
Figure2Code: Enhancing Vision-Language Models with Synthetic Figure-Code
Pairs for Improved Figure Understanding

Abhinav Lalwani
Stanford University

lalwani@stanford.edu

Johnny Chang
Stanford University

cjohnny@stanford.edu

Abstract

Advances in AI have improved how machines understand
visual and textual content. However, understanding fig-
ures in documents remains challenging for vision-language
models (VLMs). Figure understanding is crucial for models
to learn from and interact with scientific, technical, and ed-
ucational materials. Our project explores enhancing figure
interpretation by fine-tuning VLMs with code-figure pairs.
We introduce a method for generating a large synthetic
dataset of figure-code pairs and define a comprehensive set
of metrics for evaluating figure understanding, including
MSE, CodeBLEU, Jaccard Similarity, and a new metric,
HistDist. We benchmark our results using the LLaVA-7b
and GIT models in zero-shot and fine-tuned settings. The
LLaVA model displays promising results in generating ac-
curate code syntax, achieving a CodeBLEU score of 0.7.
However, the performance of the models in understanding
the chart types and numbers in the figure is poor, indicat-
ing the need for further research on improving figure un-
derstanding in VLMs.

1. Introduction

Advances in artificial intelligence have steadily im-
proved how machines understand the visual and textual con-
tent of documents. However, the rich data embedded in
figures—graphs, charts, and diagrams—often eludes even
the most advanced vision-language models (VLMs). While
these models excel at parsing straightforward images or
texts, they struggle to unpack the complex information pre-
sented in figures. This is demonstrated by the fact that
the best performing VLM on the figure-question answering
subsets of the latest vision understanding benchmark Math-
Vista [13] is at 55%.

Figures are ubiquitous in scientific literature, technical
documents, and educational materials, where they serve as
crucial tools for delivering information in a more compact
and visual approach. Unlocking this content could signif-

icantly enhance the way machines process and understand
multifaceted documents, which would help with their abil-
ity to better assist in academic, scientific, and professional
tasks.

Our project explores whether the interpretation of fig-
ures by VLMs can be improved by fine-tuning the models
on datasets with code-figure pairs. Generating an accurate
code requires the model to be able to understand all parts
of the figure, including the format, values, categories, and
background. Moreover, it would be possible to generate a
large dataset for this task as given a code, we can obtain the
corresponding figure by executing the code. Additionally,
with a fine-tuned figure-code generation VLM as the fea-
ture extractor of the figure, we can pass the generated code
as an intermediate representation of the figure to a more so-
phisticated language model for better reasoning skills. Our
key contributions are two folds:

• We create the Figure2Code baseline and challenge
datasets for benchmarking VLM’s figure-to-code in-
ference capabilities on three figure types.

• We fine-tune two VLMs on our datasets, which take in
a figure as input and output predicted code for gener-
ating the figure.

Our datasets and code can be accessed on Hugging Face
1 2and Github 3.

2. Related Work

Figure understanding is a critical skill for VLM’s and
has been extensively studied in the literature, formulated
as a task in the form of figure question answering [11].
One of the most widely-used datasets is FigureQA [11],
which has five figure types, such as line and pie charts, with

1Baseline Dataset: https://huggingface.co/datasets/
abhinavl/figure2code_new_data_square

2Challenge Dataset: https://huggingface.co/datasets/
abhinavl/figure2code_challenge_data_square

3Code: https://github.com/labhinav/Figure2Code

1

https://huggingface.co/datasets/abhinavl/figure2code_new_data_square
https://huggingface.co/datasets/abhinavl/figure2code_new_data_square
https://huggingface.co/datasets/abhinavl/figure2code_challenge_data_square
https://huggingface.co/datasets/abhinavl/figure2code_challenge_data_square
https://github.com/labhinav/Figure2Code

(a) Bar Chart (b) Scatter Plot (c) Pie Chart

Figure2Code Baseline Dataset Figure Examples

(d) Bar Chart (e) Scatter Plot (f) Pie Chart

Figure2Code Challenge Dataset Figure Examples

Figure 1: Examples of Different Types of Figures in the Figure2Code Baseline and Challenge datasets

15 question templates that test the semantic understand-
ing of relationships between the elements in the graphs.
Other benchmarks on figure-question answering include
ChartQA[14] with human written and generated question-
chart pairs, LEAF-QA[4] with questions and charts created
from real-world sources, and DVQA [10] that focuses on
challenging bar charts.

