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Abstract 
 
In the image generation domain, text-to-image 
has had significant progress over the past few 
years with the publications of deep learning 
models such as Diffusers[1] and DALL-E[2]. 
However, text-to-drawing synthesis, where 
outputs are composed of Bézier curves rather 
than pixels, remains comparatively 
underexplored. This paper examines the 
limitations of existing optimization-based text-
to-drawing methods and introduces 
enhancements in initialization strategy and loss 
function, leading to improved visual outcomes. 

1. Introduction 

Text-to-drawing is a domain that focuses on 
generating sketches like human drawings, 
presenting a different style than high-fidelity 
images generated from diffusions or DALLA-E. 
While sketching might seem easier to generate 
given its lower fidelity nature compared to 
realistic images based on pixels, creating 
abstractions is difficult for machines to achieve. 

The latest advancements in text-to-drawing 
leverage inference time optimization (e.g., 
CLIPDraw[3] and CLIPasso[4]), where the 

control points of Bézier curves are optimized 
based on the loss function during inference. To 
bridge the semantic gap between the input text 
prompt and the synthesized drawing, these 
methods commonly use CLIP (Contrastive 
Language-Image Pre-training)[5], a neural 
network that excels at encoding the semantic 
meaning of visual depictions, in its loss function. 
Despite CLIP's strong cross-modal 
understanding and retrieval capabilities, current 
CLIP-based text-to-drawing methods are prone 
to produce drawings that are visually 
unappealing and cluttered with messy sketches 
(A few examples in Figure 3 bottom row). This 
raises the question of whether comparing the 
semantics of the input text prompt and the 
synthesized drawing using CLIP is effective 
within this optimization framework. 

To close out this gap, this paper investigates the 
challenges of CLIP-based text-to-drawing 
methods, using CLIPDraw as the baseline, and 
explores improvements. Section 2 provides a 
brief overview of related works, while Section 3 
outlines our proposed method. In Section 4, we 
present our result analysis. The key findings are 
summarized as follows: 

 
Exploring Enhancements to Text-to-drawing Methods 

Based on vision-language models 
Erin Ching-Hsuan Ho 

x715106@stanford.edu, hchings@gmail.com 

 

 
 
Figure 1. Visualization of the drawing process of the proposed method. Leftmost: Attention map used for guiding 
the optimization process. Rightmost: Final synthesized drawing.   
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• Impact of Initialization: The 
initialization strategy can significantly 
affect the quality of the final drawing, 
depending on the input text prompt. 
Random initialization, as used in 
CLIPDraw, often results in suboptimal 
and messy drawing. In our proposed 
methods, we utilize either an attention 
map from the UNET of a pretrained 
Stable Diffusion model or Canny edge 
detection of the sample image from the 
diffusion model for initialization. 
Experiments show that by improving the 
placement of initial strokes, we can 
produce cleaner and more semantically 
meaningful drawings. 

• CLIP Loss: The CLIP-based loss 
function, which compares the cosine 
similarity between the CLIP embeddings 
of synthesized drawing and the input text 
prompt, is helpful. However, it alone is 
insufficient to produce aesthetically 
pleasing and recognizable drawings, 
especially when the semantic complexity 
of the input text prompt increases. 

• Perceptual Loss: Incorporating a 
perceptual loss such as LPIPS[6] of the 
synthesized drawing and a guided image, 
alongside the CLIP loss, significantly 
improves the quality of the generated 
drawings. This combination helps in 
capturing both the semantic meaning and 
the aesthetic appeal, effectively guiding 
the drawing synthesis process. 

• Complex Scene Handling: Our method 
demonstrates improved capability in 
handling complex scenes compared to 
CLIPDraw. By integrating perceptual loss 
and attention map-guided initialization, it 
can generate more detailed and 
contextually accurate drawings. While 
style transfer is not our goal, the proposed 

method can capture styles via the input 
text prompt (Figure 7). 

2. Related Work 

In recent years, the field of drawing synthesis 
have shifted from a supervised training approach 
using text-to-image generative models, to the 
synthesis-through-optimization paradigm, which 
eliminates the need for training data. Notable 
contributions using this paradigm include 
CLIPDraw[3], CLIPasso[4], CLIPascene[7],    
StyleCLIPDraw[8], and DiffSketcher[9], each of 
which leverages pre-trained models like CLIP or 
Stable Diffusion with slightly different 
optimization loop architecture to synthesize 
drawings from text or images based on Bézier 
curves, achieving varying degrees of abstraction 
and artistic goals. 

