vyGAMMAS: Improving Mathematical Reasoning in Vision Language Models
Through Synthetic Data Generation

Ramgopal Venkateswaran, Shubhra Mishra
Stanford University
Stanford, CA, 94305

raml998@stanford.edu,

Abstract

Vision Language Models (VLMs) have seen a recent
exponential growth in their capabilities. However, they
still face significant gaps, specifically as it relates to com-
plex tasks like mathematical reasoning. In this work,
we present GAMMAS: a pipeline that uses GPT—4 and
code-generation to synthesize a fine-tuning and evaluation
dataset containing 860 bar and line charts, and relevant
mathematical questions. We then use this dataset to fine-
tune the InternLM-XComposer2-VL-1.8B model. We show
a 6.5% and 12.5% increase in performance on the bar and
line chart tasks in the MathVista benchmark without a loss
in overall performance. We also note that performance on
other categories of tasks in MathVista increases as well.

1. Introduction

Large language models (LLMs) have shown reasonable
progress in their math problem-solving abilities over the
last few years. Vision language models (VLMs) are a class
of multimodal models that combine text input with image
data to produce either text or a combination of image and
text as the output - such models have attracted a lot of re-
cent attention (e.g. [2[] and [27]). Such models have only
very recently reached a level where they can be expected to
tackle visual reasoning problems. The MathVista dataset
benchmarks these capabilities, conducting finegrained anal-
yses based on the specific skills and knowledge domains
tested by the problems in the dataset [19]. While leading
VLMs like GPT-4V and Gemini Pro outdo humans in
some visual problem solving contexts, considerable gaps
still exist. In this work, we aim to address these gaps via
the following contributions:

1. We propose GAMMAS: a pipeline to Generate Ad-
vanced Multi-modal Mathematical And Synthetic
data. Overall, we generate 860 training samples and
a validation set of size 200, comprising questions that

4321

shubhra@stanford.edu

test visual reasoning using bar charts and line plots.

2. We finetune InternLM-XComposer2-VL-1.8B [6], a
small but performant VLM using our generated train-
ing data, and evaluate its performance both with re-
spect to our test data as well as on the MathVista
”testmini” dataset. Within MathVista, we investi-
gate the performance improvement on not just line plot
and bar chart based questions, but also on other related
categories to understand the transfer learning capabili-
ties of the model.

Specifically, the input to our finetuned model comprises
a mathematical reasoning question and an accompanying
figure. We restrict our attention to multiple choice ques-
tions (MCQs), get a response from either base or fine-tuned
model, extract the final answer from the response, and eval-
uate it against the correct answer to look at its accuracy in
terms of exact match (i.e. is the selected option the correct
one).

2. Related Work

Synthetic Data Generation A lot of work has explored
generating synthetic data in order to train/finetune models.
Gunasekar et. al. showed the importance of data quality
during training by using GPT—-3.5 to generate textbook-
quality synthetic data to train a model for code-generation
[10]. In TinyStories, Eldan et. al. train a small language
model to write coherent and creative short stories, only us-
ing synthetic data generated by GPT-3.5 [8]. Similarly,
in TinyGSM, Liu et. al. use GPT-3.5 to augment the
GSM8K dataset to train a small language model with sig-
nificant mathematical capabilities [17].

Mathematical Reasoning in Language Models Some of
the early natural-language math problem solving bench-
marks included MAWP S in [[16] and work in [25]]. The most
widely adopted benchmarks for math word problem solv-
ing are the GSM8K and MATH datasets [15,[11]. Since 2021,

model performance has generally become saturated on these
benchmarks, as a result of both model improvement and
data contamination. Using LLMs for mathematical reason-
ing in the formal direction has also been explored, with a lot
of work being done in autoformalization and automated the-
orem proving, although results show that both tasks are ex-
tremely challenging, and we have a long way to go [26, [14]].

Vision Models Like LL.Ms, vision models have also only
recently become very powerful, letting them succeed at
tasks beyond simple classification and caption-generation
[24]. Object counting is another task that vision models
have been evaluated on [21]. Datasets like ChartQA and
FigureQA are examples of benchmarks first used to mea-
sure vision models’ abilities for scientific tasks [20, [15].
The MathVista benchmarks combines 20+ such bench-
marks to create a comprehensive evaluation of vision mod-
els’ visual math problem solving abilities [[19].

InternLM InternLM-XComposer2-VL [7] is a recent vi-
sion language model that is of particular interest since the
7B version is currently the fifth highest ranked vision lan-
guage model on the MathVista public test leaderboard| and
competitive with models of much larger size. We focus on
the 1.8B version, which is more feasible to tune with fewer
compute resources.

