
GAS - A Visual Navigation Framework for Producing 2D and 3D Semantic Maps
from Video

Alexander ”Sasha” Kuznetsov
skz@stanford.edu

Ghanshyam Bhutra
gbhutra@stanford.edu

Swaroop Pal
swaroop3@stanford.edu

Abstract

We introduce a visual navigation framework that pro-
duces 2D and 3D semantic maps, with accurate object and
landmark labels, from video.

This is achieved by consuming monocular, stereo, or
RGB-D video to estimate camera poses and a dense 3D map
of the environment. Simultaneously, the framework detects
objects in the video feed and attaches semantic labels to key
items in the environment. The 3D map and detected object
information are then converted into a higher abstraction,
2D map, which can be used to aid indoor navigation and
motion planning for humans, robots, and AI agents.

Our framework leverages GO-SLAM [2] to estimate an
environment mesh from video, and utilizes state-of-the-art
models including a fine-tuned version of Detectron2’s [9]
Faster R-CNN [10] for object detection and a Segment Any-
thing [11] model for object segmentation.

Our finetuned object detector is trained on multiple
datasets from various sources which contain relevant in-
door objects and landmarks of interests, such as chairs and
entrances/exits.

We qualitatively evaluate the mapping performance on
environments from the Replica dataset [3]. We evaluate our
fine-tuned object detector on various quantitative metrics.

1. Introduction
Indoor mapping is an important topic for both humans

and robots. Environments can change over time, so map-
ping environments quickly and cheaply is key, especially at
a global scale. While satellite, aerial, and streetview footage
can be used to automatically generate outdoor maps at a
global scale, indoor mapping is a more challenging prob-
lem, due to the lack of high quality data. This is demon-
strated by the lack of global, publicly available, up-to-date
indoor maps.

One solution is to produce indoor maps from video.
Cameras are a relatively cheap and readily available sensor
that, even in the absence of LiDAR, can be used to generate
maps, and can scale globally.

To solve this, we’ve created a system that consumes
monocular, stereo, or RGB-D video to produce accurate, se-
mantically and spatially labelled, 2D and 3D maps of indoor
environments. These maps can then be used to aid indoor
navigation and motion planning for humans, robots, and AI
agents. 2D floor maps provide a level of abstraction that is
natural for human navigation, while 3D maps describe the
environment in a manner that a robot or AI agent can use
for planning and acting.

Our framework leverages GO-SLAM [2] to estimate an
environment mesh from video using deep-learning tech-
niques for feature extraction and matching, and utilizes
state-of-the-art models like a fine-tuned version of Detec-
tron2’s [9] Faster R-CNN [10] for object detection and
a Segment Anything [11] model for object segmentation.
These pieces are combined to generate 2D and 3D maps.

2. Related Work

Deep learning for visual localization and mapping is a
rich and deep field. A survey of techniques in this area can
be found at [19].

We reviewed key SOTA papers and models in the areas
of visual SLAM, object detection and image segmentation,
which are the building blocks of this project. We combined
them in a novel way to produce semantically labelled 2D
and 3D maps.

There exists a project [13] that labelled objects dur-
ing visual SLAM, but it was limited to labelling objects
along walls and only with rectangular bounding boxes. Our
framework extends this by leveraging more fine object seg-
mentation masks, thereby producing more accurate spatial
labels, and by projecting properly into world coordinates,
can place objects anywhere in the 3D map.

Another relevant and interesting project is [18], which
describes an approach for navigating to a visual target in an
indoor environment in the minimum number of steps. This
approach does not require a map, and doesn’t produce one,
although it could probably be extended to produce one. In
contrast, our framework has the explicit goal of producing
2D and 3D maps of indoor scenes.

1



For 3D visual SLAM, we reviewed several SOTA frame-
works, particularly DIM-SLAM [17], DROID-SLAM [15],
and DK-SLAM [16]. In the end we made heavy use of the
existing GO-SLAM framework [2]. We chose this frame-
work due to its higher 3D mesh accuracy, versatility (it can
run on mono, stereo, or RGB-D inputs), and low memory
requirement. We left this framework largely unchanged for
producing an estimated environment mesh, but adapted it
to our needs by utilizing its intermediate outputs: estimated
camera poses and corresponding estimated depth maps for
each frame. These intermediate inputs were fed into our
framework pipeline.