CLIP (Contrastive Language-Image Pretraining) 
aligns images and textual descriptions within a 
shared latent space using contrastive learning. 
This powerful alignment allows CLIP to 
understand and generate images based on textual 
input, making it a robust tool for image synthesis 
and manipulation. By optimizing parameters to 
maximize the similarity between generated 
images and text prompts, CLIP can produce 
visually coherent and contextually appropriate 
images without extensive dataset-specific 
training. 

Stable Diffusion utilizes denoising diffusion 
probabilistic models (DDPMs) to generate 
images through a series of refinement steps, 
transforming noisy data into coherent images. 
This method excels in text-to-image synthesis, 
producing high-quality, photorealistic images 
from textual descriptions. Stable Diffusion 
models optimize a set of parameters guided by 
text prompts, integrating diffusion model 
guidance into the image generation process. 

 
CLIPDraw presents an innovative approach to 
text-to-image synthesis by utilizing the 
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pretrained CLIP (Contrastive Language-Image 
Pretraining) model to guide the creation of 
vector-based drawings from natural language 
descriptions. Unlike traditional methods that 
require extensive training on specific datasets, 
CLIPDraw operates by optimizing a set of 
Bézier curves directly, ensuring the generated 
sketches are aligned with the given textual 
prompt. This method stands out for its ability to 
generate drawings with out-of-the-shelf 
pretrained models, opening a stream of related 
research that uses CLIP to compare the semantic 
distance of the synthesized drawing versus the 
input text prompt. StyleCLIPDraw further adds 
VGG net for enabling style transfer. 

 
CLIPasso tackles a slightly different problem 
domain by focusing on representing a pixel 
image with as minimal strokes as possible. It 
takes an image instead of an input text prompt as 
input. This method also uses the CLIP model but 
emphasizes geometric and semantic 
simplification to produce sketches at varying 
levels of abstraction. Like CLIPDraw, CLIPasso 
defines sketches through Bézier curves and 
employs a differentiable rasterizer to optimize 
these curves with respect to a CLIP-based 
perceptual loss. CLIPasso aims to create 
recognizable and structurally sound sketches 
without relying on specific sketch datasets. 
However, the application of this method is rather 
limited. It only works when the input image only 
contains a single and very simple object without 
any background. 
 
CLIPascene aims to address CLIPasso’s 
limitation that the input image cannot be beyond 
a single object. It introduces a methodology for 
converting scene images into sketches with by 
separating the image into foreground and 
background regions and then synthesizing 
sketches each independently. Specifically, it 
trains two MLP networks to learn stroke 
locations and remove select strokes, making 
SceneSketch capable of sketching a more 
detailed and contextually rich image compared 

to previous works. However, this method has an 
inherent constraint where the input images must 
contain easily separable foreground and 
background.  

 
DiffSketcher focuses on producing pencil-
drawing-like free-hand sketches from a natural 
language input text prompt by leveraging the 
power of pre-trained text-to-image diffusion 
models. This method optimizes Bézier curves 
using an extended version of the score 
distillation sampling (SDS) loss, allowing the 
diffusion model to guide the sketch synthesis 
process. The resulting sketches maintain high 
recognizability and structural integrity. 

3. Method 
We formulate the text-to-drawing problem as 
below: Given a short text prompt Ρ and a set of 
hyperparameters including number of strokes, 
max stroke width, num of control points per 
stroke, and canvas size, output a synthesized 
drawing D of the canvas size that is composed of 
a set of RGB Bézier curves compliant with the 
stroke hyperparameters. 
 

 
 
To get the final drawing D, we followed the 
synthesize-through-optimization paradigm with 
improvements on the initialization method and 
the loss function. Figure 2 provides an overview 
of the optimization loop architecture and 
Algorithm 1 showcases the pseudo-code of the 
proposed method. High-level steps are as 
follows: 
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a. Given the text prompt P, we first sample 
an image from a pre-trained Stable 
Diffusion model Φ. We offer two 
initialization strategies: The first and 
recommended method places initial 
strokes based on the attention map of the 
U-Net in Stable Diffusion. The second 
method places initial strokes around the 
Canny edges of the sample image instead. 
All strokes are initialized as black. 

b. With the initialized drawing, we begin the 
optimization loop. At each iteration i, we 
calculate the loss based on the CLIP loss 
between the augmented synthesized 
drawing Di and the input text prompt P, 
as well as the perceptual loss between the 
synthesized drawing Di and the sample 
image from the diffusion model. The 
image augmentation pipeline contains 
operations such as color jitter, random 
crop, and random resize to improve the 
outcome. 

c. We perform backpropagation to update 
the control points, stroke width, color, and 
opacity of the Bézier curves to synthesize 
a new drawing. This process is repeated 
until the loss curve converges. 