InternLM-XComposer2-VL is composed of a language
model (InternLM-2 [4]]) and a vision encoder (OpenAl
ViT-Large model trained using CLIP [23]]) that are further
trained to be aligned. The image is segmented into a 35x35
grid and embeddings are generated for each part of the im-
age using the vision encoder. There is then a small MLP
layer on top of them, and the final image embeddings are
then inserted among the text embeddings (generated by the
initial embedding layer of the LLLM) at the appropriate po-
sition where the image should be within the text input. The
model is pretrained on such multimodal inputs in a multi-
task way (for tasks such as captioning, question answering,
free-form text image composition, etc.) A unique aspect
here is that it is done through partial LoRA, where LoRA
is only applied on the image tokens, illustrated in Figure [1]
(taken from [7]). The purpose of this is to not disrupt the
pre-trained language embeddings too much to preserve in-
formation gained during language model pre-training.

3. Methods

Our work is comprised of two parts: generating synthetic
data and filtering high-quality samples, as well as finetuning
the InternLM models using LoRA and DoRA, which we
compare later.

4322

!

WB € RCout %Cr
s
WA € R& *Cin

I

|

Pretrained
Weights
WO c]'Rcout XCin

Figure 1. Figure and caption both taken from [4]: The illustration
of the Partial-LoRA. The blue tokens represent the visual tokens
and the gray tokens are the language tokens. Our Partial-LoRA is
only applied to the visual tokens.

3.1. Generating Synthetic Multimodal Data

In this paper, we first propose an automatic pipeline to
generate high-quality multimodal synthetic data for visual
math reasoning. An example of a human-annotated sam-
ple from MathVista is shown in Figure [5] Because we
have seen the importance of high-quality data in training
strong models, we use GPT—4 to generate synthetic data,
as shown in Figure P} In our prompts, we specify three
different things. First, we specify the type of figure to be
generated (bar chart vs. line plot). Next, to force diversity,
we include information in the prompt that creates linguis-
tic and visual diversity in the data. For example, we prompt
GPT-4 with a specific topic (e.g. Space Exploration, Cities,
Dogs, Grades, etc.) and question type (free-form, MCQ,
true/false). To ensure that the charts we generate are visu-
ally diverse, we prompt GPT -4 to generate code that creates
a certain number of elements, uses specific colors (that we
randomly choose), uses specific hashes (that we also ran-
domly generate), etc.

3.2. LLM-as-a-Judge

To improve data quality further, we implement imple-
ment LLM-as-a-Judge using GPT-4 [28]. That is, once we
have generated the code, question, and answer, we prompt
GPT-4 to check whether or not the answer correctly solves
the question. If it does not, we filter out that sample. By
using the code as a proxy for the generated image, we’re
able to leverage the strengths LLMs have shown [22} 3] to
filter out bad-quality multimodal data. We also manually
checked the ground-truth value vs the LLM-as-a-judge re-
sult for 100 samples for each type of figure, and include the
precision and recall analysis in Table

Once we have filtered out bad samples, we have a com-

https://mathvista.github.io/

Prompt:

e Type of chart to write matplotlib code for

e Linguistic constraints: question topic, question
type

e \Visual constraints: subtype of chart, colors to
include, hatches to use, number of elements

matplotlib

code question answer

code LLM—as—a—@
interpreter Judge

image [guestion, answer }

fine-tuning sample generated using
GAMMAS

Figure 2. GAMMAS Data Generation Pipeline

Figure Type | Precision (%) | Recall (%)
Bar Chart 100.0 85.2
Line Plot 95.2 93.1

Table 1. Precision and recall analysis of LLM as a judge on our
generated data. The precision refers to what percent of the outputs
that the judge LLM marked as correct were actually correct based
on our ground truth human evaluation, and the recall refers to the
percent of all correct answers that were selected as accurate by the
LLM.

plete dataset where each problem is associated with a type
of chart (bar or line), contains an image, a question, a cor-
responding answer, and in some cases, answer choices. For
cases with answer choices, we noticed a bias in GPT-4 in
that it generated the final answer to be B more often than
other choices. To mitigate this, for questions with multi-
ple answer choices, we shuffle the ordering of options as a
post-processing step.

3.3. Finetuning

We use LoRA and DoRA, two parameter-efficient fine-
tuning (PEFT) methods in order to efficiently fine-tune the
language model component of InternLM-XComposer2-VL-
1.8B on a single L4 GPU. We also jointly fine-tune the vi-
sion encoder - for this, we do full fine-tuning (because this
has relatively a much smaller number of parameters). Note
that we do not fine-tune the final MLP (also known as the
sampler) that connects the vision encoder and the input of

the language model (it converts vision encoder outputs into
embeddings that are consumed by the language model).
We now briefly go over how LoRA and DoRA work:

1. Low-Rank Adaptation (LoRA) [13]: Since tuning the
many dense layers in a 1.8B transformer model re-
quires additional compute and GPU memory, LoRA
fixes the existing weights and instead learns an addi-
tional low-rank update matrix for each dense parame-
ter matrix in the model. As mentioned in equation 3 of
[13], for a given dense weight W, € R%**, we learn
matrices A € R4*", B € R"*F, and compute the new
forward pass based on W = W, + AB instead of W,
The trick now is that we now don’t need to enable the
backward pass for the existing W, parameters in the
model which remain the same, and only need to prop-
agate gradients through the A and B matrices, which
we can make much cheaper by choosing r << d, k.
This saves on GPU memory needed as well as training
time. Note that at inference time, we also have no addi-
tional costs because we can simply update the weight
matrices in our saved model to use W = Wy + AB
everywhere.

