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Abstract

Recent advancements in spatial imaging, led by major
technology companies, have introduced innovative ways to
capture and view immersive 3D content. However, these ex-
periences leave a lot to be desired in terms of immersion
and true 3D effects. Moreover, they also require special-
ized hardware, limiting their accessibility to a wider au-
dience. To address these limitations, we present an ap-
proach that enhances the immersiveness and engagement
of 2D images when viewed through Virtual Reality (VR) or
Mixed Reality (MR) devices. Our method combines latent
diffusion-based monocular depth estimation and 3D stereo
image techniques to generate spatial images from standard
2D photos. We train a latent diffusion model on the Virtu-
alKitti 2 synthetic depth map dataset to estimate accurate
depth maps from RGB images, using a U-Net architecture
and a Variational Autoencoder. The resulting depth maps
are then used to create stereo image pairs with enhanced
depth perception, incorporating the Parallax Effect, Bokeh
Effect, and a nearest neighbor hole-filling algorithm. The
generated stereo images can be viewed side-by-side or inte-
grated into VR/AR systems, providing users with an immer-
sive 3D experience using standard 2D photos. Our evalua-
tion and experimental results demonstrate the effectiveness
of the proposed approach in creating a convincing sense of
depth and improving the immersion in 2D images.

1. Introduction
In recent years, there has been a growing interest in tran-

sitioning from traditional 2D images to more immersive and
engaging content. Traditional 2D images, once the dom-
inant form of visual representation, are now being trans-
formed into immersive experiences that offer a greater sense
of depth, presence, and engagement, to make you feel like
you were there. The introduction of new headsets and dis-
plays has opened up new possibilities for creating these ex-
periences. Companies like Apple and Meta have been at the
forefront of this development, releasing spatial image and

video experiences that aim to provide users with a sense of
depth and immersion [1]. However, despite the advance-
ments made in this field, current spatial experiences still
seem to fall short in terms of depth perception and over-
all immersion. When viewed through headsets or AR/MR
devices, these experiences can still feel flat and lacking in
depth, diminishing the sense of presence and engagement
for the user. Moreover, the accessibility of these technolo-
gies remains a challenge, as they often require specialized
cameras, headsets, or the most advanced smartphone ver-
sions to capture these spatial images, limiting their reach to
a wider audience [1].

In this paper, we present an approach that addresses the
problem of enhancing the accessibility and immersiveness
and engagement of 2D images when viewed through head-
sets or AR/MR devices. Our proposed framework combines
state-of-the-art depth estimation techniques using latent dif-
fusion models with stereo image generation methods to cre-
ate a more immersive 3D experience from readily available
2D images. The main idea behind our approach is to gener-
ate accurate depth maps from 2D images using Latent Dif-
fusion Models (LDMs), which have shown excellent per-
formance in capturing the three-dimensional structure of
scenes [18, 37, 34]. The input to our algorithm is a stan-
dard 2D RGB image, which can be easily captured using
common cameras or smartphones. We first encode the input
image into a latent space representation using a Variational
Autoencoder (VAE). The VAE learns a compact and mean-
ingful representation of the image in the latent space, which
becomes the input to the next steps in our methodology [17].

Next, we use an LDM to estimate an accurate depth map
of the input image from its latent space representation. The
LDM consists of a U-Net architecture that learns to map the
latent space representation to the corresponding depth map
[37, 31]. We trained the U-Net on the Virtual KITTI 2
Dataset, a virtual image and depth dataset which consists
of 40,000 RGB-D images, to learn the mapping between
an input RGB image and its corresponding depth map [4].
During inference, we use the trained LDM to estimate the
depth map of the input image by sampling from the latent
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space and passing it through the U-Net. This gives us a final
generated depth map for any given 2D image.

The estimated depth map, along with the original RGB
image, is then processed as the input to our stereo image
generation pipeline, which outputs a stereo image pair (left
and right perspectives) that simulates the parallax effect ob-
served in human binocular vision. We incorporate depth-
aware image processing techniques such as the Bokeh Ef-
fect [8], Parallax Shifting [28, 44], and image hole-filling
based on nearest-neighbor non-zero pixels [13] to enhance
the perception of depth and create a more complete repre-
sentation of the left and right eye perspectives of the original
2D image. The generated stereo images can be viewed side
by side or integrated into a VR/MR headset for an immer-
sive 3D representation, with 3D foreground features pop-
ping out at the user.