In the following sub-sections. We discuss the 
key improvements of the proposed method from 
CLIPDraw. 

 3.1 Initialization Strategy 

The randomized initialization used by ClipDraw 
is prone to undesired results because the 
objective function of text-to-drawing is highly 
non-convex, and therefore strokes can easily 
converge into local minimums. Moreover, since 
the algorithm synthesizes drawing at inference 
time, once the strokes are stuck at local 
minimums, there is very little the model can do 
to correct the drawing synthesis process (Figure 
3 bottom row shows examples of undesired 
results). 
 
To address this, we experimented with two 
alternative initialization strategies. The first 
approach is to use the attention map of a vision 
model. While we can use ViT (Vision-
Transformer), here we choose to use Stable 
Diffusion, as it will be used to generate the prior 
for the drawing synthesis later. The attention-
map initialization process places initial curves 
based on the fused product of the cross-attention 
map and the self-attention. 
 
The second initialization approach leverages 
Canny Edge detection [10] of the sample image 
from the diffusion model. This approach is less 
ideal, as the Canny Edges of an image do not 
indicate the semantic importance. For example, 
in the right image of Figure 4, many detected 
Canny Edges are depicting the background, 

 

 
Figure 2. A high-level view of the gradient decent loop structure of the proposed method. Blue boxes are pre-
trained models that are frozen. Once loss is calculated, it runs back propagation to update curves to form a new 
synthesized drawing. 
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contributing little to the semantic meaning of the 
input text prompt. 
 

 
Figure 4. Example of fused attention map and Canny 
Edge of the same input text prompt. 
 
3.2 Loss function    

While drawing-through-synthesis methods are 
sensitive to the initial placement of Bézier 
curves, improving the initialization method 
alone has a limited impact on the quality of the 
final drawing. Through experiments, we 
identified the CLIP-based loss function adopted 
by CLIPDraw and its subsequent research as the 
root cause for undesired results. 

 
To recap, the CLIP-based loss proposed by 
CLIPDraw first derives the embeddings of the 
input text and the augmented drawing from the 
CLIP model at an iteration. It then updates the 
loss function by subtracting the cosine similarity 
of those two CLIP embeddings. The 
augmentation step typically involves random  
perspective, color jitter, and random resize 
cropped to improve the result. While CLIP is 
highly effective at capturing semantic 
relationships between images and text, the 
CLIP-based loss which purely compares the 
semantic similarity of the synthesized drawing 
with that of the input text prompt is far from 
sufficient. As an example, CLIP will still assign 
a high similarity score to a messy, ugly drawing 
of roses (bottom row and the first column of 
Figure 3), despite that the drawing is not 
appealing to human perception. 
 
With this observation, we complement semantic 
loss from CLIP with perceptual loss to capture 
aesthetics in the optimization process. The 
perceptual loss is calculated based using LPIPS 
(Learned Perceptual Image Patch Similarity) [6], 

 
Figure 3. Various drawings synthesized by the proposed method compared to those generated by CLIPDraw 
with Canny Edge initialization and the original CLIPDraw (random initialization) using the same input prompt. 
All results in this comparison used the same number of strokes of 128, no negative text prompts, and the same 
image augmentation pipeline. 
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a metric used to evaluate the perceptual 
similarity between images. Unlike traditional 
pixel-wise metrics such as Mean Squared Error   
(MSE) or Peak Signal-to-Noise Ratio (PSNR), 
LPIPS aims to align more closely with human 
perception. Using LPIPS, we’re able to guide the 
drawing synthesis with the sample image from 
the diffusion model. The final loss function is: 
 

 
 

The first term is the CLIP loss, where n is the 
number of augmentations, imageAugj is the  jth 
image augmentation operation, Di is the 
rendered image from the generated curves at 
iteration i, and P is the input text prompt. We 
want to maximize the semantic similarity 
between generated drawing and input prompt, 
hence the negative sign for cosine distance. The 
second term is the perceptual loss using LPIPS, 
where the first argument is the decoded image 
sampled from the diffusion model, which is 
compared against Di on perceptual similarity. 
The goal is to maximize perceptual similarity.    