2. Weight-Decomposed Low-Rank Adaptation (DoRA)
[18]: The concept of DoRA is simply to have an ad-
ditional parameter to tune the magnitude of the weight
matrix instead of just manipulating it by adding a low-
rank matrix. It can be formulated as now replacing
each weight matrix Wy with W = m% (as

mentioned in equation 5 of [[18]]). Note that ||.||. de-

notes the column-wise L2 norm of a matrix. The key
difference here is that we now have a third learned pa-
rameter m that can accordingly manipulate the magni-
tude of the weight matrices (this is similar in flavor to
the learned scaling parameter for batch norm, though
of course the norm isn’t taken over the batch here, just
over columns of the weight matrix). The step-by-step
process is also illustrated in E], taken from [18]]. Sim-
ilar to LoRA, there are no additional inference costs.

But a key thing to note is that the memory consump-

tion when training DoRA is notably higher than for

LoRA - and the reason for this is that the division by

||Wo + BA|. makes the gradient for W different from

the gradient for B A and we need to appropriately han-
dle the division in the computation graph. The au-

thors found that simply treating |Wy + BA||. as a

constant does not result in much less accuracy and re-

duces much of the additional memory costs (though

still more than LoRA) and so they implement this as a

workaround to still train DoRA in a memory-efficient

manner.

We utilize the InternLM-XComposer library, which pro-
vides a Huggingface-based framework for finetuning this

https://github.com/InternLM/InternLM-XComposer

Pretrained
Weight

Wo € R™*

[] — Frozen

— Trainable

Decompose
(Initialize)

||V + AV

<+ R, :

; Vens

Pretrained
Weight

V =W, € R**

v

Figure 3. This is figure 1 from [18] and illustrates how DoRA mod-
ifies the original weights.

series of models with LoRA - we slightly modify it to also
support DoRA.

The overall training set-up aside from the caveats above
is standard: the loss function for the model is the cross en-
tropy loss and it is trained on next-token prediction for the
generated text (note that we only train it for language-based
output, not multimodal output), where the expected output
will be the next language token (the tokenizer used through-
out is the InternL.M-2 tokenizer) and we will take the cross-
entropy loss between the outputs of our final softmax layer
(which has size |V'| where V is the vocabulary of tokens)
and the next output token.

4. Dataset and Features

The training set we generate using GAMMAS contains
860 training samples, with 460 bar charts and 400 line plots.
We also generate a validation set with 200 samples. Overall,
generating this dataset cost under $100, a fraction of what
it would cost to create a dataset of this scale using human
annotators.

Figure] shows an example of a Bar Chart and its related
question generated using GAMMAS. Figure 5]shows an ex-
ample of a Bar Chart and its related question from Math-
Vista. We selected two bar charts with a similar setup to
highlight key strengths of our dataset. First, we see visual
diversity, because we specifically generate charts with a va-
riety of colors, hatches, and numbers of elements. The chart
topics are also more coherent, and the question is notably
more challenging than the question in Figure 3]

5. Experiments

Training for all experiments was done on a single L4
GPU. We tuned the following hyperparameters:

1. r in LoRA and DoRA: We tune 7, the rank of the low-
rank matrix that is added in LoRA and DoRA, trying
values ranging from 2 to 32.

2. Learning Rate: We tuned around the value of 5e — 5,
ranging from values 4 times below to 4 times above

4324

Average Internet Usage per User

N 2019
- 2020

8

Hours per Week
8

0

Social Media Online Shopping Email Online Work Others

Figure 4. Example Bar Chart Generated Using GAMMAS. As-
sociated question: According to the bar chart, what was the per-
centage increase in hours spent by users on Online Shopping from
2019 to 2020?

Streaming

Most preferred objects of different

categories
10
categories
8 mmm bunch
w e green
o
[}
& 6
“
5]
=
& 4
£
3
=
2 4
0 4
2§ 2 7 &
£ ~ a o I
5 © a }
a E v

Figure 5. Example Bar Chart from MathVista Associated
question: How many people like the least preferred object in the
whole chart?

that. We used the Adam optimizer and a cosine learn-
ing rate schedule with weight decay of 0.1 (default pa-
rameters provided in the finetuning config) through.

Training Categories: We conducted experiments
where we tuned only on line chart data, only on bar
chart data, and on a mix of both to study overfitting
effects and the transferability of knowledge from each
category.

