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Abstract

As synthetic 3D brain MRI data can provide a lot of val-
ues for scientific research, generative AI models are used
to create realistic synthetic brain images. Diffusion models
has become one of the state-of-art methods for image gen-
eration, and has been shown successes for brain image gen-
eration. In this project, my goal is to finetune a transformer
based diffusion model, DiT, to generate 3D brain MRI im-
ages. Because both the variational autoencoder and the
patched transformers in DiT are pretrained on 2D images,
to enable the finetuning, in the data pre-processing stage,
I convert the 3D training samples to 2D, by tiling the 2D
slices together into larger-sized images. Then I use these
pro-processed larger images to finetune the DiT model. My
experiments show that the generated synthetic samples can
generate good quality images, preserving anatomy- consis-
tent 3D structures.

1. Introduction

3D Brain MRI data are usually expensive to collect.
Since brain research often requires a decent size of brain
image data, scientists find that synthetic brain MRIs can
provide a lot of values. Thus, a natural choice is to use
generative AI models to create realistic synthetic brain im-
ages.

Diffusion models has become one of the state-of-art
methods for image generation, and has been used for brain
image generation [7]. Recently, thanks to OpenAI’s SORA,
the transformer based diffusion model, DiT [6], becomes
extremely popular. In this project, I aim to finetune the DiT
model to generate 3D brain MRI images.

The input to my algorithm are 3D brain MRI images. I
first pre-process them into 2D images, and then use them as
the training data to finetune the DiT algorithm. Last, after
applying the finetuned DiT to to generate 2D images, and I
post-process them back to 3D MRI images, i.e, the outputs.

2. Related Work

Diffusion models have been becoming the state-of-art
method for image/video generation [10] [3]. For exam-
ple, [7] has demonstrated that the diffusion model based
approaches outperform Generative Adversarial Networks
(GAN) based approaches for MRI image generation. [7]
trains a novel conditional diffusion model to generate slices
of 2D brain MRI images that conditional on other 2D im-
ages slices, so that the produced 3D MRIs are anatomy-
consistent and of high quality.

While the diffusion model has gained a lot of successes,
it can be slow to train and to sample with high resolutions
images directly. Therefore, [8] proposed the latent diffusion
model (LDM), which runs the diffusion process on a latent
space after dimension reduction, rather than on the original
pixel space. The dimension reduction step is conducted via
the variational autoencoder (VAE) models [4]. In training
time, the VAE encoder is first applied to the training im-
ages, then a diffusion model is trained on the compressed
images. In generation time, after the reverse diffusion pro-
cess is applied to obtain image in the latent space, it will
then go though the VAE decoder to be turned into images
on the original pixel scale. Thus, the diffusion model is
trained and scored on a much smaller space and thus much
more efficient.

For image generation diffusion models, the most com-
mon deep learning models used on reverse process has been
the U-net [9], which consists of many convolutional layers,
max pooling layers to reduce dimension, and up convolu-
tional layers to increase the dimension back to the origi-
nal one. Recently, the Diffusion Transformers (DiT) paper
[6] replaces the U-net with a transformer, i.e., multi-headed
self-attention architecture, which achieves the optimal im-
age generation performance and is viewed as state-of-the-
art.

To make use of the pretained DiT model parameters,
finetuning algorithms has been proposed with successful re-
sults. For example, a recent parameter efficient finetuing
paper [11] proposed an efficient strategy called DiffFit. Be-
cause it achieves great training speed-up and can generate
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high quality images, in this paper I mainly follow their fine-
tuning strategy.

3. Methods
Since my plan is to finetune diffusion transformer (DiT),

I will briefly introduce the method of diffusion models in
general, and then DiT, followed by DiffFit, the parameter
efficient finetuning algorithm.

3.1. Diffusion models

Diffusion models consist of two Markov chains of diffu-
sion steps, a forward diffusion process and a reverse diffu-
sion process. In the forward process, random independent
Gaussian noises are gradually added to the observed data x0

(e.g., a real image). At step t = 1, 2, . . . , T ,

q(xt | xt−1) = N(
√

1− βtxt−1, βtI),

where βt ∈ (0, 1) are hyperparameters that usually follow
a linear or cosine based schedule. After a lot of steps (e.g.,
T = 250 in DiT), the image will become something no
different to pure white noise.

