
Exploring Deep Learning Methods for Head CT Triaging

Jonathan Coronado
Stanford University

Stanford, CA
jonathan.coronado@stanford.edu

Grant Sheen
Stanford University

Stanford, CA
gsheen@stanford.edu

Abstract

In this project, we explore two deep learning methods
for automating the process of head CT (HCT) scan triage.
The first proposed method is a mini U-Net, based on an
architecture that is specialized in medical image segmen-
tation. We also propose the use of a Data-efficient Im-
age Transformer (DeiT), a computationally efficient trans-
former model. Though we encountered tough computa-
tional and memory constraints, our experiments demon-
strated the potential of these architectures for HCT triage.
The mini U-Net achieved an accuracy of 0.6509 on a sub-
set of 400 test examples, while the DeiT model achieved
a validation accuracy of 54%. Our findings indicate that,
with sufficient computational resources, specialized archi-
tectures like U-Net could outperform traditional Dense
CNNs in medical image analysis, particularly for tasks in-
volving large and complex datasets such as HCT scans.
Further research is needed to optimize these models and
fully realize their potential in clinical settings.

1. Introduction
Medical image triaging is the process of prioritizing the

review and analysis of medical images, such as head CT
(HCT) scans, based on the urgency of the patient’s condi-
tion. This process ensures that the most critical cases, which
require immediate attention and intervention, are identified
and addressed first. Triaging involves evaluating images to
detect signs of severe or life-threatening conditions, such
as internal bleeding, fractures, or tumors, and then ranking
these cases in order of priority. The goal of medical image
triaging is to optimize workflow efficiency, reduce the time
to diagnosis, and improve patient outcomes by ensuring that
urgent cases receive prompt and appropriate medical atten-
tion.

Triaging head CT scans has historically requires manual
review by radiologists but faces challenges such as high data
volume and radiologist shortages. Machine learning mod-
els for head CT triaging is increasingly becoming integrated

with modern radiology practices. The most commonly used
tools by radiologists are Rapid AI and Viz.ai. These tools
use convolutional neural networks (CNN) trained on large
datasets to detect various types of intracranial hemorrhages
and alert radiologists to critical findings in real-time. Devel-
oping accurate triaging models has the potential to enhance
diagnostic accuracy, efficiency, and consistency, ultimately
improving the efficacy of patient care.

For our project, we wanted to explore various deep learn-
ing approaches towards HCT triaging. Our model starts
with a head CT scan as an input. We experimented with
either using the raw sinogram or performing our custom
preprocessing method. We then trained both a U-Net and
a data-efficient image transformer (DeiT) to output a pre-
dicted label of either normal or abnormal. By comparing
the performance of our U-Net model, the DeiT model, and
existing benchmarks, we aim to understand the efficacy of
various deep learning architectures in HCT triaging.

2. Related Work

Our project was inspired and informed by numerous pi-
oneering projects in the biomedical imaging and computer
vision space.

2.1. Impact of Upstream Medical Image Processing
on Downstream Performance of a Head CT
Triage Neural Network

This paper was the direct inspiration for our project be-
cause they created the dataset that we are using and are the
only existing published paper that uses the dataset. As a
result, it is also the benchmark we will use to compare our
results.

It explored various processing steps of head CT (HCT)
scans before passing them into a CNN. They experimented
with training a CNN on raw sinogram data, varying the
number of x-ray projections used on images, and using CT
windowing for preprocessing. They were able to achieve a
mean area under the receiver operating characteristic curve
of 0.84 at triaging head CT studies as normal or abnormal.

1

There were two primary takeaways from this paper: 1)
Training a triage CNN directly on sinograms resulted in
comparable performance to inputting reconstructed head
CT studies, which suggests that models can be positioned
further upstream. 2) CT windowing was the most effective
form of pre-processing as it achieved their highest AUC. [1]

Our project builds upon their research by training our
own U-Net model farther upstream and incorporating CT
windowing into our preprocessing pipeline.

2.2. U-Net: Convolutional Networks for Biomedical
Image Segmentation

This paper explores the possibility of a neural network
architecture that is specialized for biomedical image seg-
mentation and able to perform well with a smaller train-
ing dataset. Their final product was U-Net, an award win-
ning CNN architecture that was later trained to win the 2015
ISBI cell tracking challenge [4].

