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Abstract

Natural Language Video Localization (NLVL) is the pro-
cess of pinpointing the moment in time an action described
in natural language occurred in a video. A challenging
cross-modal task, video moment localization has nonethe-
less seen substantial recent progress, particularly with the
advent of transformer localization models. However, recent
advancements in the field have not taken advantage of state-
of-the-art feature embedding models nor have they explored
intelligence selection of input features. In this paper, we
focus on leveraging vision transformers and SLMs to pro-
duce rich video/text embeddings and pair it with a DETR-
like localization module to leverage cross-modal attention
during prediction. We also leverage KMeans clustering as
a means to intelligently subsample input video frames to re-
duce memory footprint of processing large video files and
compare this method with the more traditionally used posi-
tional encoding of input video frames.

1. Introduction

Identifying moments in video based on a natural lan-
guage prompt, known as video moment localization, re-
mains a challenging problem, albeit one that has seen sub-
stantial recent improvements. This task requires models to
comprehend both the video content and the semantic nu-
ances of the natural language query, making it a quintessen-
tial example of a cross-modal problem. Among the chal-
lenges in developing effective moment localization models,
one fundamental challenge looms large: video files are big.
The sheer volume of data in video files, coupled with the
need to maintain temporal coherence, significantly compli-
cates the design and implementation of these models.

Understanding temporal relationships across an entire

video leads moment localization models to often be mem-
ory and compute-intensive. Earlier approaches predomi-
nantly relied on recurrent models like LSTMs and GRUs,
which, while capable of capturing temporal dependen-
cies, struggled with long sequences due to vanishing gra-
dients and high computational demands. The advent of
transformer-based models marked a significant shift, sim-
plifying state-of-the-art models and decreasing computa-
tional load through self-attention mechanisms. However,
the scaling of these models is limited to short temporal con-
texts because of their quadratic complexity in relation to
sequence length. As a result, memory requirements remain
sizeable, and the challenge of efficiently processing long
video sequences persists.

Moreover, the need for precise alignment between video
frames and natural language descriptions adds another layer
of complexity. This alignment requires sophisticated mod-
els capable of not only understanding the content within
video frames but also interpreting the contextual meaning
of the query. The challenge is further exacerbated by the
variability in video content, where actions may occur at dif-
ferent speeds and scales, and natural language queries can
vary greatly in specificity and structure. Effective models
must, therefore, balance the dual demands of computational
efficiency and contextual accuracy.

To that end, in this project, we extend upon methods to
make moment localization models more memory efficient,
particularly by expanding upon using KMeans clustering to
reduce the memory footprint of large input videos as was
introduced by [Balažević et al., 2024]. KMeans clustering
offers a promising approach to managing the voluminous
data inherent in video files by selecting a representative sub-
set of frames that encapsulate the essential content of the
video. This technique reduces the number of frames the
model needs to process, thereby decreasing memory usage
and computational load. By intelligently subsampling the
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input video frames, we aim to retain the critical temporal
and contextual information necessary for accurate moment
localization while mitigating the scalability issues associ-
ated with traditional transformer models.

In this work, we explore the integration of vision trans-
formers with KMeans clustering to enhance the efficiency
and accuracy of video moment localization. Vision trans-
formers provide a powerful framework for extracting rich,
high-dimensional features from video frames, and their
combination with clustering techniques can lead to a more
efficient processing pipeline. By leveraging these advanced
methods, we seek to develop a model that not only meets
the demands of modern video analysis but also sets a new
benchmark for performance and efficiency in the field of
Natural Language Video Localization.