4. Results 

In this section, we evaluate the result of the 
proposed method using both qualitative and 
quantitative approaches. We chose CLIPDraw as 
our baseline for drawing quality because it is the 
most cited optimization-based synthesis method 
using CLIP in recent research. Subsequent 
papers like CLIPasso, StyleCLIPDraw, and 
CLIPascene have made minor adjustments to the 
problem formulation, such as limiting strokes to 
black and white or using an image instead of a 
free-form text prompt. However, they did not 
propose notable improvements on the 
optimization loop structure, making direct 
comparisons to those methods unnecessary. 
 
4.1 Qualitative Comparison with Existing 
Synthesis-through-optimization Methods 
In Figure 3, we demonstrate that our proposed 
method produces significantly better drawings 
than CLIPDraw in terms of aesthetics, capability 
to capture semantic meaning, and being more 
human-recognizable. This improvement is 
consistent across a wide range of text prompts, 
from concrete objects and abstract concepts to 
more complex scenes.  

 
Figure 5. Ablation study showing the impact of different components of the proposed loss function (e.g., CLIP 
loss and perceptual loss) on the results. Starting from the left, we have the image generated by LDM from the 
text prompt, which guides the drawing, and its self-attention map used for placing initial strokes. Moving to the 
right, we gradually increase the weight of the perceptual loss from 0 (CLIP loss only) to exclusively using 
perceptual loss. 
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Furthermore, unlike CLIPascene, which requires 
separating the image into foreground and 
background for drawing synthesis, our method 
generates recognizable backgrounds and objects 
in a unified process. 

We also show incremental improvements in the 
proposed methods regarding initialization 
strategy and loss function. The naive random 
initialization strategy used by CLIPDraw 
(bottom row of Figure 3) often results in 
suboptimal drawings that get stuck in local 
optima. For instance, in the first text prompt of 
Figure 3, CLIPDraw attempts to draw multiple 
incomplete roses spread across the canvas, 
resulting in a non-aesthetic outcome with messy 
color chunks. Similarly, in the rightmost 
column, while our proposed method successfully 
synthesizes a puppy in a sensible position, 
CLIPDraw is optimized for placing multiple 
golden color chunks on the canvas, creating 
unappealing outcomes. The second row of 
Figure 3 illustrates that simply replacing random 
initialization with Canny Edge initialization does 
result in cleaner drawings, but does not have 
significant improvement when the loss function 
is only composed of CLIP loss. 

Regarding the loss function, the first row of 
Figure 3 shows that introducing perceptual loss 
guided by images generated from Latent 
Diffusion Models, rather than relying solely on 
CLIP, produces drawings that better capture the 
intended semantics compared to the baseline 
method. For example, despite Bézier curves 
intrinsically has lower fidelity than pixel-level 
images, the proposed method is able to 
accurately capture the shape of Half Dome 
(column 5) and a dragon (column 6) where the 
baseline method failed to.  
 
4.2 Comparing initialization strategies 
The training loss curves for different 
initialization strategies (Figure 6) reveal 
interesting insights into their effectiveness. 
Notably, the Canny edge initialization method, 

without the aid of perceptual loss, sometimes 
performs worse than random initialization. This 
is likely because the CLIP loss alone is 
insufficient to guide the optimization process out 
of local minima when starting from Canny 
edges, which may not align well with the 
semantic content of the text prompt. 

In contrast, the random initialization and 
attention map initialization methods show 
different behaviors. While the random 
initialization can sometimes get stuck in 
suboptimal local minima, the attention map 
initialization generally converges slightly faster. 
This suggests that attention maps provide a 
better starting point by aligning initial strokes 
more closely with the important regions of the 
image. 

However, convergence speed is not the sole 
metric of interest. The goal is the quality of the 
synthesized drawing, which has been discussed 
in the previous section. The attention map 
initialization not only converges faster but also 
leads to higher-quality outputs, as it better 
captures the semantic and structural details of 
the text prompt. This combined approach of 
optimizing initialization and integrating 
perceptual loss results in more aesthetically 
pleasing and semantically accurate drawings. 
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Figure 6. Training loss curves of three different 
initialization strategy of the input prompt “Ice cream 
in Van Gogh style”. 
 
