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Abstract

In our project, we propose solutions for automating the
classification and detection of bone fractures in X-ray im-
ages. Unlike previous work which heavily relies on super-
vised learning, we leverage self-supervised learning (SSL)
to enable our models to more effectively capture the most
relevant features in the images. We use the FracAtlas
dataset, which comprises high-quality, annotated X-ray im-
ages of bone fractures, to ensure our model’s generality
and robustness. For fractured/non-fractured classification,
our approach begins with a ResNet feature extractor cou-
pled with a Multi-Layer Perceptron (MLP), achieving an
initial accuracy of 66.5%. We significantly advance this
performance by fine-tuning the DINOv2 self-supervised vi-
sion transformer models, which boost classification accu-
racy up to 96.1%. For bone fracture localization tasks, we
finetune the YOLOv8 object detection model, achieving a
mean Average Precision (mAP50) of 0.53, demonstrating
precise fracture localization capabilities. Our experimen-
tation with SSL-powered bone fracture classification and
detection demonstrates the potential of deep learning tech-
niques to significantly enhance clinical diagnostic practices
by automating the analysis of X-ray images.

1. Introduction

1.1. Motivations

In recent years, deep learning models have demonstrated
major breakthroughs in the field of computer vision. For
instance, convolutional neural network (CNN) architec-
tures, and more recently Vision Transformers (ViT), have
achieved near perfect performance on classifying common
images [14] [4]. We realize that these deep learning mod-
els can potentially be applied to the field of medical imag-
ing diagnosis. Currently, many such imaging diagnosis ser-
vices, such as radiology, have very high equipment and la-
bor costs as doctors typically spend a long time analyzing
the images obtained. The deployment of an accurate deep
learning model for X-ray image analysis may significantly

reduce the time and human labor involved in the diagnostics
stage and may drastically reduce the costs of radiology ser-
vices, making accurate diagnostics much more affordable
and efficient to the public.

1.2. Problem Statement

In this project, we focus on the problem of bone fracture
detection in musculoskeletal X-ray images in particular. We
aim to build a deep learning model which, given a muscu-
loskeletal X-ray image, is able to:

• Classification: Make a judgment as to whether the X-
ray image contains a bone fracture.

• Detection: If the image does contain a fracture, com-
pute bounding box coordinates that correctly identify
the location(s) of the fracture(s) within the image.

1.3. Overview of Major Results

For the classification task, we have (1) used self-
supervised learning (SSL) to train a Residual Network
(ResNet) feature extractor and then trained a Multi-Layer
Perceptron (MLP) to make class predictions based on
the extracted features, and (2) finetuned the DINO Self-
Supervised Vision-Transformer Model to the task of bone
fracture classification in X-ray images. The former model
achieves a classification accuracy of 66.5%, while the latter
achieves a classification accuracy of up to 96.1%.

For the bone fracture detection (localization task), we
have finetuned the YOLOv8 object detection model to pre-
dict bounding box coordinates for bone fracture spots in an
X-ray image. The finetuned model achieves a localization
precision of 77%, recall of 55%, and an mAP50 of 0.53.
Fractures occuring at thinner bone sections and near body
joints present the greatest challenge to the detector.

2. Related Work
The past decade has seen a lot of interest in applying

deep learning to X-ray imaging analysis. Deep learning
models have been trained to classify chest X-rays [2], per-
form segmentation of major vessels in X-ray coronary an-
giography, [16], perform forensic X-ray age estimation [9],
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and detect concealed items in cargo radiographs [7]. The
application of deep learning in bone fracture classification
and detection is a relatively recent endeavor. In 2020, Yadav
et. al trained a deep CNN model to distinguish X-ray im-
ages of healthy bones from those of fractured bones, and
their model achieved a classification accuracy of around
92%. [15] The first known attempt to build a bone frac-
ture detector model was in 2021, when Nguyen et. al fine-
tuned a pretrained YOLO model to detect arm bone frac-
tures in particular, and their model achieved an AP (Aver-
age Precision, see 4) of 0.819. [11] In 2022, Hardalacc et.
al trained a few regions with convolutional neural network
(R-CNN) models with slightly different architectures to de-
tect fractures in wrist bones in particular, and their Faster
R-CNN model achieved an AP50 of around 0.58. [6] In the
same year, Guan et. al built a novel two-stage region-based
CNN model for detecting thigh bone fractures in particu-
lar, achieving an Average Precision of 88.9%. [5] Also in
2022, Kong et. al trained a CNN-based model they named
DeepSurv to predict spine bone fractures, which achieved
a C-index (area under RoC curve) of 0.612. [8] Most re-
cently, in 2023, Sahin built a model that uses edge and cor-
ner detection to extract features from X-ray images and then
experimented with multiple different classifiers to classify
the images as fractured/non-fractured, achieving an accu-
racy rate of 88.67%. [13]

