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Abstract

This paper proposes a Fast Region-based Convolutional
Network method (Fast R-CNN) for object classification from
images. We aim to develop an image captioner to aid visu-
ally impaired children by providing narratives of their sur-
roundings through images. The proposed model leverages
Fast R-CNN for its efficiency in detecting and classifying
objects within each image. To enhance the model’s ability
to focus on relevant elements within these dynamic scenes,
we incorporate a multimodal attention mechanism. This
mechanism intelligently allocates computational resources
towards significant visual cues, effectively mimicking the
natural human attention process. This, in conjunction with
textual transformers will allow for narrative sounding cap-
tions that can tell a story about the world around them.

1. Introduction
Over 20 million people in the US alone suffer from vi-

sion issues that impair them from seeing the natural word
around them [7]. There are over 1.5 million blind chil-
dren worldwide, and a child is born blind approximately
every minute. With the advent of AI, we can now automat-
ically classify and caption images, giving more context to
visually impaired people’s everyday lives. Previously, this
would take hundred of hours for people to caption images
for the purpose of accessibility. In this, we will combine
image captioning with the latest large language models in
order to better convey image context to those with visual
impairments. This will allow for a more narrative sounding
description, rather than the short captioning style that mod-
els typically produce. In this we both want our captioner
to be aware of specific objects within the image and the
background situational awareness. For this, we will use a
faster R-CNN to encode images. We then plan to use a mul-
timodal self attention mechanism to decode following the
faster R-CNN. We compare a pre-existing model, YOLO,
for a baseline performance on the dataset. For our multi-
modal self attention mechanism, we will be utilizing Meta
AI’s FLAVA to preform semantic segmentation. The input

to our algorithm will be an image, and we will then use a
Faster-RCNN to output text describing the image.

2. Problem Statement
The COCO (Common Objects in Context) dataset

classes are divided into two main categories: ‘things’ and
‘stuff.’ ‘Things’ classes include objects easily picked up or
handled, such as animals, vehicles, and household items.
Examples of ‘things’ class objects include ‘person’, ‘bicy-
cle’, ‘car’, etc. ‘Stuff’ classes include background or en-
vironmental items such as ‘sky’, ‘water’, and ‘road’. Al-
though the COCO dataset can be adapted to various com-
puter vision tasks, we chose to go for semantic segmen-
tation, which entails detecting and segmenting objects and
backgrounds within an image, encompassing both ”things”
(specific objects) and ”stuff” (indistinct areas of the image
like sky, water, and road). This allows for models to inte-
grate both the material properties of the background, to al-
low for a greater description of background and context for
the captions. In the context of the COCO dataset, semantic
segmentation annotations provide complete scene segmen-
tation, identifying items in images based on 80 ”things”
and 91 ”stuff” categories which will allow blind users to
fully comprehend their surroundings. These surroundings
are very important to convey the location of a particular im-
age, which will assist blind users to better understand the
background.

3. Literature Review
We explored existing literature and research journals that

also attempted image captioning using various methods.

3.1. Transformer based Multitask Learning for Im-
age Captioning and Object Detection

This research done by Basak et al. explores the process
of captioning images utilizing a faster R-CNN in conjunc-
tion with a Swin transformer background[3]. This uses a
combination of loss functions that improved their prefor-
mance. Finally, they combined the output with GPT-2 in
order form comprehensive captions for images.
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3.2. Multi-Modal Image Captioning for the Visually
Impaired

This research done by Ahsan et al. explore the use of
Multi-Modal image captioning on a large dataset [11]. They
also utilize Optical Character Recognition in their model to
tokenize words that may be in the image to give an image
more context. For this they modified the existing AOA-net
model and saw large performance improvements.

3.3. Visuals to Text: A Comprehensive Review on
Automatic Image Captioning

This research done by Ming et al. explores the use of
different encoder and decoder attention methods [4]. It also
provides a comprehensive overview of existing methods,
and their performance on commonly found datasets.

3.4. Bottom-Up and Top-Down Attention for Image
Captioning and Visual Question Answering

This research done by Anderson et al. combines both
bottom-up and top-down attention mechanisms to improve
performance. The bottom-up portion proposes the object re-
gions while the top-down portion improves attention based
on performance. This found improvements in performance
by focusing computation on the important portion of images
[1]. This was quite clever and state of the art at the time.

3.5. Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention

This research done by Xu et al. proposed an early
attention-based model that is able to refocus its attention
as each word is generated. This allowed for much more
descriptive captions at the time and sparked a focus on
attention-based models [14].

