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1. Abstract

The existing camouflaged object detection (COD) liter-
ature roughly falls into 2 camps: novel model architecture
trained on open source datasets, and existing models trained
on new, domain-specific datasets. Due to the increasing rel-
evance of military camouflage data, we set out to combine
both approaches, modifying the architecture of an existing
MFFN model to increase performance on a specific mili-
tary camouflage dataset, ACD1k. Camouflaged object de-
tection on military image data is a challenging task for a
variety of reasons, such as relative sparsity and lack of ded-
icated model architectures. The MFFN model draws inspi-
ration from human behavior when detecting camouflaged
images, using multiple ”views” that simulate a human look-
ing at an object from several different angles. Our approach
involved improvements on the attention mechanism, a tai-
lored data preprocessing pipeline, and a data combination
effect method that allowed the model to generalize from
open source dataset. For attention, we implemented a sepa-
rate ”color attention” group to help the model incorporate
features from various color transformed ”views” of each
image. For data preprocessing, we identified a flaw in the
model’s default image normalization, substituting our cus-
tom computed statistics for normalization. For the combi-
nation effect, we used the open-source CAMO dataset to
fortify the insufficient military training data. While our
modifications to the attention mechanism did not result in
any improvements to performance, our data preprocess-
ing and combination yielded significantly increased perfor-
mance over all metrics. Our project suggests that more work
is needed on modifying the MFFN model, potentially in-
volving a heuristic to understand which views would make
a good addition. Nevertheless, our improved performance
across other approaches indicates how important data pre-
processing and combination are for practical applications of
existing models.

2. Introduction

Camouflaged object detection has been a pressing con-
cern of computer vision researchers in the last few years.

The majority of research in the field has been inspired by
camouflage found in nature, the results of millennia of evo-
lution. This trend is born out in the most widely available
open source datasets, COD10K [3] and CAMO [6].

The papers introducing both datasets provide a break-
down of where the camouflaged images were sorced as a
visualization:

Figure 1. COD10K Labels [3]

Figure 2. CAMO Labels [6]

In both cases, images other than camouflaged animals
found in nature compose a small minority of the image data.
While these datasets have been invaluable for proposing
novel model architectures, there is still an open question on
how well these models generalize to practical domains and
applications. We seek to answer this question by applying
the cutting edge MFFN [9] model on the task of camou-
flaged military images, while proposing further refinements
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to the architecture. While camouflage in nature evolves over
millions of years, military camouflage has undergone mas-
sive changes in the brief century since its creation. Because
of the increased pace of development of camouflage, mech-
anisms used to defeat camouflage must also improve faster
than evolution, with machine learning for computer vision
as a possible solution.

The task of military camouflage has several unique chal-
lenges. Firstly camouflage created by humans has access
to several tools found to lesser extents in the natural world.
Human camouflage makes use of drastically changing the
silhouette of a soldier, such as with ghillie suits. These suits
make up the majority of pictures in the ACD1k dataset and
often directly incorporate natural materials such as shrub-
bery in the design, making camouflage object detection
harder. Outside of issues inherent to military camouflage,
there is a lack of datasets publicly available that make train-
ing good models harder, let alone finding an existing open-
source model.

The problem of accurately detecting camouflaged sol-
diers has major ethical implications for the future of the mil-
itary. To see the increasing role Silicon Valley is playing in
the defense industry, one only need to look at the recent de-
fense contracts that startups such as Anduril Industries are
starting to win. This problem can only be solved by devel-
oping better models and procedures for training on military-
specific data. Without accurate detection, computer vision
systems run the risk of causing civilian collateral damage or
failing to identify lethal enemy targets. We as a group also
chose this project due to a separate curiosity to explore the
similarities between natural and military camouflaged data.

Our results are the product of 3 groups of experiments.
For our experiments modifying the attention mechanism
of the model, our proposed ”color attention” group never
surpassed the performance of the base model. However,
our custom data preprocessing led to small performance in-
creases across all categories, and our data combination ef-
fect with images from the CAMO dataset drastically im-
proved performance. Detailed results of our runs can be
found in the experiments section.