2. Related Work

2.1. Monocular Depth Estimation

Monocular depth estimation is a classic problem in
computer vision. Utilizing convolutional neural networks
(CNNs) for depth estimation was pioneered by Eigen et al.
[10] in 2014, and since then several milestones have ad-
vanced the state of the art. This includes ordinal regression
[11], planar guidance [21], neural fields and deeper CNNs
[23],

Monocular depth estimation from a single image is
largely treated as a per-pixel regression task. Some works,
like AdaBins, employ a mixed classification-regression ap-
proach that discretizes the depth values into bins and assigns
each pixel to a bin [2]. However, many models take as input
an RGB image and, for each pixel, output a corresponding
depth d ∈ R [42, 10, 3]. In general, these models can be
classified into two categories depending on the output: met-
ric and relative depth.

Relative depth estimation refers to models that produce
a depth map whose values encode pairwise relative distance
to the camera [11, 5]. That is, relative depth maps capture
the order of the pixels, with no meaningful interpretation
of degree. This allows for high generalizability across dif-
ferent scenes and datasets, but at the cost of reduced appli-
cability as it is not possible to recover accurate geometric
structure.

Metric depth estimation refers to models that produce a
depth map whose values are metric-scaled. The units of a
metric depth map are real-world units, and can be used to
locate the pixel in 3D space. This type of estimation has
many important applications in autonomous driving [42],
robotics [43], 3D object detection [41], and more. While
these networks are immediately useful in their respective
domain, they are often trained over a single dataset and do
not generalize well to new data.

This is especially problematic since ground-truth depth
data is difficult to collect at scale, with existing datasets
focusing on one type of scene. For example, the KITTI
dataset captures RGB-D images using LiDAR, but only
contains outdoor scenes of roads [12]. The NYU V2 dataset
captures data using a spatial camera, but only for indoor
scenes [25]. Furthermore, these datasets are prone to noise
and prominent gaps in the ground truth where the spatial
cameras were unable to collect depth information.

Several works seek to address this issue. Early efforts fo-
cused on creating large, diverse, and representative datasets.
This includes DIW (which focused on relative depth ”in
the wild”, i.e. RGB-D images with no other metadata such
as camera intrinsics) [5]. Ranftl et al. enabled mixed-data
training via a training objective invariant to depth range and
scale [29]. This work has given rise to a family of Mi-
DaS models that aim for more generalized metric depth es-
timation over diverse datasets [3]. Other works, such as
MegaDepth, focus on producing high quality, large scale,
and diverse datasets leveraging augmented Internet photos
[22].

Similarly, several synthetic datasets have been developed
that feature computer generated RGB-D images from robust
3D models. This includes Hypersim (for virtual indoor set-
tings) [30] and Virtual Kitti (a synthetic version of KITTI)
[4]. In order to be realistic, synthetic datasets require signif-
icant effort creating hand-crafted 3D environments, but the
result is an extremely high quality ground truth with none
of the noise or gaps from their real-world counterparts. The
quality of the ground truth, while still retaining accurate fi-
delity to the real world, makes synthetic datasets ideal for
supervised learning. Thus, we utilize the synthetic Virutal
KITTI 2 dataset for this work.

2.2. Stereo Image Generation

For stereo rendering from a single image, there are sev-
eral approaches that use an elaborate setup, specialized
headsets, or specialized equipment, like the Apple Vision
Pro, or the Meta Quest spatial photos [1]. Other works have
focused on generating stereo image pairs from monocular
inputs using deep learning techniques. Some methods em-
ploy view synthesis networks that learn to generate novel
views from a single image by leveraging geometry priors
like depth or multiplane images [6]. Depth maps are a key
component in generating stereoscopic 3D views or stereo
image pairs, especially if our starting point is just a single
2D image. Therefore, there have been several open-source
depth estimation models like ZoeDepth, MiDaS, and Ade-
laiDepth that have been historically been used for this pur-
pose, resulting in somewhat satisfactory results [27].

There have also been some impressive new papers us-
ing Diffusion models to create training-free stereo images,
and the StereoDiffusion method proposed by Chen et al.
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proposed a depth-aware image rendering pipeline that in-
corporates depth cues like defocus blur and parallax shift-
ing to synthesize stereo images from a single RGB-D input.
Similar depth-based rendering techniques have been applied
for view synthesis, with WildFusion 3D-aware LDMs [35].
While effective, these depth-guided methods often rely on
having an accurate input depth map, which can be chal-
lenging to obtain for general scenes. Recent works have
explored jointly estimating depth and synthesizing novel
views in an end-to-end manner using techniques like mul-
tiplane images or neural radiance fields [23, 38]. Wang,
Frisvad. et al. take a different approach by directly mod-
ifying the latent space of pre-trained diffusion models like
Stable Diffusion to generate stereo image pairs in an end-to-
end, training-free manner [40]. Their approach uses the es-
timated depth map to perform stereo pixel shifting in the la-
tent space, along with techniques like symmetric pixel shift
masking and self-attention modifications to maintain con-
sistency between the left and right views, an idea that incor-
porates our second step into the latent diffusion model.