3.6. UNITER: UNiversal Image-TExt Representa-
tion Learning

This research done by Chen et al. proposed a unified
transformer model for joint image-text learning. This al-
lowed for it to be capable of handling multiple tasks, such
as captioning and visual question answering. This model
was also pre-trained on large datasets, and allowed for ease
of use [2].

3.7. Show and Tell: A Neural Image Caption Gen-
erator

This research done by Vinyals et al. was one of the first
to propose an encoder-decoder framework to caption im-
ages. They utilized a CNN encoder for images and then an
RNN to decode into descriptive captions [13].

3.8. A Comprehensive Survey of Deep Learning for
Image Captioning

This research done by Hossain et al. provides an
overview of different techniques for image captioning, cov-
ering encoder-decoder architectures, attention mechanisms,
and evaluation metrics. It also provides strengths and weak-
nesses of existing methods [6]. This is a strong paper that
serves as the basis for many others that look to improve
upon the methods described within.

3.9. Pointing Novel Objects in Image Captioning

This research done by Li et al. highlights the challenge
of encountering objects that were not seen during training.
They propose using an attention mechanism to focus on im-
age regions that would allow the model to generate contex-
tual captions for novel objects [9].

3.10. Unified Vision-Language Pre-Training for Im-
age Captioning and VQA

This research done by Zhou et al. proposes a unified
pre-training approach. By using this single model, they saw
large improvements in performance, and highlighted the im-
portance of multi modal learning [15]. This was a quite
strong approach, and a model example for the performance
of FLAVA.

4. Dataset

For the purpose of the task, we considered several pop-
ular computer vision datasets and decided to use COCO
(Common Objects in Context), which is a large-scale ob-
ject detection, segmentation, and captioning dataset. It con-
tains over 330,000 images, each annotated with 80 object
categories and 5 captions describing the scene [10]. Other
popular datasets for the image classification problem in-
clude CIFAR-10 and CIFAR-100, providing 10 and 100
categories respectively, from a collection of small 32 × 32
pixel images. However, despite encompassing as many as
60,000 images and spanning hundreds of categories, these
datasets represent only a minor segment of the vast diver-
sity of our visual environment. Another popular dataset we
considered was the ImageNet dataset. Upon scrutinizing
the ”benchmark task misalignment” in ImageNet, the team
from MIT discovered that approximately 20% of the im-
ages in ImageNet contain several objects [12]. Their anal-
ysis, spanning various object recognition models, indicated
that the presence of multiple objects in a single photo could
cause a general accuracy decline of about 10%. Compared
to ImageNet, COCO features fewer categories but includes
a greater number of instances within each category. This
characteristic can facilitate the development of detailed ob-
ject models that excel in precise 2D localization.



Figure 1. Examples from the COCO dataset with labelling.

For training our model, we used the 2017 dataset split.
We used the custom dataset class COCODataset, which in-
terfaces with the COCO API to load images and their an-
notations dynamically. The dataset ensures each image is
loaded with its respective bounding box and category labels
for segmentation.For preprocessing, we converted PIL im-
ages into PyTorch tensors, which are suitable for input into
PyTorch models and normalized the pixel values for stabil-
ity and faster convergence during training.

To illustrate the data and the effectiveness of our prepro-
cessing and feature extraction, below are examples of an
original image from the COCO dataset alongside its corre-
sponding segmentation mask generated by our model. The
segmentation mask highlights the model’s capability to dis-
tinguish between different object categories and outlines
within the same image.

Figure 2. Original COCO Image

Figure 3. Corresponding Segmentation Mask

The feature extraction process was directly integrated
with the model architecture. The backbone of our model,
a modified ResNet50 network, was responsible for extract-
ing high-dimensional features from the input images. These
features were then passed to the Region Proposal Network
(RPN) and ROI align layers for generating and refining ob-
ject proposals.

We did not use traditional feature extraction techniques
such as Fourier transforms, HOG, or PCA. Instead, the deep
learning model learned to extract and refine features auto-
matically during training, which is more effective for com-
plex tasks like semantic segmentation.

5. Method
To achieve our goals, we test a variety of different en-

coders that utilize the faster R-CNN model. For this we
will utilize a pre-trained model, Res-Net50 and further fine
tune the model on our dataset. The choice of ResNet50 as
the backbone for the Faster R-CNN model in the context of
object detection and semantic segmentation is crucial due
to its robust feature extraction capabilities. ResNet50 is a
variant of the Residual Network architecture that includes
50 layers deep, renowned for its ability to handle very deep
neural networks without succumbing to the vanishing gra-
dient problem. This is achieved through the use of resid-
ual connections that add outputs from previous layers to the
outputs of stacked layers, thus enabling training of much
deeper networks by facilitating the flow of gradients.