For object detection, we reviewed existing object detec-
tors including fasterrcnn resnet50 fpn from PyTorch [14]
and the Detectron2 Faster R-CNN model [9]. We adapated
the Detectron2 model by finetuning it on additional datasets
with additional relevant labels for our task of mapping in-
door environments.

We also explored using DETR for object detection [1]
but we abandoned it due to difficulty fine-tuning it on addi-
tional datasets.

For object segmentation, we reviewed SOTA models,
particularly the Segment Anything [11] model, which we
could adapt for our purposes without modification.

3. Methods
3.1. Framework Overview

The mechanism consists of 4 stages, executed sequen-
tially (see Figure 1). They are:

1. 3D SLAM and pose estimation from a video feed using
GO-SLAM [2]
Inputs:

• mono, stereo, or RGB-D video frames

Outputs:
• dense mesh of the environment
• estimated camera poses for to each frame
• estimated depth map for each frame

2. Object detection and segmentation, run on each frame
Inputs:

• video frames
• estimated depth maps, from previous stage
• estimated camera poses, from previous stage

Outputs:
• object bounding boxes, labels, and segmentation

masks for each frame
• 3D point cloud for each object

3. Object merging, which merges images across frames
Inputs:

• object point clouds, generated in previous stage

Outputs:

• unique point clouds, merged between frames

4. Map generation, which aligns the SLAM’d environ-
ment with the x-y-z frame
Inputs:

• dense environment mesh, generated in first stage
• unique object point clouds and labels, generated

from previous stage

Outputs:

• 3D map with spatial object and landmark labels
• 2D floor map with spatial object and landmark

labels

Figure 1. GAS - A Visual Navigation Framework for Producing
2D and 3D Semantic Maps

3.2. Execution Stage Detail

A detailed description of each stage of the pipeline fol-
lows.

3.2.1 3D SLAM

The first step in the pipeline executes GO-SLAM on the
video frames, which estimates a mesh of the scene and the
camera trajectory. During this step, the mesh, camera pose
corresponding to each frame, and estimated depth maps cor-
responding to each frame are saved (see Figure 2).

Figure 2. Estimated environment mesh and camera poses produced
by 3D SLAM

2



The depth maps for each frame are generated by provid-
ing the mesh, the camera pose, the camera intrinsic matrix
to a rendering program (see Figure 3).

Figure 3. Estimated depth map corresponding to a video frame,
produced from estimated mesh, estimated camera pose, and cam-
era matrix

3.2.2 Object Detection

Next, we run an object detector model on a subsampled
stream of frames. For this purpose, we fine-tuned our own
Detectron2 model on datasets of indoor objects and land-
marks of interest. We experimented both with our own
model and fasterrcnn resnet50 fpn from the PyTorch model
zoo.

The object detector returns a bounding box in the origi-
nal image (see Figure 4).

Figure 4. Object detector result on a frame from the Replica dataset

We filter objects by confidence score and then map the
bounding box to the estimated depth map. We then segment
the objects of interest by applying the Segment Anything
model to the centre of each box (see Figure 5).

Segmentation masks for each image are projected into
3D point clouds using the camera intrinsic matrix and the
corresponding depth mask, extracted from the estimated
depth map. See Figure 6, which shows the projection from
image frame coordinates to 3D world coordinates, and Fig-
ure 7, which shows this projection when combined with an
image segmentation mask.

Figure 5. Object boxes and masks in the image and corresponding
masks in the depth map

Figure 6. Image projection from camera to 3D world, produced
from frame pose estimate, the camera matrix, and the estimated
depth map

Figure 7. Chair segmentation mask (green) projected into 3D
world coordinates, with object label above it (red)

3.3. Object Merging

At this point in the pipeline, we have the point clouds for
each object from each frame (see Figure 8). We must now

3



merge instances of the same object, seen across frames, into
the same object.