The latest work from MathVista [13] combined all pop-
ular FigureQA datasets to create a unified benchmark, used
by most state-of-the-art figure-question answering mod-
els. The best-performing figure-question answering mod-
els on the MathVista dataset include Qwen-VL-PLUS [2]
and InternLM-XComposer2 [5]. Qwen-VL-PLUS uses
the Qwen-7B large language model [1], the Vision Trans-
former (ViT) [6], and a position-aware Vision-Language
adapter, trained on public image-text datasets. InternLM-
XComposer2 uses a partial LoRA [9] approach where the
LoRA parameters are only applied to the image tokens
to maintain the language model’s capability. However,
the Qwen-VL-PLUS and InternLM-XComposer2 models
achieve an accuracy of only 55.9% and 53.9% respectively
on the figure-question answering problem subset, showing a
big headroom for improvement in performance for the task.

As per our knowledge, no previous work has aimed to
solve the task of figure-to-code translation. However, gener-
ating code from a graphical user interface has been studied
extensively in several works. In pix2code [3], the authors
use CNN and RNN to generate graphical user interface code
from images, but the predicted outcome is a restricted one-
hot encoding module for the UI’s domain-specific language.
In image2emmet [22], the authors use R-CNN and LSTM
to convert UI images into HTML and CSS code. However,
its empirical studies showed 60% precision in transforming
UI components into code, showing opportunities to improve
the model further. Soselia et al. [19] proposed a vision en-
coder and language decoder network to turn UI screenshots
into HTML and CSS code, but its visual goal does not aim
to extract numeric values and understanding from the input
image. Hence, we believe that the task of translating figures
to code would be achievable while valuable for the figure
understanding task.

3. Methods

In our research, we address the problem of translat-
ing complex graphical figures into executable code, a task

2

we define as figure-to-code translation. The input to our
method is an image of a figure, which can include a vari-
ety of graphical representations like bar charts, line graphs,
scatter plots, or pie charts. The output is a piece of exe-
cutable code that, when run, can regenerate the input figure.

In the following sections, we will describe our method
for synthetically generating a large dataset of figure and
code pairs to benchmark VLM for both fine-tuning and later
evaluating model performance on figure-to-code capabili-
ties. We will also describe the pretrained VLM models
used for finetuning, including LLaVA-1.5 7B [12] and GIT
129M [21]. We chose these models for our task due to their
widespread popularity and proven effectiveness in similar
applications. The varying sizes of the models enable us to
assess the impact that model size can have on our task.

3.1. Dataset Generation

We created two datasets, Figure2Code baseline dataset
and Figure2Code challenge dataset, that consist of images
of three figure types: bar charts, scatter plots, and pie charts.
Each figure is paired with the code used to generate the im-
ages, and each type of figure has equal representation in the
dataset distribution. To ground our generated figures with
useful information for real use cases, we extract value, cat-
egory, title, and value heading information from the DVQA
[10] dataset. For each type of chart, we create a handwrit-
ten code template that uses the matplotlib library in Python.
We fill in the extracted values from DVQA into the template
to generate code samples in a randomized manner. For bar
and scatter plots, we set the color of all images to ’skyblue’
and pie charts with the ’plt.cm.Paired.colors’ color scheme.
For all the charts, we use the default matplotlib font, ’De-
jaVu Sans’. We then execute each of these code samples to
obtain the corresponding images.

Through this approach, we generate the Figure2Code
baseline dataset containing 10,000 unique code-figure pairs
for each type of chart. To test the out-distribution perfor-
mance, we create a Figure2Code challenge dataset which
contains figures with unseen colors and fonts. We follow the
same generation process as above to generate 1000 images
per type of chart. However, for each image, the font is ran-
domly chosen from 5 options. For bar and scatter plots, the
color is selected by randomly generating a 6-digit hexadec-
imal string, which is the standard notation for color codes
in HTML/CSS. For pie charts, we use a new color scheme,
’plt.cm.Set3.colors’.