In the typical deployment within a Faster R-CNN frame-
work, the last fully connected layers of ResNet50 are re-
moved, and instead, the feature maps generated by the
earlier convolutional layers are used. Removing the final
global pooling and fully connected layers helps in retain-
ing the spatial resolution of the feature maps, which is cru-
cial for accurately localizing objects within an image. The
higher resolution feature maps contain more detailed spa-
tial information that is beneficial for generating precise re-
gion proposals in subsequent stages of the Faster R-CNN. o
adapt the output of the ResNet50 to fit into the next stages of
the Faster R-CNN, the channels of the output feature maps
may be modified. This ensures compatibility with the Re-
gion Proposal Network (RPN) and ROI align layers.

After feature extraction through the modified ResNet50
backbone, the feature maps are fed into the RPN. The pri-
mary function of the RPN is to generate object proposals
within the feature map, which are candidate regions where
objects might be located. The RPN utilizes an anchor gen-
erator to create multiple anchor boxes at each location of
the feature map. These anchors serve as reference boxes to
which the ground truth objects are compared during train-
ing. Each combination of size and aspect ratio at each spa-
tial location on the feature map yields a dense coverage
of anchor boxes, ensuring that all parts of the image are



scanned for potential objects.
Once the RPN proposes regions likely to contain ob-

jects, the next step is to extract a fixed-size small feature
map from each region proposal for further processing. This
is accomplished using the ROI Align technique. The ROI
Align technique takes these proposals and extracts fixed-
size feature sections from the feature maps for each pro-
posal. These features are subsequently used by the Faster
R-CNN’s classifier and bounding box regressor to predict
the class and adjust the coordinates of each object, respec-
tively. In the final stages of the Faster R-CNN, the features
extracted via ROI Align are passed to the head network.
The head network consists of two main components - clas-
sifier and bounding box regressor. This network head uses
the ROI-aligned features to determine the class of each pro-
posed object region. It outputs class probabilities for each
region, indicating the likelihood of each class being present.
Alongside classification, this head adjusts the coordinates
of the initially proposed bounding box to better fit the ac-
tual object. It outputs refinements for the location and size
of each box, thereby improving the precision of the object
localization.

We used the Adam optimizer, known for its effectiveness
in handling sparse gradients and non-stationary objectives,
which are common in deep learning tasks like object detec-
tion. The initial learning rate is set to 0.0001. This rate is
crucial as it determines the step size at each iteration while
moving toward a minimum of the loss function. A learning
rate scheduler with a step size of 3 is used so very 3 epochs,
the learning rate is decreased by γ = 0.1. The weight decay
is set at 0.0005 to regularize the model by penalizing large
weights, which can prevent overfitting to the training data.

The DataLoader is set up with a batch size of 1, mean-
ing each batch consists of a single image and its corre-
sponding annotations. While larger batch sizes can provide
smoother gradient estimates, a batch size of 1 (often used
in object detection due to memory constraints) ensures that
the model can handle high-resolution images and complex
annotations.

We also integrated a Vision Encoder-Decoder architec-
ture that combines the Vision Transformer (ViT) with GPT-
2, a transformer-based model for natural language process-
ing using the Hugging Face transformers library. This hy-
brid model, pre-trained on a diverse dataset, is designed to
handle tasks that require an understanding of both visual
content and language generation. ViT applies self-attention
mechanisms to the entire image, processing it as a sequence
of patches. These patches are then linearly embedded, com-
bined with positional encodings, and fed into the trans-
former encoder. The encoder outputs a set of feature vec-
tors that represent various aspects of the visual input. This
allows it to capture contextual relationships between differ-
ent parts of the image. GPT-2 takes the encoded features

from ViT and decodes them into descriptive text, maintain-
ing logical and grammatical coherence. GPT-2 generates
captions by predicting one word at a time. This is done
through a sequence-to-sequence model where each subse-
quent word depends on the previously generated words.

Additionally, we explored multimodal attention based
architectures, including the FLAVA model [5]. This model
allows for the conjuction of both text and video encoders,
which would improve preformance greatly. Additionally,
speed is one of our top priorities, in order quickly generate
captions for those who are visually impaired. Our final step
of optimization is the loss. We test a variety of losses, such
as cross entropy loss as shown below.