This paper is of interest to our work because it presents
a CNN architecture that is specialized for biomedical imag-
ing. Such an architecture can be used to build upon the work
of the previously discussed paper, which did not use a spe-
cialized biomedical imaging architecture. Further, since the
previous paper showed no statistically significant decrease
in performance when trained on raw data, there is potential
for the U-Net architecture to show performance improve-
ments when trained on raw sinogram data as well.

As a result, our plan is to train a U-Net classification
model directly on the HCT sinograms and evaluate its per-
formance against the original paper.

2.3. Training data-efficient image transformers &
distillation through attention

This paper introduces the Data-efficient Image Trans-
former (DeiT), which is a compact image transformer
model designed to have significantly less computational re-
quirements. This work is pioneering because it demon-
strates that competitive convolution-free transformers can
be trained on the ImageNet dataset using a single computer
in less than three days. The DeiT model, with 86 million pa-
rameters, achieves a top-1 accuracy of 83.1% on ImageNet
with no external data. The authors also introduce a novel
teacher-student strategy specific to transformers, utilizing a
distillation token that ensures the student model learns from
the teacher through attention. [7]

This work is relevant to our project because it allows
us to experiment with a transformer architecture given our
limited computational resources. Vision Transformers have
recently shown superior performance on large-scale image
classification tasks such as ImageNet compared to CNNs.
As a result, DeiT presents as an alluring alternative to CNN-
based architectures that could have more robust capabilities.
Given the performance of DeiT in other image classification

domains, we hypothesize that it could also perform well in
the context of HCT triaging. In particular, the inclusion of
the attention mechanism could help the model focus on the
most relevant parts of the image.

2.4. MONeT: Memory Optimization for Deep Net-
works

This paper presents a framework for deep learning that
optimizes deep learning by reducing memory usage with
minimal computational overhead. Interestingly, this paper
described the use of this framework with U-Nets, which
are memory and computationally intensive models. Overall,
MONeT has been shown to be capable of reducing memory
requirements by up to 3x for various PyTorch models while
only incurring a computational overhead of 9-16% [6].

This work is relevant to our project because it showcases
various methods of memory optimizations which were nec-
essary in order to get our model to run. Without these meth-
ods, our model quickly runs out of CUDA memory due to
the intense requirements of U-Nets.

2.5. Dense Convolutional Network and Its Applica-
tion in Medical Image Analysis

In this paper, a dense convolutional network (Dense
CNN) is proposed and shown to be effective for medical
image analysis. A Dense CNN architecture is one where
each layer is connected to each layer, much like neurons in
a Multi-Layer Perceptron. These networks work well for
medical image analysis due to the dense connections be-
tween layers, which allow for feature reuse and counteract
vanishing gradients [9].

This paper is relevant to our project because it was the
original network used for the project ours is based on [1].
Dense CNNs are effective at capturing detailed relation-
ships and features in medical imaging, but generally unspe-
cialized. We posit that with an architecture specialized for
medical imaging, it is possible to outperform the original
achieved by Hooper et al.

3. Methods
3.1. Mini U-Net

Our project makes use of a U-Net, an architecture for a
CNN that is specialized for medical image processing [4].
The U-Net architecture described by Ronneberger et al con-
sists of four encoder (convolutional downsampling) blocks,
followed by a bottleneck convolutional block, then four
convolutional decoder (convolutional upsampling) blocks.
Each encoder block consists of two unpadded 3x3 convolu-
tions, each followed by a ReLU and finally a 2x2 maxpool
with stride 2. Each encoding block doubles the number of
feature channels as the network contracts. Each decoder
block consists of the same two unpadded convolutions and

2

ReLUs, this time followed by a 2x2 upsampling operation
which doubles the number of feature channels, then a con-
catenation with the feature map from the corresponding en-
coder block. This feature map is cropped due to the loss of
border pixels in each convolution. Ronneberger et al then
adds a 1x1 convolution to map each feature vector to the
desired number of classes. The original U-Net architecture
is shown below.