We notice that the vast majority of current work on bone
fracture image classification have followed a supervised ap-
proach. Sahin’s recent attempt inspires us to explore inte-
grating a feature extractor into a classification model, as the
feature extractor can be trained on a large dataset and can
also help the model focus on the most relevant information
in an X-ray image. Furthermore, to the best of our knowl-
edge, none of the work on automated bone fracture classi-
fication and detection so far leverages a transformer-based
model, which also encouraged us to make such an attempt.

3. Data
Existing X-ray datasets are either small or lack proper

annotation, which hinders development of robust machine
learning algorithms for X-ray images. To address these
limitations, we use the FracAtlas dataset [1]. FracAtlas
contains 4083 musculoskeletal X-ray images collected from
three major hospitals in Bangladesh. 720 of these X-ray im-
ages contain 922 instances of bone fractures, whereas the
rest do not contain any bone fracture instance. The labels
were created by two expert radiologists and an orthopedist.
Each image is given labels indicating the presence of frac-
ture(s), the count and type(s) of fracture(s) present, as well
as bounding box coordinates indicating the location(s) of
the fracture(s) in the X-ray image. FracAtlas also provides a
division of the 720 X-ray images with fractures into a train-
ing set of 575 images, a validation set of 62 images, and a

test set of 83 images. We similarly divide the 3363 X-ray
images not containing fractures into a training set of 3000
images, a validation set of 163 images, and a test set of 200
images. Hence our dataset is organized as follows:

• Fractured (720 images)

– Training (575 images)

– Validation (62 images)

– Testing (83 images)

• Non-Fractured (3363 images)

– Training (3000 images)

– Validation (163 images)

– Testing (200 images)

3.1. Preprocessing

For the bone fracture detection task, we decide to
finetune a pretrained Single-Stage Object Detector named
YOLOv8 [10]. In the original FracAtlas dataset, the bound-
ing box locations are provided in a Coco JSON file. In order
to make these label data compatible with the YOLO model
finetuning process, we used the Pylabel package to convert
the Coco JSON file into YOLO text annotation files.

For the image classification task, our baseline model in-
volves a Residual Neural Network (ResNet) feature extrac-
tor trained using self-supervised learning and a Multi-Layer
Perceptron (MLP) that computes the class scores from the
extracted features. The feature extractor is trained using
the Lightly Self-Supervised Learning Framework (https:
//docs.lightly.ai/). We realized that the X-ray
images in the FracAtlas dataset have only one (grayscale)
color channel and very high resolution, which is required
for accurate diagnosis of bone fractures. However, Lightly
was designed to work with everyday images and thus typ-
ically supports standard RGB images of much lower reso-
lutions. Therefore, prior to pretext task training with the
Lightly framework, we had to use ImageMagick to con-
vert the X-ray images into the 16-bit TIFF format and re-
size them so that their length and width dimensions do not
exceed 512. As we will discuss later, we suspect that this
preprocessing step may have led to the loss of important
detail information in the images and compromised the per-
formance of the feature extractor model.