Examples of images in the baseline and challenge
datasets are shown in Figure 1.

3.2. Fine-tuning LLaVA

In our approach, we fine-tune the pre-trained VLM
model LLaVA-1.5 7B, proposed by Liu et al. [12]. The ar-
chitecture of LLaVA uses CLIP [17] as the vision encoder

and LLaMA 7B [20] as the language model decoder. Con-
cretely, the input images, 224 px by 224 px, are passed
into CLIP to create image features, which are then pro-
jected to the word embedding space using a simple linear
layer to produce the image embedding token. This image
embedding token is then passed to the language model de-
coder alongside the input sentence to generate output text
sequences.

The baseline LLaVA model has two stages of training,
where the pretraining stage freezes the weights of both
CLIP and LLaMA to train the linear projection layer be-
tween the image encoder output to LLaMA while the fine-
tuning stage unfreezes all weights of the model to do in-
struction tuning.

For our approach, we are performing fine-tuning on
LLaVA 7B using our figure-code pairs dataset. Each train-
ing pair uses a figure as the input and the code that gener-
ated the figure as the ground truth output. We build on the
LLaVA-1.5 7B pre-trained baselline model from LLaVA’s
code base [8] by writing our own data pipeline, inference
setup code, environment setup code (e.g. custom docker
container).

3.3. Fine-tuning GIT

For our smaller model, we chose to fine-tune GIT
129M [21], a much smaller VLM than LLaVA. The GIT
129M architecture uses a CLIP image encoder and a single
transformer-based text decoder to process both images and
texts to output sequences of texts. Both models are jointly
pre-trained on image captioning and fine-tuned on VQA2
[7]. Unlike more modern VLM architectures, GIT does not
use a pre-trained decoder or perform instruction tuning. We
utilized GIT’s demo on huggingface [15] for model fine-
tuning, adapting the preprocessing code and optimizing the
hyperparameters.

4. Dataset Analysis & Features (0.5-1 pages)

For our experiments, we utilize the Figure2Code base-
line and challenge datasets defined in Section 3.1. We
randomly divide the Figure2Code baseline dataset into a
train, validation and test split containing 24,300, 3000 and
2700 samples respectively. In the Figure2Code Challenge
dataset, all 3000 samples are used solely for testing. Each
image has a resolution of 100 dots per inch. As many CLIP
encoders implicitly crop images to a square shape, we add
whitespace to each generated image to make it square. This
prevents valuable information in the x and y-axes from get-
ting cropped off during training or inference.

The frequency of the number of labels per sample in the
baseline dataset are displayed in 2. The vhallenge dataset
also follows a similar distribution.

3

Figure 2: Label Frequencies on Figure2Code Baseline

5. Experiments
In this section, we explain our key evaluation metrics

and the hyperparameters used for fine-tuning. We tested the
baseline and fine-tuned models for both GIT and LLaVA
on our Figure2Code baseline and challenge sets. To under-
stand the effect of the size of training data and issues with
overfitting, we additionally fine-tune the LLaVA model on
a subset of the training data contain 1k samples.

5.1. Evaluation Metrics

5.1.1 MSE & CodeBLEU

For the overall results, we use two metrics: CodeBLEU [18]
and mean-squared error (MSE). CodeBLEU evaluates the
overlap between the generated code and the ground truth
code by considering the surface match similar to the origi-
nal BLEU [16] while also considering the grammatical cor-
rectness and the logic correctness of the code by leveraging
the abstract syntax tree and the data-flow structure. We also
report how much of the generated code has correct syntax
and was able to execute successfully. The MSE score is cal-
culated based on the pixel differences between the original
images and the image generated by the generated code. The
MSE metric would capture quantitative information as well
as qualitative information about the figure such as back-
ground, style and fonts.