Then we use the reverse process to gradually remove the
noise to get the original image. Here, each reverse step is
assumed to be Gaussian with unknown mean µ(·) and co-
variance Σ(·):

p(xt−1 | xt) = N(µθ(xt, t),Σθ(xt, t)).

In order to estimate the unknown mean µ(·) and covariance
Σ(·), usually they are assumed to follow some deep learning
models (U-net or transformer), and the parameter θ are ob-
tained by optimizing the variational lower bound (ELBO),

LV LB = Eq(x0:T )
log q(x1:T | x0)

log pθ(x0:T )

For further simplification, the mean µ(·) can be re-
parameterized into a noise prediction network ϵ(·), which
can then be estimated with L2 loss Lsimple = ∥ϵθ(xt) −
ϵt∥2.

3.2. Diffusion Transformer (DiT)

The diffusion transformers paper [6] uses transformers,
i.e., multi-headed self-attention architecture, as the noise
prediction ϵθ(·). Within the LDM framework, DiT first ap-
plies a pre-trained VAE model from [8] to compress the im-
age height and width by 8 times. For example, it converts
the image x from it original dimensions 256 × 256 × 3 to
a much smaller latent space of dimensions 32× 32× 4. In
additional to the 256 × 256 size image, another version of
DiT is trained on larger images of size 512 × 512 × 3, and
the corresponding latent space size becomes 64× 64× 4.

Figure 1. DiT patching. Screenshot from the DiT paper [6]

Figure 2. DiT architecture. Screenshot from the DiT paper [6]

Then DiT patchifies the latent image z of size I × I ×C
into patches of size p and converts it into sequence of
patches with length (I/p)2. For each patch, its dimension
p2 × C is then linearly converted into the hidden size d. In
the network, a sin-cos based position embeddings are ap-
plied to the sequence (see Figure 1).

As to the transformer block design, in-context condition-
ing are enabled in two places, such that both the adaptive
layer normalization layer and the scale layer right before
the residual connections depend on both the diffusion step t
and the class label c (see Figure 2).

The DiT paper explores different model sizes (S, B, L,
XL), mixed with different size of patch p = 2, 4, 8, 16. The
empirical results in the paper suggest that the largest model,
XL with p = 2, which has 28 layers of transformer blocks,
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each of which has 16 heads and hidden size 1152, achieves
the best performance. Therefore, my work in this project
will be based on pre-trained parameters in this DiT-XL-2
model.

The DiT authors release two versions of this largest
model, one pretrained on 256 × 256 resolution Ima-
geNet data, and the other pretrained on 512 × 512 res-
olution ImageNet data. Since the image size only af-
fects the length of the patches, it doesn’t affect the to-
tally number of parameters in the network. Assum-
ing that larger images contain more information, in this
paper, I conduct the finetuning work on the 512 ×
512 model (https://dl.fbaipublicfiles.com/
DiT/models/DiT-XL-2-512x512.pt).

After realizing that the size of the training image does not
impact the network size and structure, I find that I can fine-
tune the DiT model with larger than 512-resolution images.
The only modification needed is to modify the position em-
bedding, which is not a part of the model parameters to be
learned from the data. Of course, the cost is that the length
of the patched sequences becoming longer, and the compu-
tation complexity of diffusion model is on the squared order
of the sequence length.

My work is to modify the PyTorch code base
released from Facebook Research,https://github.
com/facebookresearch/DiT. This code base con-
tains a models.py script of the DiT model, a train.py
script to train DiT, and a sample.py script to generate
images from the model. I mainly modify these three scripts
to enable the finetuning work.

3.3. Parameter efficient finetuning of DiT

Since DiT contains huge number of parameters, to fine-
tune it, it may not be necessary to train each and every pa-
rameter. In fact, DiffFit [11] only finetuned a very small
fraction of the parameters while freezing majority of them.