4. Methods
4.1. Binary Classification

4.1.1 Baseline: Self-Supervised Learning Using
ResNet and MLP

Our first objective is to classify an X-ray image as to
whether it contains a bone fracture. As a baseline, we
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trained a model of our own design to perform this binary
classification task. When considering suitable model ar-
chitectures, we realized that a successful model needs to
have general knowledge about the fundamentals of X-ray
images in order to extract relevant information to inform
its classification. Therefore, we decide to leverage self-
supervised learning (SSL) to train a feature extractor that is
able to compute effective feature embedding vectors from
X-ray images. The embedding vectors are then fed into
a Multi-Layer Perceptron (MLP) in order to compute the
class scores.

One of the few open-source, general purpose SSL frame-
works that is widely used is Lightly. This computer vi-
sion framework helps in understanding and filtering raw
image data and can be applied before any data annotation
step, producing image embedding vectors that can be ap-
plied to all different types of downstream tasks. Consid-
ering our computing resources, we decided to use the full
fractured training set and non-fractured training set to train
Lightly’s default ResNet Feature Extractor, an architecture
previously shown to perform well on image classification
tasks [14]. The image augmentation operations provided
by the Lightly framework include random cropping, hori-
zontal/vertical flip, rotation, gaussian blur, color jittering,
random grayscale, and solarization. Due to the grayscale
nature of X-ray images, we believe that color-oriented aug-
mentation operations are not relevant for our specific task
and hence did not apply them in our SSL process. Further-
more, we also realize that most bone fractures occur on a
local level without large-scale traces on the skeleton, mak-
ing the image details essential for judging the presence of
fractures. Therefore, we chose not to apply gaussian blur
when training the feature extractor in order to preserve in-
formation about details in the X-ray images in the feature
embeddings.

Due to the limited size of our dataset, we believed
that the MLP model could easily be susceptible to overfit-
ting. Therefore, we decided to include several regulariza-
tion measures to mitigate the overfitting issue. First, after
each fully connected (Linear and ReLU) layer, we decided
to add a batch normalization layer to control the scales of
the output of the fully connected layer. Second, we in-
cluded an L2-penalty term for the weights of the fully con-
nected layers to control the scales of the weights. Third, we
applied dropout after each fully connected layer to avoid
the co-adaptation of parameters and encourage the model to
learn more general patterns. The MLP architecture there-
fore consists of a sequential arrangement of Linear-ReLU-
Batchnorm-Dropout blocks. We decided to make the num-
ber of such blocks, as well as the L2-regularization parame-
ter and the dropout rate our hyperparameters which we can
tune based on the validation set results.

Finally, we noticed that in the FracAtlas dataset, there

are far more X-ray images without fractures than there are
images containing fractures. Therefore, training the MLP
model on the full training set may encourage the model to
predict ”non-fractured” much more often than ”fractured”
since non-fractured images significantly outnumber frac-
tured images in the training set. However, a reliable model
for potential deployment needs to be able to make infer-
ences purely based on the information contained in the im-
age itself. To address this issue, while we still train the
ResNet feature extractor on the full training set, when train-
ing the MLP classifier we decided to take only a portion of
the non-fractured training images so that they do not sig-
nificantly outnumber the fractured images. This way, we
avoid tempting the model into blindly predicting the more
common class.

4.1.2 Supervised Learning using Vision Transformer

Building upon the insights gained from our initial self-
supervised approach, we explored the potential of the Vi-
sion Transformer (ViT) model for the classification of bone
fractures in X-ray images. We wanted to explore the impact
of self-attention mechanisms on the feature discrimination
capabilities within bone X-ray images. This initial inves-
tigation employing supervised learning aimed to set a ref-
erence point for subsequent, more complex self-supervised
learning experiments involving attention mechanisms.

The Vision Transformer [4] adapts the transformer archi-
tecture—originally designed for natural language process-
ing tasks—to the realm of image classification. Unlike tra-
ditional CNNs that process images through localized con-
volutional filters, the Vision Transformer treats an image as
a sequence of patches. Each patch is embedded and then
processed in a manner similar to tokens in NLP, enabling
the model to apply self-attention across these patches. This
mechanism allows ViT to dynamically focus on the most
informative parts of an image.