The MSE metric is sensitive to exact pixel alignment,
which means minor variations in color, shading, or slight
shifts in positioning that do not change the informational
content can result in high MSE values, suggesting poor per-
formance where the differences are not aligning with our
goal of measuring figure understanding. Thus, we add ad-
ditional metrics to capture whether the figure’s metadata has
been captured correctly. For measuring the accuracy of the
values, we introduce a new metric called HistDist explained

in Section 5.1.2

5.1.2 HistDist

Algorithm 1 Calculate HistDist

1: procedure HISTDIST(list1, list2)
2: max val← max(list2, default = 0)
3: m← length of list1
4: n← length of list2
5: if m > n then
6: list1, list2← list2, list1
7: m,n← n,m
8: end if
9: dp ← 2D list of size (m + 1) × (n +

1), initialized to∞
10: dp[0][0]← 0
11: for i← 1 to m+ 1 do
12: dp[i][0]← dp[i− 1][0] + |list1[i− 1]− 0|
13: end for
14: for j ← 1 to n+ 1 do
15: dp[0][j]← dp[0][j − 1] + |0− list2[j − 1]|
16: end for
17: for i← 1 to m+ 1 do
18: for j ← 1 to n+ 1 do
19: dp[i][j]← min(dp[i−1][j−1]+ |list1[i−

1]− list2[j − 1]|, dp[i− 1][j] + |list1[i− 1]− 0|)
20: end for
21: end for
22: ans← dp[m][n]
23: if max val = 0 then
24: normalized ans← ans
25: else
26: normalized ans← ans

max val
27: end if

28: return min(normalized ans,max(m,n))end procedure

We introduce a novel metric, HistDist, to measure the dis-
crepancy between two histograms, as shown in Algorithm
1. Given that histograms such as bar charts may vary in
the number of categories, traditional distance metrics such
as L1 distance are not directly applicable. Additionally, set
similarity metrics like Jaccard similarity are unsuitable due
to their binary nature, where elements are either identical or
entirely distinct while the similarity score is insensitive to
the ordinal nature of histogram data. In histograms, prox-
imity to the correct value often provides more meaningful
insight than sheer equality or difference.

One potential approach is to utilize the L1 distance with
zero padding to equalize histogram lengths. However, con-
sider this example: if the target histogram is [10,−100, 20]
and the predicted histogram is [10, 20], simple end-padding

4

would calculate the L1 distance as:

|10− 10|+ |−100− 20|+ |20− 0| = 140.

A more accurate assessment would recognize the alignment
of the first and last values and assign a distance of 100. This
improved alignment can be achieved by strategically plac-
ing zero padding between the values in the predicted his-
togram instead of at the end.

To address such scenarios, we define HistDist as the min-
imum distance among all possible zero-padding configura-
tions that preserve the sequence order of the histogram en-
tries. This calculation can be efficiently performed using
dynamic programming as shown in Algorithm 1.

Since the datasets may contain samples with widely
varying magnitudes, we normalize each computed distance
by dividing it by the maximum value in the target his-
togram to ensure comparability. Furthermore, to mitigate
the influence of significantly inaccurate prediction outliers
on the overall performance score, we clip the final score by
the maximum length of either the predicted or target his-
tograms.

Notably, HistDist is also applicable for comparing pie
charts, as they are analogous to histograms where each seg-
ment denotes a percentage of the whole. This versatility
makes HistDist a robust tool for diverse applications in data
analysis. Intuitively, an average HistDist of N for a dataset
can be interpreted as: the error in the prediction values is
approximately equal to predicting N bars completely incor-
rectly for each sample.

5.1.3 Syntactically Correct Code

For all generated code files, we execute the files to test if
the code executes without error. The syntactically correct
code percentage is defined as the number of code executed
without error divided by the total number of code generated.

5.1.4 Type Accuracy

To check if the model creates the correct type of figure such
as bar graph, we extract the figure type keywords from both
the generated code and the ground-truth code. The type ac-
curacy percentage is defined as the number of correct type
matches divided by the total number of code generated.