3. Methods
Our pipeline for generating spatial images using monoc-

ular depth estimation is composed of two distinct steps: (1)
given an RGB image, generate a depth map using our Latent
Diffusion Depth Estimator; and (2) given a depth map and
its corresponding image, apply the Bokeh (Depth of Field)
effect, generate a stereo pair of images using parallax, and
hole filling algorithms. The spatial image effect then comes
from displaying the stereo pair in a VR headset.

3.1. Depth Map Generation

3.1.1 Latent Diffusion Generation

Taking inspiration from Denoising Diffusion Probabilistic
Models [15], we pose the task of depth estimation as mod-
eling the conditional distribution D(d | x) of d ∈ RH×W

(the depth) given x ∈ R3×H×W (the RGB image).
In the forward pass, we start with d0 = d, then sequen-

tially add Gaussian noise at time steps t ∈ {1, 2, . . . T} to
get dT . Specifically:

dt =
√
αt dt−1 +

√
1− αt ϵt (1)

where αt =
∏t

s=1(1 − βs), {β1, β2, . . . βT } determines
the noise schedule, and ϵt ∼ N (0, I) is the noise applied at
time t. After T time steps, the result dT is akin to a random
point outside the distribution D. Then, in the reverse pro-
cess, our parameterized denoising model ϵθ(·) with param-
eters θ takes as input a noisy depth at an arbitrary time step
dt′ and removes a step’s worth of noise to produce dt′−1.
Thus, given condition x, the reverse process starts with dT

and iteratively removes noise using the parameterized de-
noising model, until after T steps we recover d0 = d.

Figure 1. The training process for one batch. Both images and
depth maps are embedded. Noise is added to the depth for time
step random t according to the DDPM noise scheduler from [31],
then the two latents are concatenated along the feature dimension
and fed into the diffusion U-net. The predicted noise is evaluated
using the objective function. Figure adapted with no changes from
[18].

Then, at training time, we do the following. First, we
take a sample from the distribution (x,d), and apply noise
drawn from ϵ at a random timestep t to get dt. Then, we use
our parameterized model ϵθ to compute a predicted noise
ϵ̂ = ϵθ(x,dt, t). Finally, we update our parameters θ by
minimizing the objective loss function [15]:

L = Ed0,ϵ∼N (0,I),t∼U(0,T )||ϵ− ϵ̂||2 (2)

That is, the objective is to minimize the expected (mean)
squared error between the predicted noise ϵ̂ and the actual
noise ϵ. Tuning our parameters this way allows us to use our
model to de-noise a noisy depth at inference time. Specifi-
cally, at inference time, we reconstruct the d = d0 by start-
ing from a random, normally distributed dT , then iteratively
applying our denoising model ϵθ(x,dt, t).

Up till now, we have been working directly with the
depth/RGB data d and x. However, in Latent Diffusion,
we perform the denoising training and inference in a low-
dimension latent space [31]. This increases computational
efficiency by compressing our data while preserving per-
ceptually important features [31]. In our implementation,
similarly to Marigold and Stable Diffusion [18, 31], the la-
tent space is the bottle-neck of a Variational Auto-Encoder
(VAE) that is trained beforehand. Like Marigold, we use
the pre-trained VAE from Stable Diffusion V2 [18, 31] 1.

Now, before we train the denoising diffuser, we embed
our data into the latent space. We use the encoder of the
VAE E to encode the depth and image, where the encod-
ings are z(x) = E(x) and z(d) = E(d). Then, instead of
training our parameterized model with the data itself, we
train with the latent encodings: ϵθ(z(x), z(d)

t , t). At infer-
ence time, once we reconstruct z(d)

0 , we recover the depth

1The pre-trained VAE we used can be found at:
https://huggingface.co/stabilityai/stable-diffusion-2
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Figure 2. The inference process. The input image is encoded into
the latent space. z(d)

T is drawn from a Normal distribution, and
is concatenated with the latent image along the feature dimension
and fed into the denoising U-net. The predicted noise is used to
iteratively de-noise the depth latent. Once z(d)

0 is reconstructed, it
is decoded, resulting in the generated depth map. Figure adapted
with no changes from [18].

map in the original space with the VAE’s encoder D. That
is, d = D(z(d)

0 ). See Figure 1 for a visual summary of the
training process, and Figure 2 for a visual summary of the
inference process.