For our implementation, we utilized the ’vit-base-
patch16-224’ model from Hugging Face. We fine-tuned
this pre-trained model on our dataset of fractured and non-
fractured X-ray images. During the process, we partitioned
the images into patches of 16x16 pixels each, with the in-
put images resized to 224x224 pixels, which were then lin-
early embedded. Positional encodings were added to retain
spatial information. The transformer’s encoder, consisting
of alternating layers of multi-head self-attention and multi-
layer perceptrons (MLP) blocks, employs layer normaliza-
tion before each block and residual connections around each
to enhance training stability and performance.

4.1.3 Self-Supervised Learning Using DINOv2

To enhance the precision of our fractured/non-fractured
classification capabilities in bone X-ray images, we inte-



grated DINOv2 [12], a leading-edge self-supervised learn-
ing framework developed by Meta AI. DINOv2 has demon-
strated superior performance compared to multimodal text-
image models such as CLIP, particularly in tasks focused
on visual feature extraction. Motivated by this advanced
technology, we sought to evaluate how DINOv2’s sophisti-
cated mechanisms would perform in comparison to our ear-
lier custom architecture and the supervised implementation
of the Vision Transformer.

DINOv2 advances the concept of knowledge distilla-
tion within a self-supervised learning framework using a
student-teacher architecture, where both networks are based
on the Vision Transformer model. The framework is struc-
tured around two primary learning objectives: at the image
level, the student network is trained to replicate the teacher
network’s output from different crops of the same image,
promoting a robust understanding of global image features.
At the patch level, the student model is trained on randomly
masked patches of the image, improving its capability to
interpret local details.

In our implementation of DINOv2, we first chose the Vi-
sion Transformer Small (ViT-S) as the foundational archi-
tecture. We will refer to this as DINOv2 small. We chose
ViT-S to balance between computational efficiency and ef-
fective feature extraction capabilities. We also explored the
impact of using a larger model by incoporating the Vision
Transformer Large (ViT-L). We will refer to this as DINOv2
large. Our hypothesis was that a larger model could poten-
tially capture more complex patterns and provide higher ac-
curacy in fracture classification, despite its greater demand
on computational resources. Among the three available pre-
trained heads—image classification, depth estimation, and
semantic segmentation—we naturally chose the image clas-
sification head.

Typically, there is a two step training process: initial self-
supervised training followed by task-specific fine tuning.
The initial phase involves both the student and teacher net-
works learning to extract features autonomously from un-
labeled data. However, as mentioned above, we utilize a
pre-trained model where this initial self-supervised learn-
ing has already been completed. For the fine-tuning phase,
we leverage the image classification head that is specifically
designed for the task of categorizing images. We directly
apply this image classification head to fine-tune the pre-
trained model on our labeled dataset of bone X-ray images.

4.2. Bone Fracture Detection

Our second objective is to build a model that, given an X-
ray image known to contain bone fractures, provide bound-
ing box coordinates that indicate the location(s) of the frac-
ture(s) present in the image. We first considered using Re-
gions with Convolutional Neural Networks (R-CNN), an ar-
chitecture that uses a convolutional neural networ (CNN) to

extract a feature map and a region proposal network to iden-
tify regions likely to contain objects. [3] However, we real-
ized that building our own R-CNN model from scratch may
involve training the both the backbone convolutional neu-
ral network and the region proposal network on a very large
image dataset, which is not feasible given our project dura-
tion and resources. Furthermore, we do not currently know
of a particularly successful open-source pretrained R-CNN
model. Therefore, we decided to consider other architec-
tures with pretrained models suitable for finetuning to the
specific task of bone fracture detection in X-ray images.

One of the most popular pretrained models for object de-
tection is YOLO, a Single-Stage Object Detector released in
2016 which was trained on a large image dataset featuring a
wide range of different objects. The latest model released,
YOLOv8, achieves state-of-the-art object detection perfor-
mance for common images. Although object detection in
everyday images is very different from bone fracture detec-
tion in X-ray images, there is currently no detection model
pretrained specifically for the purpose of bone fracture de-
tection to our best knowledge, largely due to the difficulty to
obtain large musculoskeletal X-ray image datasets. Further-
more, through the pretraining process, we believed that the
YOLO model would be able to learn the characteristics of
bone fractures effectively based on its prior knowledge on
general object detection. Thus, we decided to use the frac-
tured training set to finetune the YOLOv8 model for bone
fracture detection.