5.2. Hyperparameters and Fine-tuning Setup

For fine-tuning the LLaVA-1.5 7B model, we use a learn-
ing rate of 2e-4 and a cosine learning rate scheduler. We use
the AdamW optimizer for the trainer. The model was fine-
tuned on 1 epoch of the training data. To fit the model on a
single A100 40G GPU, we use LoRA with a reduced batch
size of 4.

The GIT model is fine-tuned on a single V100 GPU with
the Adam optimizer. We use a learning rate of 5e-5 and a
batch size of 8. The model is trained for 10 epochs and the
checkpoint with the least validation loss is used for evalua-
tion.

6. Results & Discussion
In this section, we present both qualitative and quantita-

tive results along with error analysis of our baseline and
fine-tuned models on both the Figure2Code baseline and
challenge datasets. The final scores of all models are sum-
marized in Table 1 for the Figure2Code baseline dataset and
Table 2 for the Figure2Code challenge dataset.

6.1. Performance Analysis

From the results displayed in Table 1, we see that the
LLaVA model fine-tuned on all 27K examples significantly
outperforms the other models across many metrics. It
achieved an MSE of 0.0163, a CodeBLEU score of 0.6809,
a HistDist of 4.074, with 99.3% of the generated code be-
ing syntactically correct on the baseline dataset. Similarly
for the challenge dataset, the fine-tuned LLaVA model out-
performed all the other models on most metrics, achieving
scores for CodeBLEU of 0.6247 and HistDist of 4.1673
while achieving 99.3% for syntactically correct code. Com-
pared to the baseline dataset, the fine-tuned model performs
slightly worse on the challenge dataset as it was out of dis-
tribution compared to the baseline it is trained on. Overall,
this performance indicates that fine-tuning LLaVA on our
dataset improved it’s performance on figure-to-code trans-
lation.

The improved CodeBLEU and Syntactically Correct
Code scores after fine-tuning indicate that the model gets
better at predicting the correct code in terms of syntax,
structure, and semantics. However, the reduced type ac-
curacy indicates that the model may be forgetting the skill
of predicting the correct type of chart. This may be oc-
curring as the line of code specifying the type of chart is
extremely small compared to the rest of the code, and hence
the model may be optimizing for the syntax at the cost of
predicting the correct type. However, the model improves
the type accuracy compared to the LLaVA model trained on
1k samples, indicating that the model quickly forgets this
skill but starts improving it again on further training. Even
after fine-tuning, the HistDist score remains high, indicat-
ing Llava still has room for improvement in understanding
the magnitudes of values in the figure. MSE scores do not
correlate well with any of the other metrics, suggesting that
MSE may not be a well-suited metric for this task.

Figure 3 shows the training loss for fine-tuning the
LLaVA model on the 1k training set and full training set.
The loss curves for both models show significant reductions
in training loss observed within the first 10 to 30 training

5

MSE CodeBLEU Syntactically Correct Code (%) HistDist Type Accuracy (%)
GIT 0.0256 0.422 100 4.645 33

GIT Fine-tuned 0.0256 0.422 100 4.645 33
LLaVA Baseline 0.0244 0.5344 54.4 5.1155 63

LLaVA Fine-tuned 1K 0.0169 0.539 61.6 4.76 39
LLaVA Fine-tuned All 0.0163 0.6809 99.3 4.074 46

Table 1: Final Performance Scores of All models on Figure2Code Baseline Dataset

MSE CodeBLEU Syntactically Correct Code (%) HistDist Type Accuracy (%)
GIT 0.0323 0.3709 100 4.654 33

GIT Fine-tuned 0.0323 0.3709 100 4.654 33
LLaVA 0.0341 0.4531 78.7 6.4792 57

LLaVA Fine-tuned 1K 0.0125 0.448 54.9 4.689 46
LLaVA Fine-tuned All 0.0162 0.6247 99.3 4.1673 46

Table 2: Final Performance Scores of All models on Figure2Code Challenge Dataset

steps. This indicates that potential overfitting happens very
quickly and the model quickly learns the syntax and struc-
ture of the code but fails to capture more nuanced informa-
tion such as labels and the magnitude or proportion of the
elements in the figure. The limited capability of the CLIP
encoder likely contributes to this lack of understanding of
text and element portion size, as it does not learn new fea-
tures that were not present in its original pre-training data.