2. Related Work
Moment Context Network Heralded as the founding

work in the field of NLVL, the Moment Context Network
(MCN) proposed by Hendricks et al. [2017] addresses the
challenge of localizing moments in video using natural lan-
guage queries. Unlike traditional methods that retrieve en-
tire video clips based on text, MCN effectively identifies
the specific temporal segments corresponding to a given de-
scription by integrating local and global video features over
time. A key innovation of MCN is its ability to leverage
both moment-specific and context-wide video information,
enhancing its capacity to accurately align text queries with
relevant video segments. To train and evaluate this model,
the authors introduced the Distinct Describable Moments
(DiDeMo) dataset, comprising over 10,000 unedited videos
paired with over 40,000 unique textual descriptions that pin-
point specific moments. Experimental results demonstrate
that MCN outperforms several baseline methods, validating
the effectiveness of combining local and global video fea-
tures for precise moment localization.

Moment Sampling DETR The Moment Sampling
DETR (MS-DETR) model proposed by Wang et al. [2023]
introduces an efficient approach for NLVL. MS-DETR
adopts a proposal-based method, which generates candi-
date moments and selects the best matching proposal based
on the cross-modal interaction between video segments
and text queries. The core innovation of MS-DETR is
the moment-moment relation modeling, achieved through
a subset of moments guided by learnable templates within
a DETR framework. Specifically, a multi-scale visual-
linguistic encoder and an anchor-guided moment decoder
are designed, enabling efficient interaction and aggregation
of moment features. This approach not only enhances the
alignment between text and video moments but also im-
proves the model’s ability to discriminate between similar
moments. We intend to further explore the potential of inte-
grating more advanced feature extraction techniques to en-

hance the DETR’s performance.
Memory Consolidation In a recent paper published Feb

2024 Balažević et al. [2024] found a simple non-parametric
mechanism by fine-tuning a pre-trained video transformer
like [Arnab et al., 2021], which is an adaptation of Vision
Transformers [Dosovitskiy et al., 2020]. Unlike previous
work this work seek to consolidate the memories of the past
event. This was not achieved by compressing past acti-
vations into a finite-length memory or by using additional
parametric modules. Some other works have sparsified ei-
ther the input tokens or the attention applied over them.
In this work long-context video understanding was enabled
by re-purposing existing pre-trained video transformers, by
fine-tuning the non-parametrically derived memories lever-
aging redundancy reduction, allowing them to scale the
transformer model, proposing memory consolidated vision
transformer MC-ViT, for longer videos.

3. Methods

3.1. Problem Statement

Video Moment Localization seeks to pinpoint the mo-
ment in time an action described in natural language oc-
curred in a video, e.g., from the Charades dataset [Zhang
et al., 2019] identifying the moment “A person is eating at
the desk and lying the phone down.” This task involves a so-
phisticated interplay between understanding visual content
and interpreting natural language, making it a particularly
challenging problem in the realm of computer vision and
natural language processing. The complexity is further am-
plified by the significant memory demands associated with
processing long video sequences.

An input video V is represented as a set of feature vec-
tors V = f1, f2, ..., ft, where each feature vector corre-
sponds to a specific frame or segment of the video. For
supervised training, the video comes with a set of tempo-
ral annotations A = (sj , t

s
j , t

e
j), where tsj and tej denote

the start and end timestamps, respectively, and sj is a natu-
ral language description of the action occurring in the mo-
ment. These annotations serve as the ground truth for the
model during training, guiding it to learn the correct tem-
poral alignment between video frames and natural language
queries.

The goal of the model is to predict timestamps (T s, T e)
on the video input features for a given natural language
query S. This involves generating a pair of timestamps that
accurately encapsulate the duration of the described action
within the video. During training, the model’s predictions
are compared against the ground truth values (tsj , t

e
j), and

the discrepancies are used to iteratively refine the model’s
parameters. This process ensures that the model learns to
associate specific actions described in natural language with
the corresponding segments in the video.
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One of the primary challenges in video moment local-
ization is the efficient handling of large volumes of video
data. Videos typically consist of thousands of frames, each
requiring processing and analysis to determine its relevance
to the query. This results in substantial memory usage, par-
ticularly when dealing with high-resolution videos or long
sequences. Moreover, the model must maintain temporal
coherence, understanding not only the individual frames but
also how they relate to each other over time to accurately
pinpoint the start and end of the described action.