Figure 8. All the objects extracted from all frames, before merging

We merge two instances of an object if they are likely
to be the same object. To determine whether two instances
should be merged, we:

1. Quantize the objects’ point clouds to decimeter level
2. Calculate the intersection of the two point clouds, and

normalise by the smaller point cloud
3. If the normalised intersection is above some threshold,

we consider the objects to likely be two instances of
the same object, and merge them

To merge, we combine the two point clouds and remove
duplicate points (quantized to cm level).

We finalise the list by imposing a minimum threshold on
the number of frames that must have seen the same object.
If an object label was detected in the same position with the
same label from multiple frames, it significantly reduces the
chances of it being a false positive object detection from a
single frame, which we observed in some experiments.

Finally, we have all the point clouds corresponding to
each unique object in the scene (see Figure 9).

Figure 9. Labelled object point clouds in 3D space

3.3.1 Map Generation

At this point, we have created a 3D map with spatial labels
for landmarks and objects. Now we align the scene with
the xyz axes so that we can project the map into 2D. This
process starts by using a RANSAC algorithm to identify
and align the largest plane, likely the floor or ceiling, with
the x-y plane. After removing this plane, we identify and
align the third largest plane, assumed to be a wall, with the
x-z plane. This alignment ensures accurate projection of
the 3D meshes and labels into 2D, as depicted in Figure
10 showing the scene with segmented planes removed and
properly oriented.

Figure 10. Labelled mesh with segmented floor, ceiling, and wall
removed

Next we project the 3D mesh into 2D by removing the z
axis, and then compute the 2D histogram of points (see Fig-
ure 11). We apply a median filter to reduce spikes, and then
apply a Gaussian filter to smooth the density map further.

Figure 11. Creating a map from 2D point cloud density

This highlights environment features, particularly walls
and objects, very well. To create patches corresponding to
objects on the map, we take each object’s pointcloud, pro-
jected into 2D, and compute its convex hull. This gives the
exterior points of the object in the 2D space, from which we
then create a polygon patch for each object (see Figure 17).

3.4. Fine-tuned Object Detector

We improved the performance of our framework by fine-
tuning a Detectron2 Faster R-CNN model with additional
datasets with relevant objects of interests, particularly en-
trances.

4



For our specific application in indoor navigation, we
have fine-tuned the Faster R-CNN model on a custom
dataset containing images of common indoor objects in-
cluding doors, chairs, tables, and couches. This fine-tuning
process involves adjusting the last few layers of the pre-
trained network to better recognize relevant categories. This
is effective for our task because it leverages the learned fea-
tures of the pre-trained model, which are generally applica-
ble to various objects, and adapts them to the specific char-
acteristics of common objects in indoor environments.

The fine-tuning process was inspired by the comprehen-
sive guide and scripts available at Detectron2’s official doc-
umentation [9] and a custom script, finetunedetectron2 [12].
These resources provided foundational code and method-
ologies, which we built upon by integrating our datasets and
adjusting hyperparameters to optimize the detection perfor-
mance in indoor settings.

4. Data
4.1. Dataset for Fine Tuning Detectron2’s Faster

R-CNN [10]

In this project, we focus on detecting landmark objects
that typically appear indoors and remain static. The cat-
egories include door, cabinet, refrigerator, window, chair,
table, couch, bed, oven, and TV. To achieve this, we consol-
idated five different datasets as no single dataset met all our
requirements.

The merged dataset comprises a total of 12,427 images,
with 8,259 images for training, 2,971 images for validation,
and 1,197 images for testing. Below is a brief overview of
each individual dataset that was merged:

• ditonadoorkasidikasya Dataset [4]: 947 images an-
notated in COCO format, split into 800 training im-
ages, 102 validation images, and 45 test images. Pre-
processing included auto-orientation and resizing to
640x640. No augmentations were applied.

• furniture-ngpea Dataset [5]: 689 images annotated
in COCO format, with 454 images for training, 161
for validation, and 74 for testing. No preprocessing or
augmentation was applied.

• furniture-6ekum Dataset [6]: 1,653 images in COCO
format, with 1,446 for training, 138 for validation,
and 69 for testing. Preprocessing steps were auto-
orientation and resizing to 640x640, with extensive
augmentation techniques applied such as horizontal
flipping, random cropping, rotation, shear, Gaussian
blur, and noise addition.