Using Randomization of Options and LLM as a Judge
vs not Using it: As noted above, we noticed that the
generated data tended to note provide a uniform distri-
bution across all options. We experimented with ab-
lating the randomization post-processing step to un-
derstand the impact of not having it. We also ran an
ablation removing the final LLM as a judge step to
understand how the lower quality raw generated data
affected (without filtering) affected performance.

Modifying the vision encoder versus keeping it fixed:
To understand how much of the improvement we see

Model GVal-B | TestM-B | TestM-L | TestM-O Model GVal-L | TestM-B | TestM-L | TestM-O
Baseline 50.0 64.5 58.3 50.7 Baseline | 49.4 64.5 58.3 50.7
LoRA (r=2) | 64.1 - - - LoRA (32) | 57.1 64.9 62.5 53.8
LoRA (r=298) 594 - - - Table 3. Only Training on Synthetic Line Plots
LoRA (r=32) | 67.2 61.3 58.3 54.4
Ablate ViT 600 613 533 555 Model GVal-B/L | TestM-B | TestM-L | TestM-O
Table 2. Only Training on Synthetic Bar Charts Baseline 50.0/49.4 64.5 583 50.7
LoRA (32) | 68.8/63.6 67.7 70.8 54.2
DoRA (32) | 71.9/58.4 71.0 70.8 54.6
came from improving the vision encoder versus im- Table 4. Training on Both Synthetic Bar and Line Plots

proving the alignment or aligning the language model
better, we ablated the finetuning of the vision encoder
(as mentioned above, otherwise this component would
undergo full fine-tuning along with the language model
component).

We kept the batch size fixed at 1 which keeps memory
usage minimized but effectively operated at a batch size of
8 by using 8 gradient accumulation steps before updating
the parameters. We turned off gradient checkpointing for
LoRA (for increased speed of tuning at the cost of addi-
tional memory) and kept it for DoRA (otherwise we would
run out of memory when tuning DoRA).

6. Results

The main metric we use to measure performance is ac-
curacy on different subsections of the MathVista’s testmini,
and on a validation set we create using GAMMAS. For
testmini, we look at accuracies on the bar chart subsection
(TestM-B), line plot subsection (TestM-L), and the other
categories in testmini combined (TestM-O). For the valida-
tion set we create, we look at either the bar chart subsection
(GVal-B), the line chart subsection (GVal-L), or the valida-
tion set overall (GVal). For all these datasets, we chose to
only evaluate MCQs, as freeform evaluation was challeng-
ing, given the many ways to write equally-correct answers.

Tables 2] 3] and [] show the performance of the base-
line and fine-tuned models using different fine-tuning tech-
niques and after being fine-tuned on different subsections
of the dataset generated using GAMMAS. Specifically, the
tables are split up by the type of fine-tuning data used, with
Table [2] listing models that were fine-tuned on only the Bar
Charts subsection of GAMMAS, Table@listing models that
were fine-tuned only on the Line Plots subsection of GAM-
MAS, and Table[d]listing models that were fine-tuned using
the entirety of GAMMAS. In each table, we list the baseline
performance, and performance with the fine-tuning tech-
niques we tried for that subsection of GAMMAS (namely
LoRA and ablating the vision encoder fine-tuning - denoted
as ViT - for Synthetic Bar Charts, LoRA for Synthetic Line
Plots, and Lora and DoRA for the entirety of GAMMAS).
Note that the numbers in parentheses next to DoRA and
LoRA fine-tuned models represent the rank used.

4325

Scores by Model and Category
70 o8

EEm Baseline

Train Line Only
Bl Train Bar Only
B Train Bar and Line

o
=}
L

55 55 54 3

v
=}
L

46 46

Scores (%)
g 3
L A

~
o
L

,_.
o
L

o
I

Geometry Scatter Plot Table Puzzle

Figure 6. A Fine-grained analysis of TestM-O

We also conduct a more fine-grained analysis of TestM-
O, the non-bar-and-line-chart subsection of testmini, in Fig-
ure

In Figure[7] we generate a t-distributed stochastic neigh-
bor embedding (t-SNE) visualization, a technique that lets
us create a 2D mapping in a way that preserves neighbor
identities [[12]. To do so, we ran the vision encoder on the
just the image from each training data sample, averaged the
1225 = 35235 vision embeddings that were output, and
passed it through a standard t-SNE algorithm with a per-
plexity of 30.

In addition to the experiments covered by the tables
above, we note the results from the following experiments:

1. Learning Rate Tuning: We found that the learning
rate did not have a significant impact on model per-
formance within the range that we tuned.

2. Randomization: We found that ablating the random-
ization step of our post-processing pipeline did not
result in any performance gain or drop; however, we
keep this step because it is important to guard against
inherent biases that could be introduced by the non-
randomness of LM output.