To evaluate the performance of our finetuned model in
identifying the locations of fractures, we chose to use the
mean Average Precision metric. This metric is based on the
Intersection over Union (IoU) of each predicted bounding
box, which is defined as the ratio between the intersection
and union of the predicted bounding box and the ground
truth bounding box.

IoUpredicted box = Overlap with ground truth
Union with ground truth

The mAP50, for instance, gives the fraction of predicted
bounding boxes with an IoU of at least 50%.

We also create a confusion matrix to evaluate the perfor-
mance of our finetuned detection model. As is consistent
with the threshold conventions of YOLO models, we define
the successful identification of a fracture as an overlap with
an IoU of at least 0.45 between a ground truth bounding box
and a predicted bounding box with a confidence level of at
least 0.25. 1 Therefore, a ground truth bounding box that
does not have such an overlap with a predicted bounding
box is considered a false negative, and a predicted bound-
ing box that does not have such an overlap with a ground

1https://docs.ultralytics.com/reference/
utils/metrics/#ultralytics.utils.metrics.
ConfusionMatrix
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truth bounding box is considered a false positive.

5. Experiments

5.1. Classification: Self-Supervised Learning using
ResNet and Multi-Layer Perceptron

As a baseline model for the binary classification task, we
used the Lightly SSL framework to train a ResNet feature
extractor with pretext tasks and then trained a Multi-Layer
Perceptron (MLP) to compute the class scores from the ex-
tracted features. For the pretext task training, we used the
fractured training set (575 images) and the non-fractured
training set (3000 images) and included random cropping,
rotation, and horizontal/vertical flips as image augmenta-
tion operations. Lightly applies these augmentations ran-
domly to the images for pretext task training. To make the
image format consistent with the Lightly framework, we
converted the images used for self-supervised learning into
16-bit TIFF format and resized them so that their length and
width dimensions do not exceed 512. We trained the feature
extractor for 100 epochs with the pretext tasks and saved the
best model. Then, we used the best model to generate fea-
ture embeddings for all images in the FracAtlas dataset.

The embedding for each image is a vector of dimension
32. The MLP was trained to compute the class score of
an image given its embedding vector. To train the MLP,
we used the first 1000 of the 3000 non-fractured training
images and the 575 fractured training images. This en-
sures that in the training set for the MLP, the non-fractured
images do not overwhelmingly outnumber the fractured
images, thus avoiding tempting the model to blindly pre-
dict the more common class. The fractured and non-
fractured validation sets are used for validation. Originally,
we experimented with a model containing five Connected-
Batchnorm-Dropout blocks with a dropout rate of 0.5 and
an L2 regularization parameter of 0.001. However, we
found that the model was significantly overfitting to the
training set as the validation loss began to increase very
early in the training process. Therefore, we reduced the
number of blocks and increased the dropout rate and regu-
larization parameter. We were able to obtain the best valida-
tion performance with a model containing two blocks, with
a dropout rate of 0.65 and an L2 regularization parameter of
0.01.

We evaluated the best model on the fractured and non-
fractured testing sets. The model achieves a testing accu-
racy of 66.5%. We suspect that the relatively low accuracy
of our baseline model can be attributed to the compression
of our images prior to feature extraction. Most bone frac-
tures display only minor traces in an X-ray image; success-
fully identifying these fractures require careful attention to
details. By resizing the images so that their height and width
dimensions are below 512, we may have blurred a lot of

localized details in the images, and thus the feature embed-
dings may not effectively represent these details. This might
have made it hard for the MLP to make classifications based
on the embeddings.