• household appliances Dataset [7]: 7,789 images an-
notated in COCO format, divided into 5,452 training
images, 1,558 validation images, and 779 test images.
Preprocessing involved auto-orientation and resizing
to 416x416, with no augmentations applied.

• Indoor objects dataset based on [8]: 1,349 images
annotated in YOLOv5 format, split into 107 train-
ing images, 1,012 validation images, and 230 test im-
ages. This dataset required conversion from YOLO to
COCO format and category adjustments to align with
the target categories.

4.1.1 Datasets Assemble!

For the merged dataset, specific preprocessing and augmen-
tation steps were necessary to ensure consistency and en-
hance the model’s robustness. The preprocessing steps were
as follows:

• Conversion from YOLO to COCO: The Indoor ob-
jects dataset, originally in YOLO format, was con-
verted to the COCO format using a custom script. This
involved reading the YOLO annotations, converting
the normalized coordinates to absolute coordinates,
and saving the annotations in COCO format.

• Category Mapping and Unification: Categories
from all datasets were mapped and unified to align with
the target categories. This involved merging similar
categories and removing irrelevant ones. For exam-
ple, the categories ”sofa” and ”couch” were merged
into a single category ”couch.” Categories like laptop
and microwave were removed. Images and annotations
from all datasets were combined into a single dataset
for each split (train, validation, test).

4.1.2 Detectron2’s Magical Configuration

Since the above section for getting the merged dataset re-
sults in COCO annotation which has images of different im-
age sizes from different datasets we leverage Detectron2’s
[9] default configuration to handle the final input to the
model. During the final preprocessing stage, Detectron2
dynamically resizes the images to handle different image
sizes in the merged dataset which is used for fine tuning and
training the Faster R-CNN model. For training, the shorter
side of each image is resized to one of the predefined sizes
(640, 672, 704, 736, 768, or 800 pixels) while ensuring the
longer side does not exceed 1333 pixels. This dynamic re-
sizing helps maintain consistency in image dimensions, fa-
cilitating efficient processing by the model. During testing,
images are resized such that the shorter side is 800 pixels,
with the longer side limited to 1333 pixels. Aspect ratio
grouping is employed to group images with similar aspect
ratios into the same mini-batches, enhancing training effi-
ciency. Additionally, empty annotations are filtered out to
ensure only images with valid annotations are used. Ran-
dom horizontal flipping is applied as a data augmentation
technique to improve model robustness. These preprocess-
ing steps ensure that the model can effectively handle the

5



variability in image sizes across the merged dataset, leading
to better performance during training and testing.

These preprocessing and augmentation steps ensured a
consistent and diverse dataset, facilitating effective training
and evaluation of the object detection model.

4.2. Dataset for SLAM and Mapping Evaluation

We qualitatively evaluated our framework on indoor
scenes from the Replica dataset [3]. After training our fine-
tuned Detectron2 model on labelled datasets, we also qual-
itatively examined the performance of our model on frames
from the Replica dataset to verify that it could it detect com-
mon objects in the video feeds.

To evaluate the performance of our mapping system, we
qualitatively compared the spatially lablled semantic maps,
in 2D and 3D, against the ground truth meshes provided by
Replica (see Figures 16, 17 and 9).

5. Experiments and Discussion
5.1. Mapping

We experimented with using both an existing faster-
rcnn resnet50 fpn model and our own fine-tuned Detec-
tron2 model (see Figures 18 and 17 respectively, with corre-
sponding ground truth in Figure 16). We found that the De-
tectron2 model performed inference more quickly, reducing
computation time or allowing us to improve the quality of
the map generation by increasing the frame sampling rate.
Further, fine-tuning our own model with additional object
classes allowed us to enrich the information provided by the
map (in Figure 17 we added doors, which are a key feature
for navigating indoor environments). Our fine-tuned model
also produced more accurate labels. For example, the faster-
rcnn resnet50 fpn incorrecntly labelled a round chair as a
sports ball in Figure 18.