3. LLM as a judge: We found that this was very useful
- the validation accuracy for "LoRA (32)” trained on

SNE visualization of Fine-tuned (line + bar)

b
.F’ . .’ i' \ t val)
S ad . l." . o %
H - B8 f;‘ X
: o PO e
L 4 3
i | %
s,
X
.-.' bar
B

Figure 7. t-SNE visualizing the embedding similarities between
different figure types within MathVista, as well as our synthetic
generated data (using the val set).

bar chart data degraded by up to 5.1% without the ad-
ditional LLLM as a judge step to filter out bad examples.

We also make the following observations about the re-
sults in the tables, which we will discuss in more depth be-
low:

1. Using the highest tried rank of 32 for LoRA parame-
ters resulted in maximal accuracy on our validation set
when training on bar chart data.

Ablating the fine-tuning of the vision encoder results
in a large 9.1% drop in our accuracy on the validation
set.

. If we train only on synthetic bar chart data, we do
not notice improvement on the bar chart questions in
MathVista. However, if we train only on synthetic line
chart data, we notice improvements on the line chart
questions in MathVista. If we train on both sets of
data together, we notice improvements in both cate-
gories of MathVista questions. In all cases where we
fine-tune, we slightly improve performance on ques-
tions that are not bar or line chart related but in the
MathVista dataset.

. DoRA with r = 32 is comparable with LoRA with r
= 32 (from our validation sets, we saw that they were
slightly better for bar charts, and worse for line plots).
Both outperform the baseline model on the MathVista
dataset (both in the bar chart and line chart categories,
as well as others).

7. Discussion

GAMMAS Difficulty Level Generally, we observe that
models perform worse on GVal than they do TestM-B or
TestM-L. For example, in Table [2, we see a stark 14.5%
difference in the performance of the baseline model, with

4326

TestM-B being significantly easier than GVal-B. We see a
similar pattern within Table[3] with the baseline achieving a
8.9% lower accuracy on GVal-L than on TestM-L.

Performance After Fine-tuning, Bar and Line Chart
Tasks When fine-tuning with bar charts, we see that per-
formance on GVal-B increases significantly. The LoRA
fine-tuned model (with rank 32) achieves the best perfor-
mance, showing a 17.2% increase. Despite this, perfor-
mance on TestM-B actually drops by 3.2% after fine-tuning.
We hypothesize two reasons for this. The first explanation
could be simple overfitting. As we see in Table] when
we fine-tune with both bar and line charts, performance im-
proves on both TestM-B and GVal-B, not just GVal-B, as
previously observed.

However, this pattern is not observed with line charts.
In line charts, we see that LoRA fine-tuning (with rank 32)
leads to a 7.7% increase in performance on GVAL-L and a
4.2% increase in performance on TestM-L. Line charts had
60 fewer data points than bar charts, which could explain
the lack of overfitting.

One reason for this could be that performance on bar
charts for these models is already quite good, whereas per-
formance on line plots is generally lower for the baseline
model itself. Therefore, it could be easier to improve per-
formance on line charts without overfitting.

Another reason for the observed drop in performance for
bar-chart-fine-tuned models on TestM-B could be because
of the difficulty of the GAMMAS fine-tuning set. Work
in curriculum learning has shown that the order in which
models see increasingly difficult examples impacts train-
ing convergence and model performance a lot 1, 9]. Be-
cause we did not tag examples with difficulty, it is likely
that the model saw training examples in an unideal order,
limiting its ability to actually learn during finetuning. How-
ever, when we finetune with both bar and line charts, we
note a performance increase of 6.5% and 12.5% on TestM-
B and TestM-L, respectively,

Performance After Fine-tuning, Other Tasks Across
tables[2] 3] 4] we see an overall increase in performance on
TestM-O, regardless of whether we train using the bar- or
line-chart split (or both). This demonstrates that the model’s
reasoning abilities improved overall, despite only seeing
data from a narrow range of skills. As shown in Figure [6}
fine-tuned models specifically perform better on geometry
tasks, as they require mathematical reasoning that doesn’t
counter what the models learning during fine-tuning. The
performance on scatter plot tasks decreases, which is sur-
prising because it is a related task. Possibly, this could
be because while the linguistic questions about the scat-
ter plots were similar to those for line- and bar-charts, the
scatter plots themselves were visually different, leading the

model to misreason. Puzzles are both visually and linguisti-
cally different from bar and line charts, which is likely what
causes the performance decrease observed. Performance on
table tasks generally stays unchanged, likely because of the
difficulty of table-related tasks for VLMs [[19].

Evaluating GAMMAS Faithfulness In Figure [/, we
measure how data clusters to check whether GAMMAS
faithfully replicates the data distribution in the MathVista
dataset. We see that each category of image clusters with
other images from its category, which is expected. We also
see that examples generated using GAMMAS (indicated by
synthetic bar chart and synthetic line plot) generally cluster
around the MathVista bar charts and line plots, respectively.