5.2. Classification: ViT, DINOv2 small, DINOv2
large

As detailed in our methods section, alongside developing
our own models, our research also explores the performance
of pretrained models, specifically those using attention-
based mechanisms, for bone fracture classification. We
conducted experiments first using supervised learning with
the ’vit-base-patch16-224’ and then using self-supervised
learning with both small and large configurations of DI-
NOv2. All three models were configured similarly and fine-
tuned with the same objective: to classify X-ray images into
two categories—fractured and non-fractured bones. Below,
we describe the setup for the DINOv2 small configuration.

To handle the data, we implemented a custom XRay-
Dataset class in PyTorch, designed to load, preprocess, and
augment the images. Each image is opened, converted to
RGB format (to ensure compatibility with the model’s ex-
pected input), and then transformed using DINOv2’s stan-
dard preprocessing pipeline, which includes resizing and
normalization. We partition our dataset into training (81%),
validation (9%), and test sets (10%).

We finetuned DINOv2 using the Hugging Face trans-
formers library. Key parameters include a learning rate
of 2e-5, batch size of 16 during training and 32 during
evaluation, 5 epochs, AdamW optimizer with parameters
ε = 10−8, β1 = 0.9, and β2 = 0.999, a weight decay of
0.01 and using cross entropy loss. To monitor training dy-
namics, we utilized TensorBoard, logging loss curves and
accuracy metrics at every 10 steps. This granular logging
helped us identify any anomalies or plateaus in the learning
process

Given the critical nature of fracture diagnostics, where
false negatives can lead to missed fractures, we evaluated
our model using a comprehensive set of metrics:

1. Accuracy: overall correctness rate

2. Precision: Proportion of true fractures among pre-
dicted fractures

3. Recall: Proportion of correctly identified fractures
(critical to minimize missed fractures)

After fine-tuning, our DINOv2-based model achieved
the following performance on the test set:

• Train Loss: 0.2914

• Test Loss: 0.3645

• Accuracy: 0.9288



Figure 1. DINOv2 small training loss

• Precision: 0.9440

• Recall: 0.9201

Figure 2. DINOv2 small confusion matrix

DINOv2 small correctly classifies nearly 93% of all X-
ray images, demonstrating high overall accuracy. Similarly,
when our model predicts that there is a fracture, it is correct
94.40% of the time. High precision is excellent for reduc-
ing the burden of false positives in medical contexts. Also,
the model identifies 92.01% of all fractures. Ideally, recall
should be as close to 100% as possible in medical appli-
cations to minimize the risk of missed diagnoses. Further-
more, the calculated losses indicate a slight degree of over-
fitting. This is likely due to the relatively small size of our
dataset which restricts the diversity of training examples.

Below is a final comparison of all our models’ perfor-
mances.

c
Model Test Accuracy

ResNet + MLP 66.5%
ViT 90.0%

DINOv2 small 92.8%
DINOv2 large 96.1%

Table 1. Comparison of Model Performances

5.3. Detection: Transfer Learning with YOLO

For the bone fracture detection task, we used our frac-
tured training set of 720 X-ray images to finetune the
YOLOv8 model. Most of these X-ray images containe one
bone fracture, some of these images contain two, three, or
four bone fractures, and one image contains up to five bone
fractures. Taken together, the training set contains 922 in-
stances of bone fractures. Prior to finetuning, we down-
loaded the weights of the YOLOv8 pretrained model and
converted the bounding box data from Coco JSON format to
YOLO text annotation format. Using the training data, we
ran 100 epochs of AdamW optimization on the pretrained
YOLOv8 weights and saved the model that achieves the best
performance on the validation set. Then, we used the best
model to detect bone fractures in the test set X-ray images.
The confusion matrix of the best finetuned YOLOv8 model
is as follows:

Figure 3. YOLO Confusion Matrix

In our testing set, there are 83 images with 91 instances
of bone fracture. Out of these 91 bone fracture instances,
50 are correctly identified by the finetuned YOLO model,
whereas the other 41 are not discovered by the finetuned
model. Furthermore, the finetuned model falsely identified
15 background spots as fractures. This yields a precision of
77% and a recall of 55%.