Comparing the results of LLaVA models trained on 1K
samples and the entire dataset, we find that all metrics im-
prove on fine-tuning with more data. Moreover, we find that
the metric differences between the challenge dataset and the
baseline are smaller with the model fine-tuned on more data,
demonstrating that out-of-distribution robustness improves
on fine-tuning with more data. This suggest that there may
be further improvement by training for longer and on more
data.

A surprising observation may be that the GIT baseline
model and the GIT fine-tuned model both achieved perfect
scores of 100% for syntactically correct code, as well as a
lower HistDist score than the Llava Baseline. On manual
inspection, we found that GIT blindly copies the example
bar chart code given in the prompt for all samples. Fine-
tuning does not cause this behavior to change but only leads
to the model copying the prompt with higher confidence as
shown in Fig. 3 where the loss decreases. Both GIT models
achieved 33.333% accuracy in predicting the correct figure
type, reflecting the one-third representation of bar charts
in the dataset. The poor performance of GIT may be due
to its smaller size or because the language decoder has no
understanding of coding as it has only been trained in im-
age captioning and VQA. Moreover, GIT may have lesser
adaptability to new tasks due to the lack of instruction fine-
tuning.

Figure 3: Training Losses for all models (Top: LLaVa-1K
subset, Middle: LLaVa-all, Bottom: GIT)

6

The higher HistDist and lower Syntactically Correct
Code scores of the LLaVA model compared to GIT may be
explained by the LLaVA models’ emergent capabilities. As
described in a talk by Jason Wei from OpenAI [23], small
models could perform better than medium-sized models on
specific metrics even if the smaller model does not have
more advanced skillsets. This is because smaller models
might have simple skills that achieve well on a particular
metric, in our case the GIT model copies and pastes the
sample code, while medium-sized models are attempting to
use an emergent complex skill that it is not proficient at,
in our case, LLaVA tries to write syntactically correct code
and understand the figures to generate the right code. One
future exploration, as mentioned by Wei, would be to scale
up the model to test if the emergent capability starts to im-
prove.

6.2. Error Analysis

Figure 4: Confusion Matrix of the Actual and Predicted Fig-
ure Types with Generation Type Accuracies

Inspecting our best-performing fine-tuned LLaVA
model’s inference outputs, we noticed that the model’s per-
formance is heavily biased by the prompt, affecting its abil-
ity to correctly predict figure types. As shown in Figure 4,
61.2% of the generated graphs are bar charts, whereas only
3.7% of the generated graphs are pie charts. The higher
probability of generating scatter plots than pie charts may
be because the code to generate scatter plots is more simi-
lar to bar charts compared to the code for pie charts. This
leads to the type prediction accuracy of bar charts at 75.38%
being much higher than the other chart types.

An example of the output prediction from the fine-tuned
LLaVA model on the challenge dataset is shown in Table 3.
We can see that the structure of the code as well as the figure
type are correct, but the values and the labels are incorrect.
The ground truth code specifies the font and color of the bar,
title, and axis labels, but this information was not captured

in the predicted code. This suggests that the signals for font,
text, numeric value, and colors are too weak, which means
the fine-tuning has to either be done with a label-specific
approach or with a much larger dataset and model.