LCE = −
N∑
i=1

C∑
c=1

yi,c log(pi,c)

Figure 4. Class imbalance in the COCO dataset

Additionally, the focal loss method could be useful be-
cause of its high performance on datasets with class im-
balance. Class imbalance occurs when there is a signif-
icant disparity in the number of samples across different
classes. Within the context of the COCO dataset, certain
object classes are represented by a much larger number of
image instances compared to others. This is illustrated in
the chart above.

LFL = −αt(1− pt)
γ log(pt)

Now that we have described our proposed model, let us
take a look at our baseline model we will be using for com-
parison. Our baseline model was YOLOv5 developed by
Ultralytics, a cutting-edge SOTA model in the You Only
Look Once (YOLO) family of computer vision models. It
is an extremely fast object detection framework using a sin-
gle convolutional network.

The backbone of YOLOv5 is based on the CSPDark-
net53, which is a variation of the Darknet architecture used
in earlier YOLO versions. CSPDarknet introduces Cross
Stage Partial connections (CSP), which help in reducing
the computational cost and improving the learning capabil-
ity of the model. This backbone processes the input im-



Figure 5. Example of Yolo architecture for baseline.

age to extract feature maps that capture various levels of
detail, which are then used by subsequent layers for de-
tecting objects. Following the backbone, YOLOv5 uses a
neck based on the Path Aggregation Network (PANet) ar-
chitecture. This part enhances the feature hierarchy via a
bottom-up path augmentation, which facilitates the propa-
gation of lower-level features to higher-level layers. The
head of YOLOv5 is responsible for making the final ob-
ject detection predictions. It uses anchor boxes to predict
bounding boxes relative to the anchors. For each anchor, the
model predicts four coordinates for the bounding box, one
objectness score, and several class probabilities (depend-
ing on the number of classes in the task). The objectness
score predicts the likelihood of an object being present in
the bounding box, while the class probabilities determine
what object is in the bounding box.

Finally for the FLAVA model, a multimodal attention
architecture developed by meta combines both visual and
textual encoders. FLAVA uses these vision transformers to
segment and process images as patches, capturing impor-
tant details. This is packaged with a transformer-based lan-
guage model that process this data and creates descriptions.
We fine-tuned a pre-trained FLAVA model with the coco
dataset. This improved the accuracy in recognizing the 80
objects in the dataset, and focal loss allows for it to handle
difficult examples.

Device Utilization (CPU/GPU) The model utilizes
CUDA if available, which implies that if a compatible GPU
is present, it will be used for computation. The use of
a GPU significantly accelerates the training and inference
processes due to parallel processing capabilities, which are
particularly beneficial for the computationally intensive op-
erations involved in deep learning models like Faster R-
CNN.

6. Metrics and Results

We evaluated the performance of our models using three
metrics - precision, recall and F1 score. Precision refers to
the number of true positives divided by the total number of
positive predictions (i.e., the number of true positives plus
the number of false positives).

Precision =
TP

TP + FP

where,

• TP (True Positives) is the number of correct positive
predictions made by the model.

• FP (False Positives) is the number of negative in-
stances incorrectly predicted as positive.

Recall, also known as the true positive rate (TPR), is the
percentage of data samples that a machine learning model
correctly identifies as belonging to a class of interest—the
“positive class”—out of the total samples for that class.

Recall =
TP

TP + FN

where,

• TP (True Positives) is the number of correct positive
predictions made by the model.

• FN (False Negatives) is the number of positive in-
stances incorrectly predicted as negative.

The F1 score is a measure of the harmonic mean of pre-
cision and recall. Maximizing for the F1 score implies si-
multaneously maximizing for both precision and recall.

F1 Score =
2× Precision × Recall

Precision + Recall

We calculated these metrics for individuals categories as
well as their averages in our baseline model (YOLOv5) and
our proposed model (Faster R-CNN), which are illustrated
in the tables below. To further enhance our understanding
of the model’s performance across different categories,
we complemented our evaluation with confusion matrices.
These matrices provide a visual representation of the
accuracy of the model by displaying the actual versus
predicted classifications for each category.

For the FLAVA model, we utilized the BLEU-4 scor-
ing metric in order to determine its preformance, which
resulted in a score of 32.4. Reviewing the outputs of both
trained models, the FLAVA model seemed much more
coherent in its captions, and performed better than the
Faster R-CNN for captioning.