DiffFit first adds new scale parameters γ to the self-
attention and feed-forward layers in each transformer block
from layer 1 to 14. Its strategy is to only finetunes all bi-
ases, layer normal parameters, class embeddings, and the
newly-added γ scale parameters. It also recommended to
use a learning rate that is 10 times as large as the pretrain-
ing learning rate, so that the updating of parameters such as
biases are more efficient. See Figure 3 for a visual illustra-
tion.

In this paper, due to time constraints, I did not explore the
option of adding the γ blocks. Thus, I finetune all biases,
layer normalization parameters, and class embeddings. In
addition, the learning rate I use is 5 times as large as the
original DiT learning rate.

Figure 3. Screenshot from the DiffFit paper [11]. My implemen-
tation in this paper omits the γ blocks.

4. Dataset and Features
The data I use are from the public dataset ADNI

(https://adni.loni.usc.edu/). The training data
consists of a very small random sample of 63 examples, and
separately, the test data contains another 32 examples. Each
data point is a black-and-white 3D brain MRI image. Its
original dimension is 144× 176× 144.

For pre-processing, I first apply linear interpolation to
convert the size of the 3D image to 128 × 128 × 128. An
example of the real image is shown in Figure 4. Then, along
the third dimension, I decompose each 3D image into 128
2D slices of size 128 × 128. To concatenate all these 128
images into a single 2D image, I make use of the three color
channels to put three neighboring slices into a single 128×
128 × 3 color image, such that I have 43 color images in
total. Then, I tile these images into a 7×7 block of a bigger
squared image. Thus, the size of the pre-processed image
(see Figure 5 for an example) is 7× 128 = 896.

When input the training images into the DiT model, I
put them in the same class. This means that, when finetun-
ing the model, only class embedding of this class will be
updated.

5. Experiments and Results
In my finetuning process, I followed the original DiT

training parameters whenever appropriate.

• I start from DiT-XL-2-512x512.pt as the pre-
trained model.

• I use the AdamW optimizer (the same as what DiT
uses) to finetune all biases, layer normalization param-
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Figure 4. 2D slices of a real 3D brain MRI image example. Each
column is from each of the three dimensions, and the rows are at
locations 32, 64, 96, respectively.

Figure 5. A real example of pre-processed 896×896 color image,
that contains all information from the original 128 × 128 × 128
3D MRI image. This is the training data input to DiT.

eters, and class embeddings, while freezing all other
parameters.

• I use a learning rate 5 × 10−4, that is 5 times as large
as the original learning rate. My rational of using a
bigger learning is that I hope it can be more efficient
and speed up the training. Also, the DiffFit paper sug-
gested to use a larger learning rate.

Figure 6. 2D slices of a synthetic 3D brain MRI image. Again,
each column is from each of the three dimensions, and the rows
are at locations 32, 64, 96, respectively.

• Since I only have one A100 GPU to training my model,
the largest batch size that can fit the 40G GPU memory
is merely 4.

• I trained on this A100 GPU for about 36 hours and
finished 66000 steps, i.e., about 4400 epochs.

To evaluate the finetuned model, I randomly generated
32 synthetic samples. Actually, due to the big 896 × 896
image size, the largest number of samples I can generate at a
time is 8. I generated 4 times with different random seeds to
obtain the 32 synthetic samples. Then I applied the reverse
process as in the pre-processing, to convert the 896×896×3
image back to 3D image of size 128× 128× 128.

Figure 6 shows one generated sample, via three views of
2D slices, decomposed from each of the three dimensions.
First, overall we can see that the generated image does look
like brain MRI images. In particular, in the first column,
where the 2D slices are decomposed along the third dimen-
sion, the quality of the generated images seems to be satis-
factory, with clear details.

For the second and third columns in Figure 6, the im-
age quality is still acceptable, as they give the correct over-
all shapes and rough details of brain MRI at different slice
locations. But they look noisier than the first column. In
particular, they lack horizontal smoothness to some extent.
This is not surprising because for these type of slices, which
decomposes the 3D image along the first or the second di-
mension, do not directly appear in the training data of pre-
processed 7× 7 tiled color images.