We observed that the quality of the map was heavily sen-
sitive to the estimate of the camera instrinsics. If the es-
timate is not accurate, such as if the footage is obtained
by an unknown camera, then the quality of the map will
suffer. This is because the camera instrinsics govern how
segmented points from frames are projected into world co-
ordinates, so inaccuracies will distort the world coordinate
projection.

We observed that incorporating segmentation masks im-
proved the quality of spatial labels dramatically. Projecting
bound boxes into world coordinates catches many points
that are not part of the object of interest, which are often
further in the background or foreground. When projected
into 3D, these points place the edges of the object incor-
rectly, and also inflate the size of objects.

However, we still observe errors with segmentation
masks. Sometimes the automatic segmentation incorrectly
selects a portion of an object. This is somewhat ameliorated

by observing the same object from multiple angles, and then
merging the masks. The other error is introduced when the
masks catches edges of objects in the foreground or back-
ground. For example, in Figure 17, the couch mask catches
some pixels from the vase on the table, extending the couch
patch towards the table.

This introduces another issue we observed. Our model
sometimes confused adjacent chairs with couches, as seen
in Figure 17. Hence, both classes of objects are labelled in
that region: two adjacent chairs and a couch.

Similarly, we saw confusion from the faster-
rcnn resnet50 fpn, where it confused objects with similar
features. For example, it mistook lamp shades for bowls.

We experimented with different input channels as well.
RGB-D input produced higher fidelity maps, due to the ad-
ditional depth information. Our framework also produced
maps from monocular feed, but at lower fidelity.

5.2. Object Detection

In our experiments training Detectron2’s Faster R-CNN
model for object detection, we evaluated various configura-
tions to understand the influence of batch size, learning rate,
and the focus of layer training. To clarify the metrics, we
describe them below:

• AP (Average Precision) measures precision across all
classes and IoU thresholds.

IoU, or Intersection over Union, is a metric used to
evaluate the accuracy of an object detector. It is cal-
culated as the ratio of the area of overlap between the
predicted bounding box and the ground truth bounding
box to the area of their union.

IoU =
Area of Overlap
Area of Union

Where:

– Area of Overlap is the area shared by both the
predicted and the ground truth bounding boxes.

– Area of Union is the combined area of the pre-
dicted and ground truth bounding boxes, minus
the overlap.

• APs, APm, APl represent the average precision for
small, medium, and large objects, respectively, demon-
strating the model’s performance across different ob-
ject sizes.

• AP-{class} such as AP-door or AP-tv, measures the
precision for specific classes, providing insights into
class-specific detection capabilities.

We analyzed five different configurations:

6



Table 1. Overall Metrics for Fine tuned Model
Config Batch LR AP APs APm APl

Pretrained - - 40.22 24.16 43.53 51.98
1 2 0.00025 18.90 0.83 10.70 24.66
2 10 0.001 24.86 1.59 13.35 32.38
3 10 0.005 20.65 1.68 10.74 27.10
4 10 0.01 18.87 1.25 8.28 25.56
5 10 0.001 25.38 2.04 13.34 32.84

Table 2. Category-Specific Metrics Part 1
Config AP-door AP-cabinet AP-refrigerator

Pretrained - - 53.15
1 23.86 0.00 20.52
2 33.57 0.55 32.70
3 28.02 1.06 25.67
4 17.65 0.32 19.32
5 30.49 0.59 35.51

Table 3. Category-Specific Metrics Part 2
Config AP-chair AP-table AP-couch

Pretrained 26.23 25.91 40.74
1 28.95 12.00 32.27
2 31.44 25.76 30.92
3 27.96 27.56 35.89
4 29.32 25.51 23.70
5 32.71 26.37 33.85

Table 4. Category-Specific Metrics Part 3
Config AP-bed AP-oven AP-tv

Pretrained 38.28 33.54 54.75
1 18.13 17.42 35.85
2 19.98 27.99 45.70
3 6.95 17.42 35.99
4 16.09 21.08 35.75
5 23.11 25.37 45.79

1. Configuration 1: Utilized a low learning rate and a
small batch size.

2. Configuration 2: Increased the batch size and adjusted
the learning rate to optimize learning.

3. Configurations 3 & 4: Experimented with higher learn-
ing rates to test the model’s stability and performance
under different learning conditions.