Our model made slight adjustments to the architecture
originally proposed by Ronneberger et al, which was in-
tended for medical image segmentation rather than binary
classification. Rather than transition from the final decoder
block directly to a convolution and feature map, we added
additional convolution block followed by a global average
pool to compress our spatial information into one class.

3.2. Transformer

We initially tried building our own custom vision trans-
former model. However, once we started training it, we ran
into GPU memory issues since the model was too large and
even a batch size of 1 was not possible. As a result, we
looked into other alternatives and found DeiT, which was
computationally feasible.

We explored finetuning the DeiT model for HCT triag-
ing. The DeiT model employs a teacher-student distillation
approach, which enhances its performance by transferring
knowledge through a distillation token.

The DeiT model was initialized with pre-trained weights
from training on the ImageNet dataset, providing a strong
starting point with robust feature extraction capabilities.

3.3. Memory Optimizations

Our project was subject to memory constraints that, for
the size of our inputs and model, were tough to meet.
As such, several memory optimizations were implemented.
First, in order to provide some normalization, we initially
intended to use Batch Normalization, but quickly ran out of
CUDA memory when using a batch size larger than one [2].
To remedy this, we instead opted for Instance Normaliza-
tion between each convolution, which normalizes the mean
and variance of each individual sample rather than across
an entire batch [8]. This is equivalent to Group Normaliza-
tion, but with a minibatch size of 1. Also, we used gradient
accumulation to achieve a ”virtual batch” size of 2 before
backpropagating gradients. We used this relatively small
accumulation step size to balance only being able to train
over one epoch. Further, we were required to reduce the
number of feature channels in each layer by a factor of 4
from Ronneberger et al’s original implementation in order
to complete even one forward pass. Additionally, we im-
plemented several common memory optimizations, such as
gradient checkpointing, mixed precision, and gradient scal-
ing [6]. Finally, to meet our memory constraints, we had
to reduce the number of feature channels at each layer by a
factor of four. Even so, we had a total of 5648305 learnable
parameters.

4. Dataset and Features
Our model is trained on a subset of the SinoCT dataset,

which contains over 9,000 HCT scans, each labeled as nor-
mal or abnormal. Each scan within the dataset contains a
reconstructed image and a corresponding sinogram. The
reconstructed images are 512x512 pixels with a variable
number of axial slices per scan, typically between 40 and
50. The sinograms are 984x888 pixels with a variable num-
ber of axial slices per scan. The full dataset is 1.3TB. The
reading radiologist designated each CT scan as normal or
abnormal at the time of original image interpretation as part
of standard clinical procedure. Of 9776 total scans, 5398

3

https://stanfordaimi.azurewebsites.net/datasets/3de8cef8-0626-4c5d-ac47-ed0fed22ac99

Figure 1. The same axial section of a noncontrast head CT image
with different preprocessing operations: (A) original image, (B)
image with a blood CT window applied, (C) image with a stroke
window applied, and (D) histogram-equalized image.

(55.21%) were abnormal. For our experiments, we used a
split of 80/20 for training/testing/validation sets. This gave
us 7820 training examples and 1956 testing examples.

4.1. Pre-Processing

We developed our own pre-processing pipeline for the
HCT sinograms in order to reduce the dimensionality of
our data to fit the DeiT model. The SinoCT dataset pro-
vides around 40 .dcm files that each correspond to a slice of
a sinogram. Our pipeline started with performing CT win-
dowing on each of the files.

We did our own implementation of blood, stroke, and
histogram-equalized windowing. Here is an example of the
CT windowed images, which was borrowed from Hooper
[1].

These CT windowed images are then stacked along the
depth dimension to create 3D tensors for each channel. The
script averages the slices along the depth dimension to pro-
duce 2D images for each channel, which are then combined
to form a single 3-channel image.

4.2. Data Loading

When loading the data we had to make two modifica-
tions. First, we needed to transpose the data to the correct
dimensions. The original data was in the form [H, W, D]
and transposed to [1, D, H, W] as expected by pytorch.
Here, D is the number of axial slices, and we add a dimen-
sion to account for there being one channel per slice. Next,
we found that after training for a while, certain examples
would be corrupted and appear as None or malformed data
in the set. To remedy this, error handling was added to skip
over corrupt examples. This was only used a handful of
times as this corrupt examples appeared very sparsely.