My quantitative validation metrics agrees with the above
qualitative observations. Following the [7], I computed the
same three metrics.
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Figure 7. Screenshot from the cDPM paper [5].

MS SSIM (%) MMD (103) FID-A FID-C FID-S
83.6 8.7 126 279 239

Table 1. Results from finetuned DiT. Note that the MS SSIM
among the 32 real test data samples is 78.5.

• 3D multi-scale Structure Similarity (MS-SSIM)
[5]. This metric is to measure how similar two
images are, and its range is from 0 (completely
different) to 1 (completely the same). I applied
it to every pair of the 32 synthetic images (using
the code https://github.com/cyclomon/
3dbraingen/tree/master/pytorch_ssim),
and report the average.

• 3D Maximum-Mean Discrepancy (MMD) score [1],
computed among all pairs formed by one synthetic im-
age and one real test image. The smaller the better.

• 2D Frèchet Inception Distance (FID) [2], for three
views of the center slices. FID measures how close
two distributions of images are. When applied on
two 2D image sets with equal sizes, the smaller
FID is, the more similar the two distributions are. I
applied the implementation in the torchmetrics
package https://lightning.ai/docs/
torchmetrics/stable/image/frechet_
inception_distance.html.

I include the quantitative results in [7] here in Figure 7,
which shows that their cDPM model outperforms all GAN
models for 3D brain MRI generation. My quantitative re-
sults based on finetuned DiT are shown in Table 1. Over-
all, although they are not as good as cDPM, my results are
on par with the GAN models in general. Actually, among
the seven models mentioned in Figure 7, my results outper-
forms four of them wrt MMD, four of them wrt FID-A, two
of them wrt FID-C, and three of them wrt FID-S. Similar
to all previous models, I gets a higher MS SSIM score than
the real data, which suggests my synthetic data also suffer
from lack of diversity.

For the above comparison, there are two caveats. First,
all metrics in Figure 7 are computed based on 500 synthetic
samples and 500 randomly selected test samples. But for
my paper, I compute these metrics based on 32 synthetic

samples and 32 test samples. Since all the metrics are some
sort of averages, I think my results can still be viewed as fair
comparisons with the results in Figure 7, but the variances
of my metrics are larger and thus more prone to change due
to randomness in the sampling process.

Second, the training data sizes are very different. In [7],
the training data contains 1261 samples. However, for my
results, the training sample size is only 63. Thus, I feel my
results are pretty decent. My work confirms the general be-
lief that, finetuning large models (that are originally trained
on big data, such as DiT here) may not require a lot of new
training data points.

6. Conclusion and Future Work
In this work, I apply parameter efficient finetuning to the

DiT model to generate 3D brain MRI images. With a cre-
ative pre-processing, I convert a 3D image into a tiled 2D
image without information loss. The synthetic images gen-
erated from the finetuned model are of satisfactory quality;
they display correct 3D structures and contain relatively fine
details.

I think a main reason why the 3D structure can be cor-
rectly learned by such a 2D image generation model is
thanks to the transformer architecture. Because transform-
ers apply self-attention across all pairs of elements in a se-
quence, it is able to capture correlation among all pairs of
patches, no matter they are near or far away from each other.

On the other hand, the inferior image quality of the 2D
slices taken along the first and second dimension suggests
rooms for improvement. I suspect that using three color
channel to hold three neighboring slices may not preserve
enough amount of information, especially that this color
image need to go through a VAE decoder before entering
the transformer model. To confirm my guess, an alternative
study of using only black and white images (by copying the
same image into three times into the three color channels)
may be helpful. But in this case, an even larger 12×12 block
of tiled image will be needed, which is of size 1536×1536.

For future work, a straight-forward extension is to use
more training data (over a thousand samples would be ideal)
and train it for longer. In addition, we can fintune based on
newer and better transformer architecture that can handle
longer sequences, for example, the masked DiT [12], which
may make the training on 1536×1536 size images feasible.
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sults.
This project is not combined with another course or re-

search project.
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