4. Configuration 5: Applied layer freezing with an opti-
mal batch size and learning rate, focusing training on
the final layers.

5. Configurations 6 & 7: Tested the limits of batch size in
a resource-constrained environment, which resulted in
memory allocation failures.

Among these, Configuration 2 and Configuration 5
showed the best overall performance, particularly excelling
in object-specific classes such as refrigerators and TVs. No-
tably, Configuration 5, which involved freezing earlier lay-

ers, slightly outperformed others, suggesting that limiting
training to the final layers can effectively optimize model
adaptation to new tasks. This approach is particularly ben-
eficial in transfer learning, allowing the model to fine-tune
more specific features while retaining well-trained general
features.

When compared to a pretrained model [21], all custom
configurations demonstrated lower performance, which can
be attributed to the limited training and fewer resources
available in a Google Colab environment. The pretrained
model showcased higher APs across all sizes and specific
classes, benefiting from comprehensive training across di-
verse datasets and more refined hyperparameter tuning.
This disparity highlights the limitations faced when train-
ing in a resource-constrained environment like Colab, par-
ticularly evident in Configurations 6 and 7, where increased
batch sizes led to memory allocation failures.

Below we provide plots from the training for configura-
tion 2 and 5 with the following metrics:

cls accuracy: Measures the classification accuracy, in-
dicating successful class identification within bounding
boxes.

false negative: Represents the rate at which the model
fails to detect actual objects, quantifying missed detections.

fg cls accuracy: Shows the accuracy for classifying
foreground objects, excluding the background.

total loss: Indicates the overall loss during training,
combining losses from box regression, class prediction, and
RPN tasks.

Figure 12. Results Configuration 5

Figure 13. Results Configuration 2

Overall, the results emphasize the importance of strate-
gic hyperparameter adjustments and training focus to op-

7



Figure 14. Loss Configura-
tion 5

Figure 15. Loss Configura-
tion 2

timize performance, especially when computational re-
sources are limited. Configuration 5 emerges as the most ef-
fective approach under such constraints, demonstrating the
value of freezing earlier layers to focus computational ef-
forts on fine-tuning the model’s final layers. This strategy
not only conserves resources but also enhances the model’s
ability to adapt to specific new tasks, offering a practical ap-
proach for efficiently leveraging pretrained models in new
application domains.

6. Conclusion
Fine-tuning our own object detector allowed us to detect

additional objects and landmarks of interest, enriching the
quality of the maps produced.

As a result, we able to produce detailed 3D and 2D maps
of environments, with spatial object and landmark labels,
from a video stream. See Figure 16, showing the ground
truth scene, and the corresponding semantically labelled
maps in Figures 17 and 10.

However, the maps are limited by the vocabulary of the
object detector, and false positives can introduce incorrect
labels. Object localization is improved by incorporating
segmentation masks and projecting them into world coordi-
nates, instead of only bounding boxes. Improving the qual-
ity of the segmentation can improve object localization.

The quality of the localization is also sensitive to camera
intrinsics, which must be known or estimated accurately.

Localization is further improved by incorporating depth
information via RGB-D or stereo video, although the sys-
tem can also produce maps of environments from only
mono feeds.

6.1. Future Work

Our framework could evolve to include zero-shot learn-
ing techniques, such as those explored in ”Vision-Language
Frontier Maps for Zero-Shot Semantic Navigation” [20].
By recognizing objects that have never been seen during
training, using only textual or semantic clues, Zero-Shot
techniques could significantly enhance our project’s capa-

Figure 16. Ground Truth

Figure 17. Generated 2D map with our finetuned object detector

Figure 18. Generated 2D map with fasterrcnn resnet50 fpn

bilities. Our framework could generate richer semantic
maps and handle dynamic changes in indoor settings more
effectively, responding to new objects in new environments.

7. Acknowledgements
We thank the authors of GO-SLAM [2], Detectron2

Faster R-CNN [9], and Segment Anything [11] for their
foundational models which we have leveraged for our
framework. We also thank various authors of datasets we

8



used to train our object detection model [3] [4] [5] [6] [7]
[8]. We also thank the author of the finetunedetectron2 [12]
for their fine-tuning script.