 

4.3 Ablation Study on Loss Component Impact 

Given that adding LDM-guided perceptual loss 
significantly improves the synthesized drawing, 
we conducted an ablation study to understand its 
impact compared to the other component of the 
loss function (i.e., CLIP cosine similarity loss). 
A few examples using different coefficients of 
the perceptual loss are shown in Figure 5.  
Our study shows that while the image-text 
embedding in CLIP has solved a robust range of 
image-based recognition tasks, CLIP loss alone 
is far from adequate to optimize the control 
points of strokes to form aesthetic drawings. 
This is expected because a good drawing should 
not only capture semantic but also be aesthetical 
to human perception. In Figure 5, as we increase 
the weight for the perceptual loss, which means 
increasing the impact of the guided image 
sample from Stable Diffusion, the quality of the 
drawings increases. Interestingly, in the 
rightmost column of Figure 5, where we solely 
use perceptual loss and exclude CLIP loss, we 
found that the results are slightly worse than 
when both perceptual and CLIP losses are used. 
This indicates that semantic loss should still play 
an important role in text-to-drawing synthesis.  
 
4.4 Qualitative Evaluation 
As a proxy for qualitative evaluation, we 
followed CLIPDraw and CLIPasso to use a 
pretrained classifier network to evaluate the 
category-level recognizability of the drawing 
generated by the proposed method. While the 
proposed method can synthesize drawings with 
abstract concepts, we only test on input text 
prompts that at least include one to two concrete 
objects to avoid noises. Due to GPU resources 
and long inference time for each text prompt, 
only 50 input text prompts are tested. 

Despite this being the most common qualitative 
evaluation for text-to-drawing synthesis, we do 
not find this metric indicative or practical. For 
example, CLIPDraw produced a messy drawing 
with the text prompt in Figure 5 column 2 (“A 
robot holding a balloon”), and the proposed 
method is superior when judged by human eyes. 
However, due to CLIPDraw’s messy drawings 
of many ballons, the correct class score is 
slightly higher than that of the proposed method. 
This makes selecting meaningful text prompts to 
evaluate class scores improvement challenging, 
and easy to introduce bias. Within the text 
prompts we’ve tested that rule out such cases, 
we do see a slight improvement of 13% in the 
classification scores of the correct classes, 
compared to CLIPDraw as the baseline. 
 

 CLIPDraw Proposed method 

Avg correct 
class(es) score(s) 
improvement 

1 1.13x 

Table 1. Percentage improvement of correct class 
scores using the proposed method compared to the 
CLIPDraw baseline, averaged over 50 selected text 
prompts. 

 
4.5 Capturing Style 
 

 
 
Figure 7. Examples of initialized strokes (left) and 
the final synthesized drawing (right) of four text 
prompts involving style. Num of strokes is 256. The 
perceptual loss coefficient is 1.8. 
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CLIP-based text-to-drawing methods such as 
StyleClipDraw added VGG-16 model into 
CLIPDraw’s optimization structure to enable the 
drawings to fit the style of the input style image. 
However, we showcase in Figure 7 that the 
proposed optimization structure can capture 
style well through text-prompt without an 
additional VGG model, due to the incorporation 
of perceptual loss calculated from the sample 
image from the diffusion model.  
 
This makes the proposed method have a wider 
use case than CLIP-only text-to-drawing 
methods such as CLIPDraw. The previous 
Figure 3 shows that CLIPDraw attempted to 
draw the face of Van Gogh instead of capturing 
the artist’s style due to the limitation of its 
CLIP-only loss function. On the contrary, the 
proposed method can capture the nuances of 
style specified in the text prompt with perception 
loss. When the number of strokes is larger (e.g., 
256), the synthesized drawings as shown in 
Figure 7 do have a comparable aesthetic to pixel 
images. 

5. Discussion on limitations 
While our proposed method significantly 
improves the quality of synthesized drawings 
compared to existing CLIP-based approaches, it 
has several limitations. One of the primary 
limitations is its difficulty in accurately 
rendering detailed subjects, such as human and 
animal faces. Despite the enhanced initialization 
strategies and loss functions, the method often 
struggles to capture the intricate features and 
nuances required for these types of drawings, 
resulting in less recognizable and less 
aesthetically pleasing outcomes. 
 
Another limitation is the reliance on a pre-
trained diffusion model for initialization and 
perceptual loss calculation. While this guidance 
helps improve overall drawing quality, it also 
introduces dependency on the quality and 
robustness of the diffusion model itself. If the 

diffusion model generates suboptimal images, 
the subsequent drawing synthesis may also be 
adversely affected. 

6. Conclusions 
In summary, we have presented an approach to 
text-to-drawing synthesis that addresses key 
limitations of existing CLIP-based methods 
through improved initialization strategies and 
the incorporation of perceptual loss. Our method 
demonstrates significant improvements in 
generating visually coherent and semantically 
accurate drawings. Future work will focus on 
refining these aspects to further enhance the 
applicability and robustness of text-to-drawing 
synthesis. 
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