3. Data
Two open-source datasets, COD10K [3] and CAMO [6],

are commonly used in the COD literature, including most of
the papers we surveyed. While COD10K consists of 10000
images as the name suggests, only 5066 of them are of cam-
ouflaged objects. 3040 of these images are in the train set,
and 2026 of them are in the test set. CAMO consists of
1250 camouflaged images, split into a train set of 1000 im-
ages and a test set of 250 images. There are an equivalent
number of non-camouflage images, but they are not rele-
vant for training our model. The reason why we focus on
only images with a camouflaged object and background is

that our base MFFN model is designed to be trained on all-
camouflage datasets, matching the intuition that multiple
views are mainly advantageous when the object detection
task is complicated with camouflage.

To supplement these datasets with domain-specific mil-
itary camouflage images, we used another open-source
dataset from Kaggle, the ACD1k dataset [4]. This dataset
consists of 748 training images and 330 testing images, all
of soldiers in varied environments with varied camouflage
technology. All the data we trained on uses ground truth ob-
jectness masks to identify where the camouflaged object is.
To clean, separate, and combine these 3 datasets, we used a
combination of Python scripts and shell commands.

While the original MFFN model uses default ImageNet
data preprocessing and normalization, we experimented
with custom preprocessing as mentioned in the experiments
section.

4. Related Work
Our model is inspired by the intuition and general struc-

ture of the Multi-Feature Fusion Network model (MFFN)
[9], which utilizes the multi-view strategy for camouflage
detection (which we talk about in the Methods section).
With the previous MFFN model, results were found with
this model being trained on the COD10K [5] and CAMO [6]
datasets, consisting of camouflaged and non-camouflaged
images of mostly animals. Our model utilizes dataset nor-
malization, extra attention layers for multiple color and
brightness views, and dataset expansion. We elaborate on
these ideas in the Experiments section. The results of this
original MFFN model on our military camouflage object de-
tection is listed in the first row of Table 3.

There is also related work on military camouflaged ob-
ject detection (MCAM). In this paper, a SINet-V2 model
is used on an MCAM dataset. We want to test the multi-
view strategy on the MCAM dataset [5] and similar datasets
to beat this existing research. We also aim to see if this
novel idea of analyzing images from multiple perspectives
to gather more information will generalize well beyond
camouflaged animal detection. They also bolstered training
of their SINet-V2 model with camouflaged animal pictures,
and we also use this idea to strengthen our military camou-
flaged detection model.

In Camouflaged Instance Segmentation research [6], the
model is split into an object detection step and then a bi-
nary segmentation step to separate the object from the back-
ground. This idea has traditionally used Region Based Con-
volutional Neural Networks (RCNNs) which runs relatively
slow. This particular paper combined instance segmenta-
tion methods from Mask RCNN, Cascade Mask RCNN,
MS RCNN, Retina Mask, and CenterMask. This paper also
used a combination of camouflage and noncamouflage data,
with a roughly 50-50 split. We adapted this idea by testing



dataset expansion with our model.
We also referred to other state-of-the-art research on ob-

ject detection, including saliency estimation research [8].
This paper breaks salient object detection into steps. First,
Simple Linear Iterative Clustering is used to decompose the
image into 5 distinct colors. Then, a saliency map is made to
distinguish the object from the background. Finally, it uses
high dimensional Gaussian filters for smoothing on blur-
riness in the image. State-of-the-art papers on object de-
tection provided novel ideas to address edge detection and
handling blurry images. The camouflaged instance segmen-
tation and simple linear iterative clustering papers contained
relevant, recent ideas on camouflaged object detection, but
we did not directly use these ideas for our model.

We also used a variety of existing metrics for calculating
the accuracy of created foreground maps. The statistical F-
measure treats the problem like a binary classification one.
It returns a score by comparing the predicted and actual
foreground maps by pixel. First, the weighted F-measure
[7] is used to generalize the definition of the F-measure
by considering the problem as multiple binary classification
problems. It does this by also considering the location and
neighborhood of each pixel-wise comparison. The structure
measure [1] leaves the scope of traditional pixel-wise com-
parisons and instead considers the general structure of the
predicted foreground map and compares that to the struc-
ture of the ground truth map. Structure measure separately
evaluates region-aware and object-aware structural similar-
ity. Enhanced-alignment measure (E-measure) [2] uses a
combination of pixel-wise comparisons and overall image-
based comparisons. This captures both global and local sta-
tistical information.

