, indicating that pre-trained models can sig-
nificantly enhance the model’s capability to interpret com-
plex visual representations. In contrast, the hybrid CNN-
Transformer model, while theoretically promising for cap-
turing both local and global features, showed uniform but
low performance across all tasks. This suggests a need for
further tuning and possibly architectural adjustments to ef-
fectively harness the complementary strengths of CNNs and
Transformers in this context. Overall our core contributions
and revisions to the [2] paper include:

• A simplified CNN architecture compared to ResNet
reached comparable results on problems 1, 20, and 21.

• A simplified CNN architecture trained on problems 1,
20, and 21 together vs. individually.

• Experimentation with contrastive learning.

• Advanced feature extraction with CNN architecture.

9. Contributions
We worked synchronoously together on the data prepa-

ration. Riya worked on the basic CNN architecture and
CNN + contrastive learning, Jasemine worked on the CNN
+ Transformer architecture, and Megan worked on the Fea-
ture Extraction + CNN. We all spent time reviewing each
other’s code and results.
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