Interpretability: Impact of Vision vs Language We
also wanted to understand whether it is improvement in
the visual component that results in the overall improve-
ments that we see or improvements in the language com-
ponent. One datapoint we see above is that, when purely
training on bar chart data, not finetuning the vision encoder
results in worse performance on our val dataset but com-
parable performance on MathVista. This might suggest that
fine-tuning the vision encoder contributes to some degree of
overfitting to the structure of our images, which means that
we might reap benefits from using additional vision trans-
forms/adding more noise or variety to our input. We also
extracted the embeddings after fine-tuning, and compared
them to the ones before fine-tuning by running t-SNE with
both sets to understand if there was a noticeable difference
caused by fine-tuning in the clustering of these embeddings
(i.e. does the same datapoint’s embedding change a lot be-
fore and after fine-tuning?). However, we did not see this
to be the case (most embeddings after fine-tuning stayed
relatively close to where they were before fine-tuning on a
t-SNE plot) - we omit the figure for this because it is not too
instructive (as the points after fine-tuning look very similar
to the figure above before fine-tuning).

8. Conclusion/Future Work

In this work, we present GAMMAS: a novel pipeline
to generate synthetic multi-modal data for math problem-
solving. We synthesize bar- and line-chart-related math
problems using this pipeline. Then, we fine-tune InternLM-
XComposer2-VL-1.8B using different subsections of our
dataset with PEFT techniques like LoRA and DoRA. Gen-
erally, the fine-tuned models not only improve on the task
we fine-tuned them with, but also on other tasks, with a
17.2% performance improvement being observed on bar
chart tasks.

In the future, we are interested in using this pipeline to
explore the impact the type of diversity in finetuning data

4327

has on model performance. Because the prompting used in
GAMMAS has a piece for linguistic and visual diversity,
we want to experiment how model performance is impacted
when we generate data by omitting either (or both) of the
types of diversity we prompted for. We also would like to
build a robust evaluation pipeline that would also let us test
our models on questions with freeform answers. We noted
earlier that during data synthesis, the LLM frequently gen-
erated the MCQ answer to be B. We noted a similar issue
with Yes/No questions, where the answer was Yes 75% of
the time. In the future, we would like to address this by us-
ing prompt rewriting to even out the distribution of Yes and
No answers.

Lastly, while we only explore parameter-efficient fine-
tuning techniques in this paper, we’d like to explore rep-
resentation fine-tuning (ReFT) techniques in the future as
well. While fine-tuning, we only focused on fine-tuning the
vision encoder and the LM, but did not fine-tune the sam-
pler, which connects the encoder to the LM. We expect that
fine-tuning the sampler would improve model performance
even more.

Generating synthetic visual data is still challenging, as
leading vision models face noticeable gaps in performance.
By harnessing the linguistic/coding capabilities of LLMs
to programmatically generate diverse multi-modal data, the
GAMMAS pipeline opens up a future avenue for work.
While we only generated synthetic bar- and line-charts,
data from other tasks like tables, geometry problems, scat-
ter plots, etc. can be synthesized by harnessing code-
generation for matplotlib-like tools.

9. Appendices

10. Contributions and Acknowledgements

Shubhra created the data generation pipeline for bar
charts, which Ram adapted to line charts. He implemented
both the PeFT techniques mention in the paper. He also im-
plemented the LL.M-as-a-judge + randomization techniques
discussed in the data generation pipeline, and also evaluated
the ground-truth results we show to prove the efficacy of
LLM-as-a-judge for our use case.

References

[1] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-
riculum learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML 09, page
41-48, New York, NY, USA, 2009. Association for Comput-
ing Machinery.

F Bordes, R. Y. Pang, A. Ajay, A. C. Li, A. Bardes,
S. Petryk, O. Madias, Z. Lin, A. Mahmoud, B. Jayaraman,
M. Ibrahim, M. Hall, Y. Xiong, J. Lebensold, C. Ross,
S. Jayakumar, C. Guo, D. Bouchacourt, H. Al-Tahan,
K. Padthe, V. Sharma, H. Xu, X. E. Tan, M. Richards,
S. Lavoie, P. Astolfi, R. A. Hemmat, J. Chen, K. Tirumala,

(2]

Birds Population Over Years

Sparrows
—v— Eagles
- Owls

g

Population (in thousands)

8

2010 2012 2014 2016

Year

2018 2020

Figure 8. Example Line Chart Generated Using GAMMAS. Asso-
ciated question: In which year, the population of Eagles surpassed
the population of Sparrows if ever?

Figure 9.
question:

(3]

(4]

title

Orchid
— Medium Purple
] — Firebrick

Cyan

yaxis label

Bubblegum
1 Green Yellow
—Red

T
80 100

xaxis label

Example Line Chart from MathVista [19]. Associated
Does medium purple have the second highest value?