Using various measures for our tests ensures that our
model performs better than existing work based on pixel-
wise comparisons, structure-based comparisons, and more.
For practical uses of military camouflage object detection,
we want to ensure that the structure of an object is correctly
identified, and that the outline of the object is as accurate
as possible. For military application, this gives us better un-
derstanding of what we are aiming at, the structural features
of the object being discerned, and which actions they may
be taking (e.g. a tank aiming itself towards towards a base).

5. Methods
We will be basing our model off the MFFN model, which

takes images from an existing dataset, then considers the
image under affine, mirror, and resizing transformations to
generate multiple perspectives of the image, simulating dif-
ferent object orientations and distances from the camera.
A ResNet which we initialize with pretrained ImageNet
weights is responsible of extracting features from each of
the views. The model then passes this output through the
CAMV module, which extracts information from this com-

bination of features to generate a combined encoding of im-
age features. Finally, the model restores each feature map
through upsampling to the original size to get the output.
We chose the MFFN model due to its multi-view architec-
ture, better allowing it to handle the blurred images com-
mon in military applications. The larger diagram is visi-
ble in Figure 3, featuring its view combinations, attention
mechanisms, and important upsampling layers.

The core idea of the MFFN model, considering various
transformations of an image, has had unprecedented success
in camouflage detection research in identifying semantic
cues of camouflaged objects. These multiple viewpoints of
the image enables the encoder to learn more detailed infor-
mation about the boundary and contents of the image with
less data. The CAMV module then decodes the comple-
mentary relationships between the various viewpoints and
expresses these relationships as output values.

Utilizing multiple views captures greater nuance of the
images. Stacking multiple views in front of the CAMV
module is similar to considering information of an image
from multiple perspectives, extracting the most important
features from each persepctive to make the most informed
decision.

Using the MFFN model, we train with an SGD optimizer
with momentum = 0.9 and weight decay of 5e-4. We train
for 50 epochs with batch size 8 and learning rate 0.05.

Our approach to building off of this base model com-
prises 3 separate directions, all informed by various intu-
itions. Our first direction involves improvements to the base
model architecture, with focus on modifying the attention
mechanism to increase the number of views for our pro-
posed ”color attention.” Our second direction involves im-
age preprocessing. A critical part of training a good model,
our preprocessing focuses on edge detection as well as nor-
malizing our domain-specific military dataset to have bet-
ter performance than the base model. Our third direction
involves combining the military training dataset with ad-
ditional camouflaged images from the CAMO dataset [6].
This approach, inspired by the MCAM paper [5], uses non-
military camouflage image data to combine with the rela-
tively sparse ACD1k dataset.

6. Experiments

6.1. Color Attention

In order to build on the model architecture from the
MFFN paper [9] that served as our starting point, we first
verified that the model had enough expressivity to support
more views. To do so, halved the size of the hidden down-
sampling layers from 32 to 16. The results of running our
low-dimensional model are shown in Table 1.



Figure 3. The original MFFN architecture from the paper [9], showing the 5 views and CAMV module used to combine them with attention

Figure 4. Our modified architecture of the CAMV model from the MFFN paper. We have added a third view type, color, that is processed
by an intra-class attention (In-att) mechanism along with the other two existing types. These three attention groups are fused by the
complementation of external classes (out-comp). Like in the original model, our CAMV is essentially a two-stage attention mechanism.

Data smeasure mae meanfm meanem

ACD1k 0.852 0.049 0.828 0.902

ACD1k low-dim 0.851 0.049 0.827 0.902
Table 1. Results on ACD1k dataset of base MFFN model and low-
dim MFFN model with halved hidden dimensions

Halving the hidden dimensions barely reduces the per-
formance of the model, meaning the base model has suffi-
cient parameters to train on more features without compro-
mising performance. This informed our decision to intro-
duce more views into the MFFN model as outlined below.

The MFFN intuition is that several views increase per-
formance for COD tasks, as inspired by nature. This is
done through the co-attention of multi-view (CAMV) mod-

ule, which performs 2 stages of attention, one over each at-
tention group and one at the end to fuse all groups into one
feature vector. The views from the original MFFN model
include the original view fO

i , the vertically flipped fV
i , the

diagonally flipped fD
i , first close view fC1

i and the sec-
ond close view fC2

i . The original MFFN model divided
the views into 2 attention groups: a ”viewing angle” group
including fO

i , fV
i , fD

i and a ”viewing distance” group in-
cluding fO

i , fC1
i , fC2

i .