Addressing these challenges requires innovative ap-
proaches that balance computational efficiency with accu-
racy. Techniques such as frame sampling, feature reduction,
and advanced embedding methods are crucial in this regard.
By intelligently selecting and processing key frames, mod-
els can reduce the computational load while retaining the
essential information needed for accurate moment localiza-
tion. This project aims to extend upon these methods, par-
ticularly by employing KMeans clustering to intelligently
subsample input video frames, thereby reducing the mem-
ory footprint and enhancing the model’s efficiency without
compromising on accuracy. Through this approach, we seek
to develop a more scalable and effective solution for the
problem of video moment localization.

3.2. Model Details

Figure 1: NLVL DETR Architecture

As our starting point, we leverage the general framework
set forth by [Xiao et al., 2021] of separately embedding the
text and video features before feeding both to a localization
module for span prediction. ViT [Dosovitskiy et al., 2020]
was used to extract video embeddings and Phi [Gunasekar
et al., 2023] for language embeddings. The video embed-
dings are then fed to a transformer encoder whose output
is used as context to a query-grounded transformer decoder.
The full architecture for this model is shown in Figure 1
above and Appendix A.

From here, we explored two sets of temporal synthesis
that inject the data with more relevant information for the
localization module. As a baseline, we tried adding posi-
tional encoding to all the incoming video frames to ensure

temporal information was conveyed to the transformer en-
coder. Furthermore, we tested our model also with KMeans
clustering to intelligently select which video frames are in-
putted to the localization module, serving to reduce the in-
put feature space and conserve memory while also prevent-
ing model confusion by feeding it a smaller set of highly
representative features.

Intuitively, for a sequence G of input video features,
KMeans clustering divides the features into k clusters based
on their similarity. Specifically, KMeans clustering is de-
fined by:

KMeans(G; k) = {ci}ki=1

where k is a hyperparameter determining the number of
clusters. The clustering process assigns each feature to one
of the k clusters such that the within-cluster variance is min-
imized. Each cluster ci contains a set of features that are
more similar to each other than to those in other clusters.

During training, for each iteration, the model is run only
on the cluster centroids rather than all features. Specifically,
KMeans selects a representative feature from each cluster,
typically the centroid of the cluster. This reduces the size
of the input from n features to k features. The idea is that
these centroids serve as a representative sample, allowing
the model to be trained on fewer features without loss in
performance. This also enables the model to scale more ef-
ficiently, particularly since video encoders, especially those
based on transformer architectures, have a quadratic com-
plexity concerning the number of tokens.

The details of the architecture can be seen in Appendix
A. Through usage of LoRA finetuning introduced by [Hu
et al., 2021], the trainable parameters were 2, 270, 212 out
of all parameters 2, 775, 739, 912, which led to a train-
able percentage of 0.08179% . The training also required
12.2GB of memory and ran for 10+ hrs. The number of
clusters used for the KMean test was 10.

3.3. Evaluation Methods

In terms of evaluation metrics we have used the Dis-
tance IoU (DIoU) proposed by [Zheng et al., 2019], which
has faster convergence than IoU. In DIoU a penalty term is
added to IoU loss to directly minimize the normalized dis-
tance between the central points of two segments, predicted
action segment P and the ground truth G. The penalty term
is defined as follows,

RDIoU =
ρ2(p, g)

c2

where p and g are the central points of P and G, ρ(·) is
the Euclidean distance, and c is the diagonal length of the
smallest enclosing box covering the two segments.