Precision Recall F1-Score
person 0.93 0.68 0.79
car 0.86 0.59 0.70
chair 0.77 0.39 0.52
book 0.71 0.08 0.14
bottle 0.82 0.49 0.62
cup 0.82 0.56 0.67
dining table 0.75 0.23 0.35
traffic light 0.81 0.47 0.59
bowl 0.73 0.49 0.58
handbag 0.71 0.23 0.35
micro avg 0.88 0.56 0.68
macro avg 0.79 0.42 0.53
weighted avg 0.87 0.56 0.67

Table 1: Yolov5 Performance Metrics

Figure 6. Yolo Confusion Matrix for 10 Classes

Precision Recall F1-Score
person 0.77 0.84 0.80
car 0.62 0.72 0.67
chair 0.51 0.48 0.50
book 0.53 0.61 0.57
bottle 0.53 0.63 0.57
cup 0.54 0.61 0.57
dining table 0.38 0.53 0.44
traffic light 0.54 0.61 0.57
bowl 0.50 0.67 0.58
handbag 0.34 0.29 0.31
micro avg 0.66 0.73 0.70
macro avg 0.53 0.60 0.56
weighted avg 0.66 0.73 0.70

Table 2: Faster R-CNN Performance Metrics

Figure 7. Faster R-CNN Confusion Matrix for 10 Classes

7. Discussion

The overall performance, as indicated by the micro and
macro averages, shows that YOLOv5 exhibits higher preci-
sion (0.88 micro average) compared to Faster R-CNN (0.66
micro average), suggesting that YOLOv5 is more accurate
in its predictions when it positively identifies objects. How-
ever, Faster R-CNN demonstrates superior recall (0.73 mi-
cro average) over YOLOv5 (0.56 micro average), indicat-
ing that Faster R-CNN is more effective at identifying rel-
evant objects within the images. The weighted F1-score,
which balances precision and recall, is marginally higher
for Faster R-CNN (0.70) compared to YOLOv5 (0.67), sug-
gesting that when considering both precision and recall, our
proposed model, Faster R-CNN may provide a more bal-
anced performance overall.

If we do a category-specific analysis, for objects like
’person’, Faster R-CNN outperforms YOLOv5 in terms of
recall and F1-score, which is crucial for applications where
missing a ’person’ in the image could lead to significant
repercussions, such as in surveillance systems. Conversely,
the ’handbag’ and ’dining table’ categories show relatively
poor performance across both models, but particularly in
Faster R-CNN, where precision and recall are significantly
lower than YOLOv5. This suggests difficulty in detecting
smaller or less distinct objects, which could be attributed to
variations in object size and occlusions within the training
data.

The trade-off between precision and recall could have
important implications on model selection. While YOLOv5
provides high precision, its lower recall might limit its util-
ity in applications where missing objects is critical. Faster
R-CNN, although less precise, offers better coverage in
detecting objects. For instance, applications that require
high precision and speed, such as real-time object tracking,
might favor YOLOv5. Conversely, applications that cannot
afford to miss objects, like automated monitoring systems



or automous vehicles, might benefit from Faster R-CNN’s
superior recall.

8. Conclusion and Future Work
Our proposed model, the Faster R-CNN had a higher

weighted F1 score and a superior balance between re-
call and precision when compared to our baseline model,
YOLOv5. This suggests that Faster R-CNN could serve as
a more holistic model for applications requiring robust ob-
ject detection capabilities.

However, the task of perceiving the natural world around
us is not an easy one. While our proposed model performs
well, we recognize its limitations. Future work on this topic
would be panoptic segmentation models which unify the
typically disparate tasks of semantic segmentation (assign a
class label to each pixel) and instance segmentation (detect
and segment each object instance). Panoptic segmentation
requires generating a coherent scene segmentation that is
rich and complete, closely resembling how humans perceive
their environments. This approach is especially promising
for developing advanced vision systems to assist the blind.
Previous work on PS is based on the heuristic combination
of outputs from top- performing instance and semantic seg-
mentation systems [8]. However, there is a clear need for
groundbreaking research in developing end-to-end models
that simultaneously address both semantic and instance seg-
mentation. Advancements in this area could challenge cur-
rent methodologies and open new avenues for research and
application, enhancing visual perception systems for assis-
tive technologies and broader automation applications. This
future direction not only aims to improve the technologi-
cal landscape but also promises significant contributions to
how machines interact and interpret complex visual envi-
ronments. Future work towards this topic is important for
impacting the lives of those with visual impairments and
their ability to interpret the world around them.
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