By using the Co-Attention of Multi-View (CAMV) mod-
ule to essentially attend over views of an input image, the
same feature extraction resnet can be applied to all different
views of images. This matches the general MFFN intuition,
as humans and animals use the same visual cortex to pro-
cess views of a camouflaged object from different angles



and distances.
Our contribution to the model was creating a 3rd ”color

attention” group consisting of fO
i , fA

i , fB
i . Here, fA

i and
fB
i are stand-ins for the several pairs of color transforma-

tions we tried when training our updated MFFN model. Our
modified architecture is shown in Figure 4, and the results
of our various color-attention runs can be seen in Table 2.

We first tried brightness and contrast color views with
relatively low transformation strength. This was mainly a
proof of concept to test that our implementation of color at-
tention actually worked, as the new color views were not
modified a large amount. Due to the similar if slightly de-
graded performances to the base model, we were confident
our implementation was correct.

Our next run involved jitter and channel shuffle color
views in an attempt to apply more significant changes to
input images. Intuitively, we thought this would give the
model more features to work with. Additionally, just as the
various distance/angle views lead to distance/angle invari-
ance in the base model, we hoped that color shifts would
lead to a form of ”color invariance”. Having our model be
invariant to color was especially important as our dataset
consisted of both woodland, snow, and desert camouflage,
all with wildly different color palettes. Unfortunately, the
performance of this model was quite poor.

Our next run involved two RGB shuffles as color views
that were an attempt to address the poor performance of the
previous model. We thought our poor performance might be
due to random jitter and channel shuffle being too nondeter-
ministic, making it impossible to train a consistent model
to combine features through linear combinations such as an
attention mechanism. Thus, we provided two hard-coded
shuffles of the channels, mapping RGB channels to BRG
and GBR respectively. Our work did not pay off, as this
model has similarly poor performance. Finally, we tried
hue and saturation as a less extreme transformation similar
to RGB shuffling, but this also had no effect.

fA
i fB

i smeasure meanfm meanem

None None 0.852 0.828 0.902
Brightness Contrast 0.851 0.823 0.900

Jitter Chan. Shuf. 0.844 0.813 0.894

BRG Shuf. GBR Shuf. 0.845 0.815 0.890

Hue Saturation 0.849 0.824 0.898
Table 2. Results on ACD1k dataset of various models with ”color
attention”. Rows with ”None” are the base model. fA

i and fB
i are

the feature types.

The results of our experiments for color attention are
quite underwhelming. Despite rounds of debugging and
tweaking the pairs of views, our best model performs
slightly worse than the original model with only 2 attention

groups.
We theorize that the ”color attention” system does not

work because color is likely not interchangable within mili-
tary CAMO datasets, where in general images are expected
relatively consistent with earthy tones. Additionally, be-
yond this, color channels may not necessarily be variable
within images: when one channel is interchanged with an-
other or there are saturation/hue shifts, the detected ob-
ject is likely unnatural and indescribable through the initial
ResNet’s feature extractions, and most of the time, the new
views therefore are ineffective.

To implement color attention, we utilized the Albumen-
tations library to introduce transformations of brightness,
contrast, jitter, etc. For channel shuffle, modification was
applied algorithmically with our own implementation.

6.2. Normalization

Proper normalization is standard practice for training any
good machine learning model, as demonstrated in class.
Normalization gives all the data a normal distribution at the
beginning of training, leading to a model that is not biased
towards one portion of the dataset or another. The base
MFFN model normalizes with the common practice used
by both PyTorch and the Albumentations library. In this
method, the mean and standard deviation of the ImageNet
dataset are used to normalize the data, under the assump-
tion that input images probably follow a similar distribution.
We were unconvinced that the same would apply to ACD1k
with its military specific images, so we wrote a script to
compute the mean and standard deviation across channels
for our training dataset. The results are shown below.

Dataset Mean STD

Default [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

ACD1k [0.340, 0.438, 0.453] [0.263, 0.251, 0.259]

Comb. [0.382, 0.456, 0.463] [0.282, 0.258, 0.259]
Table 4. Calculated mean and standard deviation of each dataset.
”Default” indicates ImageNet statistics and ”Comb.” indicates the
combined ACD1k + CAMO dataset from our later dataset combi-
nation experiment.