5. Experiments

We experiment with two approaches to automating HCT
triage. In one experiment, we use a mini U-Net tested and
trained on a subset of the raw sinogram data with instance
normalization between each convolution. In another experi-
ment, we use a DeiT model to train and test on reconstructed
images.

5.1. Training a mini U-Net on Sinograms

For the first experiment, we use a mini U-Net, as de-
scribed in 3.1. Due to memory constraints, we were not
able to train over the entire training set. Rather, training
was stopped after 4003 iterations, which took around three
hours. Additionally, to account for a small effective train-
ing set, our model was only tested on 400 examples from
the test set. Our model used Adam optimization and Bi-
nary Cross Entropy (BCE) Loss [3][5]. Both of these design
choices were made in line with the original paper [1]. De-
fault PyTorch hyperparameters were used, including a start-
ing learning rate of 1e-3.

Aside from accuracy, we used several evaluation metrics
for this experiment. One such metric was precision, which
is defined as a measure of # correct positive predictions

total positive predictions and mea-
sures the accuracy of positive predictions. We also used re-
call, which is defined as # correct positive predictions

total positive examples and can be
thought of as the ability of a model to identify positive
examples. Another metric we used was F1 score, which
is 2 ∗ precision · recall

precision + recall and is important when false positives
and negatives mean different things. Finally, we also used
Area Under the Receiver Operating Characteristic (AU-
ROC) which measures the ability of a model to find positive
examples without classifying false positives. The baseline
for this value is 0.5.

5.2. DeiT Finetuning

For our second experiment, we finetuned the DeiT model
on our preprocessed images. We then used the Adam opti-
mizer with a cross-entropy loss function to finetune it. We
were able to perform 3 epochs of training with a batch size
of 4 and a learning rate of 0.001.

6. Results

6.1. mini U-Net: Results

Despite not seeing the entire dataset, our model seemed
to learn generally the correct labels. The loss fluctuated be-
tween 1-0.2 though generally stabilized around 0.693 over
1200 iterations. A plot of the loss is shown below.

4

On the subset of 400 test examples, our model achieved the
following metrics:

Accuracy Precision Recall F1 AUROC

0.6509 0.4236 0.6509 0.5132 0.5

6.2. DeiT: Results

We found that finetuning the model was able to gradually
decrease training and validation loss throughout training.

We ran into issues running our saved model on the test data
so we were unable to find test results. However, we did have
a validation accuracy of 54 percent.

7. Discussion
7.1. mini U-Net: Discussion

In our original proposal, we posited that using an ar-
chitecture specialized for medical image processing on raw
sinogram data could improve the already strong metrics pre-
sented by Hooper et al. In our project, we were not able to
directly prove this. The U-Net architecture itself is very
memory-intensive, having 23 convolutional layers. Further,
the dataset we chose to use for this project did not help us
stay within our hardware constraints. Our 16GB of GPU
memory ran out quickly when attempting to run sinogram

data through our mini U-Net, which still had over 5.5 mil-
lion learnable parameters [4]. Each sinogram file was large,
typically ∼150MB, making all operations with them quite
slow. Additionally, due to time and computation restric-
tions, we were unable to come close to the amount of train-
ing done in the original Hooper et al paper, which trained
their models for 50 epochs each, while we were unable to
finish one due to constraints [1]. Still, we were able to cre-
ate a model that was able to train on and, to some degree,
learn from this expansive 1.3TB dataset, adapting the origi-
nal U-Net architecture to one that may be suitable for binary
classification.

Each of our metrics are far below that achieved by
Hooper et al, but by observing the provided loss graph, it
is clear that the model did learn, but learned to guess the
same label rather than learn features. This is likely due to
the complexity of the features contained in the sinogram
met with the reduced size of our mini U-Net and our lim-
ited training capabilities.