8. Contributions
Alexander Kuznetsov contributed most of the mapping

code, heavily leveraging the GO-SLAM visual SLAM
framework, available here: https://github.com/
youmi-zym/GO-SLAM and modified version with map-
ping code available here: https://github.com/
skzv/GO-SLAM. Ghanshyam Bhutra and Swaroop Pal
collected and pre-processed datasets and fine-tuned the
Detectron2 model and ran various hyperparameter experi-
ments. https://github.com/ozyphus/GAS

References
[1] Facebook AI Research. (2020). DETR: End-to-

End Object Detection with Transformers. Retrieved
from https://huggingface.co/facebook/
detr-resnet-50.

[2] Youmi, Z. (2023). GO-SLAM: A Novel
SLAM Framework. Retrieved from https:
//youmi-zym.github.io/projects/
GO-SLAM/.

[3] Julian Straub et al., ”The Replica Dataset: A
Digital Replica of Indoor Spaces,” arXiv preprint
arXiv:1906.05797v1, 2019. [Online]. Available:
https://arxiv.org/abs/1906.05797v1.

[4] PLM Project, ”ditonadoorkasidikasya Dataset,”
Roboflow Universe, Open Source Dataset,
2024. [Online]. Available: https://
universe.roboflow.com/plm-project/
ditonadoorkasidikasya. [Accessed: 04- June-
2024].

[5] Roboflow 100, ”furniture Dataset,” Roboflow
Universe, Open Source Dataset, 2023. [Online].
Available: https://universe.roboflow.
com/roboflow-100/furniture-ngpea.
[Accessed: 04- June- 2024].

[6] project-ombay, ”furniture Dataset,” Roboflow
Universe, Open Source Dataset, 2023. [Online].
Available: https://universe.roboflow.
com/project-ombay/furniture-6ekum.
[Accessed: 04- June- 2024].

[7] A A, ”household appliances Dataset,” Roboflow
Universe, Open Source Dataset, 2022. [Online].
Available: https://universe.roboflow.
com/a-a-emd32/household-appliances.
[Accessed: 04- June- 2024].

[8] Indoor objects dataset for YOLOv5 format is
a modified version of the dataset - Arduengo,
Miguel, Carme Torras, and Luis Sentis. ”Robust
and adaptive door operation with a mobile robot.”
Intelligent Service Robotics (2021). [Online] from
Kaggle. Modified version available here: https://
www.kaggle.com/datasets/thepbordin/
indoor-object-detection/data. [Ac-
cessed: 04- June- 2024].

[9] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo,
and R. Girshick, ”Detectron2,” 2019. [On-
line]. Available: https://github.com/
facebookresearch/detectron2.

[10] S. Ren, K. He, R. Girshick, and J. Sun, ”Faster
R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks,” arXiv preprint
arXiv:1506.01497, 2015. [Online]. Available:
https://arxiv.org/abs/1506.01497v3.

[11] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rol-
land, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg,
W.-Y. Lo, P. Dollár, and R. Girshick, ”Segment Any-
thing,” arXiv preprint arXiv:2304.02643, 2023.

[12] Wok woctezuma https://github.com/
woctezuma https://colab.research.
google.com/github/woctezuma/
finetune-detr/blob/master/finetune_
detectron2.ipynb

[13] R. Martins, D. Bersan, M. F. M. Campos, and
E. R. Nascimento, “Extending Maps with Semantic
and Contextual Object Information for Robot Naviga-
tion: a Learning-Based Framework Using Visual and
Depth Cues,” Journal of Intelligent & Robotic Sys-
tems, vol. 99, no. 3–4, pp. 555–569, Feb. 2020. DOI:
10.1007/s10846-019-01136-5

[14] PyTorch, “Documentation for fasterrcnn resnet50 fpn
model,” PyTorch Vision Documentation, [On-
line]. Available: https://pytorch.org/
vision/main/models/generated/
torchvision.models.detection.
fasterrcnn_resnet50_fpn.html. [Ac-
cessed: Insert-Current-Date-Here].