With the above change the general IoU loss function
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L = 1− IoU +R(P,G)

can be defined as

LDIoU = 1− IoU +
ρ2(p, g)

c2

4. Dataset and Features

4.1. Charades-STA Dataset

There are several commonly used text-annotated video
datasets like the Charades-STA [Sigurdsson et al., 2016],
and the THUMOS14 [Idrees et al., 2017], a benchmark
challenge dataset containing >13,000 trimmed videos (de-
riving from 413 untrimmed videos) and 101 action classes.
For further benchmarking we also plan to use the EPIC-
Kitchens dataset [Damen et al., 2020], which contains 700
annotated cooking videos; and ActivityNet-1.3,[Caba Heil-
bron et al., 2015] which contains 19,994 videos and 200
action classes.

In our project we have used the Charades-STA dataset ,
which is composed of 9,848 videos of daily indoor activi-
ties collected through Amazon Mechanical Turk. 267 users
were presented with a sentences and videos were captured
as the users acted out those sentences. The average length of
the videos are 30 seconds with 66,500 temporal annotations
in 157 action classes (e.g. “holding a dish”), containing
a vocabulary of 30 verbs. Other than that it also includes
41,104 labels for 46 object classes and 27,847 textual de-
scription of videos.

Our preprocessing steps are designed to maximize the
utility of the dataset while minimizing computational over-
head. By sub-sampling the video frames to 1 frame per
second, we strike a balance between capturing sufficient
temporal information and reducing the volume of data the
model needs to process. This step is essential for man-
aging the memory footprint, especially when dealing with
lengthy videos. On the natural language query side, limiting
the maximum number of words to 11 ensures that the input
queries remain concise and manageable, further aiding the
model’s ability to process and interpret the data efficiently.

To understand what is average number of frames and the
maximum number of frames that the videos in our datasets
have, we plotted the histogram below. The histograms
shown in Figure 1 indicated that most videos are made of
less than 50 frames and all videos are made of less than 60
frames. Hence we set our max_frames value to 60.

Figure 2: Length Histogram

4.2. Preprocessing

As part of the pre-processing we used video_fps as the
step size to sub-sample the video frames to 1 frame per
second. On the natural language query side we have set
max_words to 11.

We have used 95% of the dataset for training and the rest
for evaluation.

l0.5

5. Experiments
5.1. Baselines

As baselines, we re-trained and evaluated the proposal-
free model from Rodriguez-Opazo et al. [2020] and the
CPN model from Zheng et al. [2022] on the Charades
dataset [Sigurdsson et al., 2016]. We also report the results
obtained from the SBFS paper on their custom Locformer
model [Rodriguez-Opazo et al., 2023], which we did not
test ourselves. These results appear in Table 1 below. They
are evaluated using mean temporal intersection over union
(TIoU).

We also retrained and evaluated ActionFormer [Zhang
et al., 2022], a 2022 transformer-based temporal action lo-
calization model, on the THUMOS14 dataset [Idrees et al.,
2017]. ActionFormer is used for a closely related albeit
different task from video moment localization, modeling
X = {x1,x2, ...,xT } → Y = {y1,y2, ...,yN}, i.e. pre-
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Model Mean TIoU
Rodriguese et al. 52.02
CPN 59.77
Locformer 58.52

Table 1: Model Performance Results

dicting specific actions in moments rather than determin-
ing timesteps for a particular natural language prompt, so
its results are not directly analogous to video moment lo-
calization but functioned as a useful place for us to start
with existing models due to the model’s comparative sim-
plicity. TAL models are evaluated using the mean average
precision (mAP), and specifically following the paper we
used mAP@[0.3:0.1:0.7]. The values indicate a threshold
for IoU (Intersection over Union, similar to above): 0.3 in-
dicates that the predicted time interval must overlap the true
time interval by at least 30% to be considered a correct pre-
diction, the threshold is increased in step sizes of 0.1 up to
0.7, and the mean is taken over all IoU thresholds.

mAP
ActionFormer 62.6

Table 2: ActionFormer Results

5.2. NLVL DETR

In this section, we will share the training and evaluation
results of our custom NLVL_DETR model which outputs
the start and the end times of the video segments that in-
cludes action mentioned by the NLP query. As discussed
in Data section we have used the Charades-STA dataset to
train and evaluate the model.