As shown, our manually computed statistics vary signif-
icantly from the default values, and our intuition was val-
idated by the performance of our various models. As seen
in Table 3, normalization improved the performance of both
our model on ACD1k and on ACD1k + CAMO across all
metrics. Our results indicate that proper data normalization
is highly important for specific applications of COD mod-
els. A small addition to preprocessing can provide perfor-
mance improvement with no drawbacks.



Data smeasure wfmeasure mae adpfm meanfm maxfm adpem meanem maxem

ACD1k 0.852 0.791 0.049 0.830 0.828 0.837 0.908 0.902 0.915

ACD1k Custom Norm 0.854 0.794 0.049 0.830 0.830 0.839 0.909 0.903 0.917

ACD1k+CAMO 0.860 0.802 0.045 0.832 0.832 0.841 0.914 0.904 0.921

ACD1k+CAMO Custom Norm 0.866 0.809 0.042 0.836 0.838 0.850 0.917 0.913 0.927
Table 3. Our 3 best results compared to training the base model on just the ACD1k dataset. The biggest jump in performance comes after
the combination effect with CAMO. Normalizing the training data with our custom computed summary statistics instead of ImageNet
defaults consistently yields a smaller boost to performance, with larger effect on the richer, combined data

6.3. Dataset Combination

While normalizing based on our specific data yielded a
small improvement and makes sense in the context of all
the data processing we did in CS 231n, we were not fully
satisfied with our model. To see where to go from here, we
returned to the paper that inspired us to focus on military
camouflage initially, the MCAM paper [5]. While this paper
uses a different private military dataset as well as a very
different SINet-V2 model architecture from us, their main
contribution was based on combining the military training
data with various non-military open-source COD datasets.

Based on these results, we trained our model on a com-
bination of the ACD1k training dataset as well as all 1250
camouflage images from the CAMO dataset. This is be-
cause in the MCAM paper, the best results were obtained
after the combination effect with CAMO, possibly due to
its similar size to the military dataset and greater proportion
of non-animal data. Our model was evaluated during testing
on just the test set of ACD1k, allowing us to directly com-
pare performance with our existing models. The results of
4 models across all metrics are shown in Table 3. Model 1
was trained on ACD1k with default normalization as a con-
trol, model 2 was trained on ACD1k with our custom mean
and std, model 3 was trained on the combined dataset with
default normalization, and model 4 was trained on the com-
bined dataset with custom normalization. We immediately
noticed our largest performance increase to date due to the
combination effect compared to our base model, even with
default ImageNet normalization.

We tried a second run on the combined data, this time
with normalization based on our computed mean and stan-
dard deviation. Interestingly enough, performance in-
creases across all categories between the default and cus-
tom normalized combined dataset are over twice the perfor-
mance increases between the default and custom results on
the base ACD1k dataset. The increased benefit of normal-
ization when provided with a richer training dataset leads us
to believe that the scarcity of military-specific training data
is the main bottleneck for our and probably other military
COD models. The existing MFFN model seems to extract
most of the possible performance from the limited ACD1k
training data, making it hard to substantially boost perfor-

mance merely through changes to architecture.

7. Conclusion

Our research discovered new insights into improvements
for the existing MFFN model, particularly within the field
of camouflaged military object detection. Our most ex-
haustive idea for an architecture improvement on the MFFN
model, adding a color attention layer, was unfortunately un-
able to produce a significant increase in results alone. How-
ever, as seen in Table 3, our other experiments including
manually normalizing training data and the combination ef-
fect with non-military COD data yielded much better per-
formance.

With improved accuracy on existing work, our model
and experiments provide insights that may be relevant to
current applications of machine learning for military cam-
ouflaged object detection. While our model needs signifi-
cant improvement before being put into practice, our ideas
can also be used to improve progress in the field of cam-
ouflaged object detection. By building onto our idea of in-
creased attention groups as well as basic practices such as
normalization and combination, we can construct models
better able to ethically identify enemy combatants.

Some future ideas could be generalizing our multi-view
model to similar fields like occluded object detection or ob-
ject detection in smoke. Intuitively, the concept of consid-
ering many transformations of an image to gather informa-
tion from multiple perspectives could improve the success
of object detection in these fields as well. For example, we
may explore blurring standard camouflaged images as an-
other set of views. Such research could be critical help for
firefighters as well as search and rescue teams, potentially
saving many lives.
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