[15] Z. Teed and J. Deng, DROID-SLAM: Deep Visual
SLAM for Monocular, Stereo, and RGB-D Cameras,
arXiv preprint arXiv:2108.10869, 2021. https://
arxiv.org/abs/2108.10869

[16] Hao Qu, Lilian Zhang, Jun Mao, Junbo Tie, Xi-
aofeng He, Xiaoping Hu, Yifei Shi, Changhao
Chen, DK-SLAM: Monocular Visual SLAM with Deep

9

https://github.com/youmi-zym/GO-SLAM
https://github.com/youmi-zym/GO-SLAM
https://github.com/skzv/GO-SLAM
https://github.com/skzv/GO-SLAM
https://github.com/ozyphus/GAS
https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/detr-resnet-50
https://youmi-zym.github.io/projects/GO-SLAM/
https://youmi-zym.github.io/projects/GO-SLAM/
https://youmi-zym.github.io/projects/GO-SLAM/
https://arxiv.org/abs/1906.05797v1
https://universe.roboflow.com/plm-project/ditonadoorkasidikasya
https://universe.roboflow.com/plm-project/ditonadoorkasidikasya
https://universe.roboflow.com/plm-project/ditonadoorkasidikasya
https://universe.roboflow.com/roboflow-100/furniture-ngpea
https://universe.roboflow.com/roboflow-100/furniture-ngpea
https://universe.roboflow.com/project-ombay/furniture-6ekum
https://universe.roboflow.com/project-ombay/furniture-6ekum
https://universe.roboflow.com/a-a-emd32/household-appliances
https://universe.roboflow.com/a-a-emd32/household-appliances
https://www.kaggle.com/datasets/thepbordin/indoor-object-detection/data
https://www.kaggle.com/datasets/thepbordin/indoor-object-detection/data
https://www.kaggle.com/datasets/thepbordin/indoor-object-detection/data
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://arxiv.org/abs/1506.01497v3
https://github.com/woctezuma
https://github.com/woctezuma
https://colab.research.google.com/github/woctezuma/finetune-detr/blob/master/finetune_detectron2.ipynb
https://colab.research.google.com/github/woctezuma/finetune-detr/blob/master/finetune_detectron2.ipynb
https://colab.research.google.com/github/woctezuma/finetune-detr/blob/master/finetune_detectron2.ipynb
https://colab.research.google.com/github/woctezuma/finetune-detr/blob/master/finetune_detectron2.ipynb
10.1007/s10846-019-01136-5
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html
https://arxiv.org/abs/2108.10869
https://arxiv.org/abs/2108.10869


Keypoints Adaptive Learning, Tracking and Loop-
Closing, arXiv preprint arXiv:2401.09160, 2024.
https://arxiv.org/abs/2401.09160

[17] Authors, Dense RGB SLAM with Neural Im-
plicit Maps, arXiv preprint arXiv:2301.08930, 2023.
https://arxiv.org/abs/2301.08930

[18] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J.
Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi,
Target-driven Visual Navigation in Indoor Scenes us-
ing Deep Reinforcement Learning, arXiv preprint
arXiv:1609.05143, 2016. https://arxiv.org/
abs/1609.05143

[19] Changhao Chen, Bing Wang, Chris Xiaoxuan Lu, Niki
Trigoni, Andrew Markham, Deep Learning for Visual
Localization and Mapping: A Survey, arXiv preprint
arXiv:2308.14039, 2023. https://arxiv.org/
abs/2308.14039

[20] Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang
Wang, Bernadette Bucher, VLFM: Vision-Language
Frontier Maps for Zero-Shot Semantic Navigation,
https://arxiv.org/abs/2312.03275

[21] https://dl.fbaipublicfiles.com/
detectron2/COCO-Detection/faster_
rcnn_R_50_FPN_3x/137849458/
metrics.json https://github.com/
facebookresearch/detectron2/blob/
main/MODEL_ZOO.md

10

https://arxiv.org/abs/2401.09160
https://arxiv.org/abs/2301.08930
https://arxiv.org/abs/1609.05143
https://arxiv.org/abs/1609.05143
https://arxiv.org/abs/2308.14039
https://arxiv.org/abs/2308.14039
https://arxiv.org/abs/2312.03275
https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json
https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json
https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json
https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md