Figure 3: Training Loss

Figure 3 above shows the training loss of the kmeans
and positional encoding experiments overlayed. The figure
depicts that as DIoU loss directly minimizes the normalized
distance between the central points between the prediction
segment and the ground truth we achieve a loss of 0.6596
for positional encoding and 0.647 for kmeans.

Figure 4: Evaluation Loss

Similarly Figure 4 shows the same DIoU loss with the
evaluation set. The evaluation loss for the experiment with
positional encoding is 0.6565 and for kmeans it is 0.6536.

The experimental results indicate a clear improvement
in both training and evaluation performance when apply-
ing KMeans clustering compared to the baseline positional
encoding method. The DIoU loss during training for the
KMeans clustering experiment reached 0.647, while the
positional encoding experiment had a slightly higher loss
of 0.6596. This reduction in loss suggests that KMeans
clustering effectively selects the most representative video
frames, which in turn improves the model’s ability to accu-
rately localize moments within the video. The evaluation
results further corroborate these findings, with the KMeans
clustering approach achieving a DIoU loss of 0.6536 com-
pared to 0.6565 for the positional encoding. These improve-
ments, albeit incremental, highlight the potential of intelli-
gent frame selection in enhancing model performance with-
out substantial increases in computational complexity.

Moreover, the comparative analysis with baseline mod-
els demonstrates the efficacy of our approach. The com-
bination of rich video/text embeddings and a DETR-like
localization module proves to be a robust framework for
aligning video segments with natural language descriptions.
The use of KMeans clustering not only reduces memory
footprint but also mitigates model confusion by focusing on
highly representative features, thereby streamlining the lo-
calization process. These insights pave the way for further
exploration into more sophisticated clustering and feature
extraction methods to enhance the overall efficiency and ac-
curacy of video moment localization models.

6. Conclusions and Future Work
In conclusion, this paper presented a novel approach to

Natural Language Video Localization (NLVL) by integrat-
ing vision transformers and stochastic clustering techniques
to enhance the efficiency and accuracy of video moment lo-
calization. Our approach leverages KMeans clustering to
intelligently select video frames, thereby significantly re-
ducing the memory footprint and computational load asso-
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ciated with processing large video files. The results demon-
strated that our model, which combines rich video/text em-
beddings with a DETR-like localization module, is highly
effective in aligning video segments with natural language
descriptions. The Charades-STA dataset served as a robust
benchmark for validating our model’s performance, show-
casing its potential in practical applications.

The experimental outcomes highlight the strength of
combining vision transformers with advanced clustering
techniques. By utilizing KMeans clustering, our approach
successfully addresses the challenge of processing large
volumes of video data, a common hurdle in NLVL tasks.
The reduction in DIoU loss during both training and eval-
uation phases underscores the model’s improved capabil-
ity to accurately localize moments in video, making it a
promising solution for real-world applications where com-
putational efficiency and accuracy are paramount. More-
over, the comparison with baseline models further solidifies
the efficacy of our method, demonstrating superior perfor-
mance in terms of mean TIoU.

Furthermore, the implementation of this approach opens
up new avenues for enhancing NLVL models. The integra-
tion of vision transformers provides a robust framework for
extracting rich video features, while the DETR-like local-
ization module effectively aligns these features with natu-
ral language queries. This combination not only improves
the model’s performance but also sets a foundation for fu-
ture innovations in the field. The promising results obtained
with the Charades-STA dataset suggest that our model can
be extended to other complex datasets, potentially benefit-
ing a wide range of applications such as video search en-
gines, content moderation, and automated video editing.
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7. Appendix