Our metrics confirm the idea that our model learned to
guess the same label for each example, as the accuracy and
recall are equivalent and the AUROC is 0.5, indicating that
the test set was imbalanced, having 15.09% one label more
than the other, and that the model did indeed guess the same
label for each example at test time.

While these results for the mini U-Net are discouraging,
they do not disprove our hypothesis, that a U-Net could out-
perform the Dense CNN when trained on raw sinogram data
for HCT triage. Rather, these results show that this hypoth-
esis requires a larger undertaking. With sufficient GPU and
memory resources, it is still likely that a U-Net does out-
perform a Dense CNN on these tasks. However, with how
much computation and memory was used even for evalua-
tion, it begs the question of whether or not this additional
compute is worth it for the accuracy boost.

7.2. DeiT: Discussion

Our experiment with finetuning DeiT on our own pre-
processed images did not achieve the results we were hop-
ing for. One hypothesis for this is that our pre-processing
pipeline was flawed and distorted the original images. After
already performing the pre-processing, we tried visualizing
the images and found them to look like this:

5

Although we followed the standard procedure for CT win-
dowing, we should have sanity checked each individual
window to see that it worked before combining them. Addi-
tionally, I believe that training the model with more epochs
could have improved the performance.

8. Conclusion & Future Work
We set out to find methods that would outperform a

Dense CNN trained on raw sinogram data in HCT triage.
One proposed method was training a U-Net, which is spe-
cialized for medical image segmentation, on raw sino-
gram data, while another was finetuning a DeiT transformer
model on reconstructed images [4]. Ultimately we were
able to achieve an accuracy of 0.54 with the DeiT model
and 0.6509 for the U-Net, with some modifications to the
originally proposed network. These figures were somewhat
discouraging and can generally be attributed to tight mem-
ory and compute constraints.

Rather than disprove our original hypotheses, though,
these figures show that this question is one that requires far
more resources to answer. In future work, a team equipped
with far more computational and graphical power could eas-
ily replicate and expand upon our work. However, before
doing so, more work should be done to compare the costs
of reconstructing images and using these HCT representa-
tions versus the computational cost of training a U-Net on
large raw sinogram files. Further, our project does find that a
mini U-Net architecture is able to learn, and perhaps could
be more effective with smaller data. A simple and likely
effective expansion on our work could be to use the mini
U-Net architecture on the reconstructed HCT images and
compare the findings to the original paper.

9. Acknowledgements
Jonathan set up our EC2 instance, implemented and

trained the mini U-Net, evaluated the mini U-Net, and wrote
all the corresponding materials in the paper.

Grant performed the formatting and downloading of the
dataset onto our EC2 instance, implemented the vision
transformer and finetuned DeiT, and wrote the correspond-
ing materials in the paper. Our code can be found here

References
[1] S. M. Hooper, J. A. Dunnmon, M. P. Lungren, D. Mastrodi-

casa, D. L. Rubin, C. Ré, A. Wang, and B. N. Patel. Impact
of upstream medical image processing on downstream perfor-
mance of a head ct triage neural network. Radiology: Artificial
Intelligence, 3(4):e200229, 2021.

[2] S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift.
In International conference on machine learning, pages 448–
456. pmlr, 2015.

[3] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization, 2017.

[4] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical im-
age computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, Oc-
tober 5-9, 2015, proceedings, part III 18, pages 234–241.
Springer, 2015.

[5] U. Ruby and V. Yendapalli. Binary cross entropy with deep
learning technique for image classification. Int. J. Adv. Trends
Comput. Sci. Eng, 9(10), 2020.

[6] A. Shah, C.-Y. Wu, J. Mohan, V. Chidambaram, and
P. Krähenbühl. Memory optimization for deep networks.
arXiv preprint arXiv:2010.14501, 2020.

[7] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles,
and H. Jégou. Training data-efficient image transformers dis-
tillation through attention, 2021.

[8] Y. Wu and K. He. Group normalization, 2018.
[9] T. Zhou, X. Ye, H. Lu, X. Zheng, S. Qiu, Y. Liu, et al. Dense

convolutional network and its application in medical image
analysis. BioMed Research International, 2022, 2022.

6

https://github.com/joncoronado/cs231n-final-project