R. Assouel, M. Moayeri, A. Talattof, K. Chaudhuri, Z. Liu,
X. Chen, Q. Garrido, K. Ullrich, A. Agrawal, K. Saenko,
A. Celikyilmaz, and V. Chandra. An introduction to vision-
language modeling, 2024.

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke,
E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg,
H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang. Sparks of
artificial general intelligence: Early experiments with gpt-4,
2023.

. Cai, M. Cao, H. Chen, K. Chen, K. Chen, X. Chen,
. Chen, Z. Chen, Z. Chen, P. Chu, X. Dong, H. Duan,
Fan, Z. Fei, Y. Gao, J. Ge, C. Gu, Y. Gu, T. Gui,
. Guo, Q. Guo, C. He, Y. Hu, T. Huang, T. Jiang, P. Jiao,
Jin, Z. Lei, J. Li, J. Li, L. Li, S. Li, W. Li, Y. Li,
Liu, J. Liu, J. Hong, K. Liu, K. Liu, X. Liu, C. Lv,
. Lv, K. Lv, L. Ma, R. Ma, Z. Ma, W. Ning, L. Ouyang,
J. Qiu, Y. Qu, F. Shang, Y. Shao, D. Song, Z. Song, Z. Sui,
P. Sun, Y. Sun, H. Tang, B. Wang, G. Wang, J. Wang,

4328

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

J. Wang, R. Wang, Y. Wang, Z. Wang, X. Wei, Q. Weng,
E Wu, Y. Xiong, C. Xu, R. Xu, H. Yan, Y. Yan, X. Yang,
H. Ye, H. Ying, J. Yu, J. Yu, Y. Zang, C. Zhang, L. Zhang,
P. Zhang, P. Zhang, R. Zhang, S. Zhang, S. Zhang, W. Zhang,
W. Zhang, X. Zhang, X. Zhang, H. Zhao, Q. Zhao, X. Zhao,
F. Zhou, Z. Zhou, J. Zhuo, Y. Zou, X. Qiu, Y. Qiao, and
D. Lin. Internlm?2 technical report, 2024.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun,
L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano,
C. Hesse, and J. Schulman. Training verifiers to solve math
word problems, 2021.

X. Dong, P. Zhang, Y. Zang, Y. Cao, B. Wang, L. Ouyang,
X. Wei, S. Zhang, H. Duan, M. Cao, W. Zhang, Y. Li, H. Yan,
Y. Gao, X. Zhang, W. Li, J. Li, K. Chen, C. He, X. Zhang,
Y. Qiao, D. Lin, and J. Wang. Internlm-xcomposer2:
Mastering free-form text-image composition and compre-
hension in vision-language large model. arXiv preprint
arXiv:2401.16420, 2024.

X. Dong, P. Zhang, Y. Zang, Y. Cao, B. Wang, L. Ouyang,
X. Wei, S. Zhang, H. Duan, M. Cao, W. Zhang, Y. Li, H. Yan,
Y. Gao, X. Zhang, W. Li, J. Li, K. Chen, C. He, X. Zhang,
Y. Qiao, D. Lin, and J. Wang. Internlm-xcomposer2: Mas-
tering free-form text-image composition and comprehension
in vision-language large model, 2024.

R. Eldan and Y. Li. Tinystories: How small can language
models be and still speak coherent english?, 2023.

A. Graves, M. G. Bellemare, J. Menick, R. Munos, and
K. Kavukcuoglu. Automated curriculum learning for neu-
ral networks, 2017.

S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. D.
Giorno, S. Gopi, M. Javaheripi, P. Kauffmann, G. de Rosa,
O. Saarikivi, A. Salim, S. Shah, H. S. Behl, X. Wang,
S. Bubeck, R. Eldan, A. T. Kalai, Y. T. Lee, and Y. Li. Text-
books are all you need, 2023.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart,
E. Tang, D. Song, and J. Steinhardt. Measuring mathematical
problem solving with the math dataset, 2021.

G. Hinton and S. Roweis. Stochastic neighbor embedding. In
Proceedings of the 15th International Conference on Neural
Information Processing Systems, NIPS’02, page 857-864,
Cambridge, MA, USA, 2002. MIT Press.

E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen. Lora: Low-rank adaptation of large
language models, 2021.

A. Q. Jiang, W. Li, and M. Jamnik. Multilingual mathemati-
cal autoformalization, 2023.

S. E. Kahou, A. Atkinson, V. Michalski, A. Kadar,
A. Trischler, and Y. Bengio. Figureqa: An annotated figure
dataset for visual reasoning. ArXiv, abs/1710.07300, 2017.
R. Koncel-Kedziorski, S. Roy, A. Amini, N. Kushman, and
H. Hajishirzi. MAWPS: A math word problem repository. In
K. Knight, A. Nenkova, and O. Rambow, editors, Proceed-
ings of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152—-1157, San Diego,
California, June 2016. Association for Computational Lin-
guistics.