Ground Truth Code
import matplotlib.pyplot as plt
Categories and their corresponding values
categories = [’silver’, ’hero’, ’snow’, ’pilot’, ’show’]
values = [60, 30, 50, 0, 80]
Creating the bar chart
plt.figure(figsize=(8, 5)) Set the figure size (optional)
plt.bar(categories, values, color=’99a0a8’) # Plot the
bars with a random color
Adding title and labels
plt.title(’Accuracy of different algorithms’, font-
name=’Arial’) # Add a title to the chart
plt.xlabel(’Categories’, fontname=’Arial’) # Label
for the x-axis
plt.ylabel(’Accuracy’, fontname=’Arial’) # Label for
the y-axis
Display the chart
plt.show()
Predicted Code
import matplotlib.pyplot as plt
Categories and their corresponding values
categories = [’faint’, ’snow’, ’pilot’, ’cabin’, ’sphere’,
’basket’]
values = [6, 8, 7, 9, 2, 7]
Creating the bar chart
plt.figure(figsize=(8, 5)) # Set the figure size (op-
tional)
plt.bar(categories, values, color=’skyblue’) # Plot the
bars with skyblue color
Adding title and labels
plt.title(’Title’) # Add a title to the chart
plt.xlabel(’Categories’) # Label for the x-axis
plt.ylabel(’Values’) # Label for the y-axis
Display the chart
plt.show()

Table 3: A Sample Comparison of Ground Truth Code from
the Figure2Code Challenge Dataset and Predicted Code of
the Fine-Tuned LLaVA Model Trained on All Datasets

7. Conclusion & Future Work
In our study, we explored the task of figure-to-code trans-

lation by fine-tuning vision-language models (VLMs) using
our synthetic dataset of figure-code pairs. We benchmarked
the performance of two models, LLaVA-1.5 7B and GIT
129M, on both our baseline and challenge datasets. The
LLaVA model, after fine-tuning, demonstrated superior per-

7

formance across most metrics, including CodeBLEU, and
HistDist, while maintaining high syntactical correctness.
This shows the effectiveness of large VLMs in understand-
ing and generating code from complex figures while fine-
tuning significantly improves performance on all metrics.
However, it still struggles with understanding structural el-
ements of the figure such as the type of chart and magni-
tude of values indicated by poor scores on type accuracy
and HistDist. On the other hand, the GIT model struggled
with the task, and was unable to do better than blindly copy-
ing the example code given in the prompt, even after fine-
tuning.

Our research has a few future directions. One key di-
rection is to expand our dataset to include a wider variety
of figures and chart types to show the generalizability of
our models. The expanded dataset would become a pub-
lic benchmark dataset where other researchers can test their
model’s capability on figure-to-code translation.

To improve the model’s performance on understanding
figure components such as the type of chart and magnitude
of values, we will include separate fine-tuning stages for
these elements in future experiments. This will allow the
models to learn these components without being distracted
by having to learn the code structure at the same time. Ad-
ditionally, we plan to experiment with larger VLMs on this
task, hypothesizing that this could significantly improve the
emergent capabilities. Finally, testing our model fine-tuned
on the code-figure pairs with the figure-question answering
tasks in the MathVista benchmark would validate our hy-
pothesis that using code as an intermediate representation
of charts could prove helpful for VLM reasoning skills.

8. Contributions & Acknowledgements
Johnny Chang worked on setting up cloud computing

providers with multi-GPU training as well as the fine-tuning
and inference of the LLaVA-1.5 model. Abhinav Lalwani
worked on the dataset creation and metrics as well as fine-
tuning and inference of the GIT model. Both members con-
tributed equally to the literature review and writing of the
paper.

Public repositories utilized:

29:• LLaVA Repo: https://github.com/
haotian-liu/LLaVA

• GIT Repo: https://github.com/
NielsRogge/Transformers-Tutorials/
tree/master/GIT

References
[1] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan,

W. Ge, Y. Han, F. Huang, B. Hui, L. Ji, M. Li, J. Lin, R. Lin,
D. Liu, G. Liu, C. Lu, K. Lu, J. Ma, R. Men, X. Ren, X. Ren,

C. Tan, S. Tan, J. Tu, P. Wang, S. Wang, W. Wang, S. Wu,
B. Xu, J. Xu, A. Yang, H. Yang, J. Yang, S. Yang, Y. Yao,
B. Yu, H. Yuan, Z. Yuan, J. Zhang, X. Zhang, Y. Zhang,
Z. Zhang, C. Zhou, J. Zhou, X. Zhou, and T. Zhu. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

[2] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin,
C. Zhou, and J. Zhou. Qwen-vl: A versatile vision-language
model for understanding, localization, text reading, and be-
yond, 2023.