The best finetuned model was able to achieve an mAP50
of 0.53. In other words, 53% of its predicted bounding
boxes have an IoU of at least 0.5 with a ground truth bound-
ing box. It was able to achieve an mAP50-95 of 0.22 - this
is the average fraction of predicted boxes with an IoU of at
least 0.50, 0.55, . . . , 0.90, 0.95 with a ground truth bound-
ing box.

The performance of the model may not qualify for imme-



diate deployment in real-world bone fracture diagnosis ap-
plications. However, it is still significantly better than a ran-
dom detector. Furthermore, while the model is only able to
detect slightly more than half of all bone fracture instances,
most of its detected spots do indeed contain fractures. Since
bone fractures can occur in a variety of different modes, the
fact that the model’s precision is much higher than its recall
might suggest that the model has been able to capture the
characteristics of some bone fracture modes relatively well,
although it still cannot capture the characteristics of other
types of bone fractures.

Below we compare the ground-truth bone fracture
bounding boxes with the predicted bounding boxes on one
batch of testing data:

Figure 4. Ground-Truth Bounding Boxes

Figure 5. Predicted Bounding Boxes

As we can see, in this batch of testing data, all predicted
bounding boxes of the model coincide well with ground
truth bounding boxes. However, the model fails to iden-
tify a few bone fracture instances. We notice that many
of the model’s failure cases involve fractures that occur at
thinner bone regions especially for children, as evidenced
in the above figures by the two arm fractures on the left
of the first row and in the third image of the fourth row.
This failure mode is expected as fractures at thinner bone
regions display smaller traces that are harder for YOLO’s
backbone convolutional filters to capture. Furthermore, the
model tends to miss fractures that occur near the joints of
the body. For instance, the model fails to detect the frac-
ture at the top of the thigh and the fracture at the shoulder
in the upper part of the third column. These failures may be
due to the fact that both joints and fractures are displayed as
skeletal discontinuities in X-ray images, and it is inherently
hard to distinguish joints from fractures given their similar
appearances under X-ray.

As mentioned before, most predicted bounding boxes
coincide with ground truth bounding boxes, and false posi-
tives are far less common. We observed that of the few false
positive cases, many involve misclassifying a natural joint
as a fracture. An example of this failure mode is shown
below:

Figure 6. False Positive Example: Ground Truth Bounding Boxes

Figure 7. False Positive Example: Predicted Bounding Boxes

In this example, the model falsely treats the joint at the



top of the left thigh bone (right side of the X-ray image)
as a fracture. The predicted location of the actual fracture
in the image is also slightly off: while the actual fracture
occurs slightly above the joint on top of the right thigh bone
(left side of the image), the model predicts the joint itself
as the fracture spot. Therefore, our findings suggest that
skeletal joints interfere significantly with the detection of
bone fractures by deep learning models.

6. Conclusion

In this study, we diverge from traditional supervised
learning models by employing self-supervised learning to
train our algorithms, enabling them to discern more nu-
anced features without extensive labeled datasets.

The DINOv2 models stood out as the highest-performing
in our series of experiments, particularly in classification
tasks where the DINOv2 large configuration achieved an ac-
curacy of up to 96.1%. This model’s superior performance
is attributable to its sophisticated architecture developed by
Meta AI. However, while DINOv2 excels in classification,
it was not without challenges; the model exhibited slight
overfitting and did not achieve a perfect recall. Enriching
the training dataset with more varied and complex fracture
cases could help improve the generalizability and robust-
ness of DINOv2. Also, implementing more sophisticated
regularization methods could help mitigate the overfitting
observed.

On the other hand, the YOLOv8 model, adapted for
localization tasks, achieved a mean Average Precision
(mAP50) of 0.53. This indicates that while the model
is generally effective at identifying the locations of frac-
tures, there is room for improvement, especially in complex
anatomical areas where fractures are small or near joints,
which are challenging for the model to accurately pinpoint.

In conclusion, our research demonstrates significant po-
tential for using advanced machine learning techniques in
the field of radiology. By further developing these models,
there is a promising path toward fully automated, highly ac-
curate diagnostic tools that can substantially benefit clinical
practices by reducing the workload on radiologists and im-
proving diagnostic outcomes for patients.
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