(17]

(18]

(19]

(20]

(21]

(22]

B. Liu, S. Bubeck, R. Eldan, J. Kulkarni, Y. Li, A. Nguyen,
R. Ward, and Y. Zhang. Tinygsm: achieving ;80

S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang,
K.-T. Cheng, and M.-H. Chen. Dora: Weight-decomposed
low-rank adaptation, 2024.

P. Lu, H. Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi,
H. Cheng, K.-W. Chang, M. Galley, and J. Gao. Mathvista:
Evaluating mathematical reasoning of foundation models in
visual contexts, 2024.

A. Masry, D. X. Long, J. Q. Tan, S. Joty, and E. Hoque.
Chartqa: A benchmark for question answering about charts
with visual and logical reasoning, 2022.

T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye.
A large contextual dataset for classification, detection and
counting of cars with deep learning, 2016.

OpenAl, J. Achiam, S. Adler, S. Agarwal, L. Ahmad,
I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji,
V. Balcom, P. Baltescu, H. Bao, M. Bavarian, J. Belgum,
I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bog-
donoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman,
T. Brooks, M. Brundage, K. Button, T. Cai, R. Campbell,
A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan,
C. Chang, F. Chantzis, D. Chen, S. Chen, R. Chen,
J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H. W.
Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux,
T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan,
S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloun-
dou, D. Farhi, L. Fedus, N. Felix, S. P. Fishman, J. Forte,
L. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogi-
neni, G. Goh, R. Gontijo-Lopes, J. Gordon, M. Grafstein,
S. Gray, R. Greene, J. Gross, S. S. Gu, Y. Guo, C. Hal-
lacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke,
C. Hesse, A. Hickey, W. Hickey, P. Hoeschele, B. Houghton,
K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang,
A. Jiang, R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn,
H. Jun, T. Kaftan, Fukasz Kaiser, A. Kamali, I. Kanitschei-
der, N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim,
Y. Kim, J. H. Kirchner, J. Kiros, M. Knight, D. Kokota-
jlo, Lukasz Kondraciuk, A. Kondrich, A. Konstantinidis,
K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee,
J. Leike, J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin,
S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju,
K. Malfacini, S. Manning, T. Markov, Y. Markovski, B. Mar-
tin, K. Mayer, A. Mayne, B. McGrew, S. M. McKin-
ney, C. McLeavey, P. McMillan, J. McNeil, D. Medina,
A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin,
V. Monaco, E. Morikawa, D. Mossing, T. Mu, M. Murati,
O. Murk, D. Mély, A. Nair, R. Nakano, R. Nayak, A. Nee-
lakantan, R. Ngo, H. Noh, L. Ouyang, C. O’Keefe, J. Pa-
chocki, A. Paino, J. Palermo, A. Pantuliano, G. Parascan-
dolo, J. Parish, E. Parparita, A. Passos, M. Pavlov, A. Peng,
A. Perelman, F. de Avila Belbute Peres, M. Petrov, H. P.
de Oliveira Pinto, Michael, Pokorny, M. Pokrass, V. H. Pong,
T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Rad-
ford, J. Rae, A. Ramesh, C. Raymond, F. Real, K. Rimbach,
C. Ross, B. Rotsted, H. Roussez, N. Ryder, M. Saltarelli,
T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr,

4329

(23]

(24]

[25]
(26]
(27]

(28]

J. Schulman, D. Selsam, K. Sheppard, T. Sherbakov,
J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens,
J. Sitkin, K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Stau-
dacher, F. P. Such, N. Summers, 1. Sutskever, J. Tang,
N. Tezak, M. B. Thompson, P. Tillet, A. Tootoonchian,
E. Tseng, P. Tuggle, N. Turley, J. Tworek, J. F. C. Uribe,
A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J.
Wang, A. Wang, B. Wang, J. Ward, J. Wei, C. Weinmann,
A. Welihinda, P. Welinder, J. Weng, L. Weng, M. Wiethoff,
D. Willner, C. Winter, S. Wolrich, H. Wong, L. Workman,
S. Wu, J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo, K. Yu,
Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang,
S. Zhao, T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph. Gpt-4
technical report, 2024.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision, 2021.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C.Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge, 2015.

D. Saxton, E. Grefenstette, F. Hill, and P. Kohli. Analysing
mathematical reasoning abilities of neural models, 2019.

P. Song, K. Yang, and A. Anandkumar. Towards large lan-
guage models as copilots for theorem proving in lean, 2024.
C. Team. Chameleon: Mixed-modal early-fusion foundation
models, 2024.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu,
Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang, J. E.
Gonzalez, and I. Stoica. Judging llm-as-a-judge with mt-
bench and chatbot arena, 2023.