[3] T. Beltramelli. pix2code: Generating code from a graphical
user interface screenshot, 2017.

[4] R. Chaudhry, S. Shekhar, U. Gupta, P. Maneriker, P. Bansal,
and A. Joshi. Leaf-qa: Locate, encode attend for figure
question answering. In 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 3501–3510,
2020.

[5] X. Dong, P. Zhang, Y. Zang, Y. Cao, B. Wang, L. Ouyang,
X. Wei, S. Zhang, H. Duan, M. Cao, W. Zhang, Y. Li, H. Yan,
Y. Gao, X. Zhang, W. Li, J. Li, K. Chen, C. He, X. Zhang,
Y. Qiao, D. Lin, and J. Wang. Internlm-xcomposer2: Mas-
tering free-form text-image composition and comprehension
in vision-language large model, 2024.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale, 2021.

[7] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. Making the v in vqa matter: Elevating the role
of image understanding in visual question answering, 2017.

[8] Haotian-Liu. Haotian-liu/llava: [neurips’23 oral] visual in-
struction tuning (llava) built towards gpt-4v level capabilities
and beyond.

[9] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen. Lora: Low-rank adaptation of large
language models, 2021.

[10] K. Kafle, B. Price, S. Cohen, and C. Kanan. Dvqa: Under-
standing data visualizations via question answering, 2018.

[11] S. E. Kahou, V. Michalski, A. Atkinson, A. Kadar,
A. Trischler, and Y. Bengio. Figureqa: An annotated figure
dataset for visual reasoning, 2018.

[12] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning,
2023.

[13] P. Lu, H. Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi,
H. Cheng, K.-W. Chang, M. Galley, and J. Gao. Mathvista:
Evaluating mathematical reasoning of foundation models in
visual contexts, 2024.

[14] A. Masry, D. X. Long, J. Q. Tan, S. Joty, and E. Hoque.
Chartqa: A benchmark for question answering about charts
with visual and logical reasoning, 2022.

[15] NielsRogge. Transformers-tutorials/git at master ·
nielsrogge/transformers-tutorials.

[16] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a
method for automatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, page 311–318, USA,
2002. Association for Computational Linguistics.

8

https://github.com/haotian-liu/LLaVA
https://github.com/haotian-liu/LLaVA
https://github.com/NielsRogge/Transformers-Tutorials/tree/master/GIT
https://github.com/NielsRogge/Transformers-Tutorials/tree/master/GIT
https://github.com/NielsRogge/Transformers-Tutorials/tree/master/GIT

[17] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision, 2021.

[18] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundare-
san, M. Zhou, A. Blanco, and S. Ma. Codebleu: a method
for automatic evaluation of code synthesis, 2020.

[19] D. Soselia, K. Saifullah, and T. Zhou. Learning ui-to-code
reverse generator using visual critic without rendering, 2023.

[20] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lam-
ple. Llama: Open and efficient foundation language models,
2023.

[21] J. Wang, Z. Yang, X. Hu, L. Li, K. Lin, Z. Gan, Z. Liu,
C. Liu, and L. Wang. Git: A generative image-to-text trans-
former for vision and language, 2022.

[22] Y. Xu, L. Bo, X. Sun, B. Li, J. Jiang, and W. Zhou. im-
age2emmet: Automatic code generation from web user in-
terface image. Journal of Software: Evolution and Process,
33, 2021.

[23] YouTube. Stanford cs25: V4 i jason wei &
hyung won chung of openai. https://www.
youtube.com/watch?v=3gb-ZkVRemQ&list=
PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM&
index=27, may 2024. Accessed: 2024-05-06.

9

https://www.youtube.com/watch?v=3gb-ZkVRemQ&list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM&index=27
https://www.youtube.com/watch?v=3gb-ZkVRemQ&list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM&index=27
https://www.youtube.com/watch?v=3gb-ZkVRemQ&list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM&index=27
https://www.youtube.com/watch?v=3gb-ZkVRemQ&list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM&index=27