NLVL_DETR(
(vit): ViTModel(
(embeddings): ViTEmbeddings(
(patch_embeddings): ViTPatchEmbeddings(
(projection): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
)
(dropout): Dropout(p=0.0, inplace=False)
)
(encoder): ViTEncoder(
(layer): ModuleList(
(0-11): 12 x ViTLayer(
(attention): ViTAttention(
(attention): ViTSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
)
(output): ViTSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
)
)
(intermediate): ViTIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): ViTOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
)
(layernorm_before): LayerNorm((768,), eps=1e-12,

elementwise_affine=True)
(layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
)
)
(layernorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(pooler): ViTPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
(embed_video_fc): Linear(in_features=768, out_features=512, bias=True)
(position_encoder_video): Embedding(60, 512)
(phi): PhiModel(
(embed_tokens): Embedding(51200, 2560)
(embed_dropout): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0-31): 32 x PhiDecoderLayer(
(self_attn): PhiSdpaAttention(
(q_proj): Linear(in_features=2560, out_features=2560, bias=True)
(k_proj): Linear(in_features=2560, out_features=2560, bias=True)
(v_proj): Linear(in_features=2560, out_features=2560, bias=True)
(dense): Linear(in_features=2560, out_features=2560, bias=True)
(rotary_emb): PhiRotaryEmbedding()
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)
(mlp): PhiMLP(
(activation_fn): NewGELUActivation()
(fc1): Linear(in_features=2560, out_features=10240, bias=True)
(fc2): Linear(in_features=10240, out_features=2560, bias=True)
)
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
)
(final_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
(embed_query_fc): Linear(in_features=2560, out_features=512, bias=True)
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0-4): 5 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512,

out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(transformer_decoder): TransformerDecoder(
(layers): ModuleList(
(0-4): 5 x TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512,

out_features=512, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512,

out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
)
)
(span_predictor): Linear(in_features=512, out_features=4, bias=True)

)
LORA target modules: [’transformer_encoder.layers.0.self_attn.out_proj’,
’transformer_encoder.layers.0.linear1’, ’transformer_encoder.layers.0.linear2’,
’transformer_encoder.layers.1.self_attn.out_proj’,
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’transformer_encoder.layers.1.linear1’, ’transformer_encoder.layers.1.linear2’,
’transformer_encoder.layers.2.self_attn.out_proj’,
’transformer_encoder.layers.2.linear1’, ’transformer_encoder.layers.2.linear2’,
’transformer_encoder.layers.3.self_attn.out_proj’,
’transformer_encoder.layers.3.linear1’, ’transformer_encoder.layers.3.linear2’,
’transformer_encoder.layers.4.self_attn.out_proj’,
’transformer_encoder.layers.4.linear1’, ’transformer_encoder.layers.4.linear2’,
’transformer_decoder.layers.0.self_attn.out_proj’,
’transformer_decoder.layers.0.multihead_attn.out_proj’,
’transformer_decoder.layers.0.linear1’, ’transformer_decoder.layers.0.linear2’,
’transformer_decoder.layers.1.self_attn.out_proj’,
’transformer_decoder.layers.1.multihead_attn.out_proj’,
’transformer_decoder.layers.1.linear1’, ’transformer_decoder.layers.1.linear2’,
’transformer_decoder.layers.2.self_attn.out_proj’,
’transformer_decoder.layers.2.multihead_attn.out_proj’,
’transformer_decoder.layers.2.linear1’, ’transformer_decoder.layers.2.linear2’,
’transformer_decoder.layers.3.self_attn.out_proj’,
’transformer_decoder.layers.3.multihead_attn.out_proj’,
’transformer_decoder.layers.3.linear1’, ’transformer_decoder.layers.3.linear2’,
’transformer_decoder.layers.4.self_attn.out_proj’,
’transformer_decoder.layers.4.multihead_attn.out_proj’,
’transformer_decoder.layers.4.linear1’, ’transformer_decoder.layers.4.linear2’]
LORA modules to save: [’embed_video_fc’, ’embed_query_fc’,
’position_encoder_video’, ’span_predictor’]
trainable params: 2,270,212 || all params: 2,775,739,912 || trainable%:
0.08178763399933416
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