3.1.2 Network Architecture, Training, and Inference

For the parameterized denoising model ϵθ, the backbone
of our architecture, we utilize a modified U-net from [31].
Specifically, this is the time-conditional U-net architecture
from the Stable Diffusion V2 LDM (see Figure 3 in [31]
for details), which is trained on the Internet-scale dataset
LAION-5B [33]. We condition the architecture by concate-
nating the inputs, and use self-attention in the cross atten-
tion layers. As in Marigold, to accommodate both the depth
and image latents, we modified the first layer to have twice
the number of channels [18]. The number of output chan-
nels remains the same.

Finally, our training and inference procedures are
adapted from the simple and efficient fine-tuning and in-
ference procedures introduced in [18]. See Figures 1 and 2
for details.

3.1.3 Depth Normalization

Before training, we apply an affine-invariant depth normal-
ization to the depth maps as in [18]. This ensures that
the depth maps have values mostly in the range of [−1, 1],
which is what the inputs to the VAE expect. Additionally,
this enforces a standard scale-invariant depth representa-
tion, which may simplify training [18]. Specifically, for
each depth map in the ground truth d, we compute the 2nd

and 98th percentile depth values d2 and d98, then apply the
following linear transformation before encoding:

d̃ = (
d − d2

d98 − d2
− 0.5)× 2 (3)

We use the 2nd and 98th percentiles to protect against out-
liers, and proceed with the training procedure by then en-
coding d̃ into the latent space.

3.2. Stereo Image Pair Generation

Stereo image generation is a technique used to create
a pair of images that simulates the left and right views of
a scene, providing a sense of depth and immersion when
viewed through a stereoscopic display or VR headset. We
first apply the Bokeh effect, and once that Depth of Field
blurring has been applied, the stereo image generation al-
gorithm takes in a 2D input image, its corresponding depth
map, and additional parameters to generate left and right
stereo views [26, 27]. The process involves many crucial
steps.

Figure 3. Sample Image with Marigold Generated Depth Map
(using Marigold[18] since our compute limitations caused noisy
depth maps)

3.2.1 Bokeh Effect

Given an image and a depth map generated by our previous
method, we first apply the Bokeh or Depth of Field (DoF)
effect to blur objects further behind in depth. In human vi-
sion, when we focus on a specific object or region, the ob-
jects closer to or farther from the focal plane appear blurred,
which creates a visually appealing effect, i.e. the Bokeh Ef-
fect. [9]

In the context of this project, the bokeh effect is applied
to the input image based on the depth information provided
by the depth map, simulating the depth-of-field effect ob-
served in human vision and photography. The depth map
provides information about the distance of objects from the
camera. Therefore, applying a Gaussian blur filter to re-
gions of interest (ROI) around each pixel based on their
depth values, the function creates a depth-dependent blurred
version of the input image. Pixels closer to the focal plane
(smaller depth values) will have less blur applied, while pix-
els farther from the focal plane (larger depth values) will
have more blur applied, mimicking the behavior of camera
lenses [9, 24].

The amount of blur is controlled by the bokeh intensity
parameter, which determines the strength or amount of blur
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to be applied. The kernel size for the Gaussian blur is cal-
culated using the following formula:

kernel size = depth value × bokeh intensity (4)

3.2.2 Depth Map Normalization

The algorithm begins by normalizing the depth map to a
range of [0, 1], where 0 represents the farthest depth and
1 represents the closest depth. This normalization step en-
sures consistent depth values across different images and
facilitates the subsequent pixel shifting operations [27].

3.2.3 Parallax Shift

The parallax shift is a key component of the stereo image
generation process. It simulates the binocular disparity ob-
served in our human vision, where the left and right eyes
perceive slightly different views of the same scene due to
their horizontal separation. The algorithm calculates the
parallax shift for each pixel based on its depth value and
the interpupillary distance (IPD) we give as a user-defined
parameter [16, 14]. The formula used for calculating the
parallax shift in pixels is:

parallax shift px = int
(

ipd px
2

× (1− depth)
)

(5)

Pixels with depth values closer to 1 (closer to the camera)
will have a smaller parallax shift, while pixels with depth
values closer to 0 (farther from the camera) will have a
larger parallax shift [16].

3.2.4 Pixel Shifting Algorithm

The pixel shifting process is a direct result of applying the
parallax shift to the input image. It creates the left and right
stereo views by horizontally displacing pixels based on their
depth values and the calculated parallax shift [39, 14]. For
each pixel in the input image, the algorithm does the fol-
lowing:
(1) Calculate the parallax shift (parallax shift px) using the
formula mentioned above,
(2) Determine the new column positions for the pixel in the
left and right stereo views.
For the right view: col r = col − parallax shift px,
and for the left view: col l = col + parallax shift px By
shifting the pixels horizontally based on their initial paral-
lax, the algorithm creates two slightly different perspectives
of the scene, simulating the left and right views that would
be perceived by the human user’s eyes.

3.2.5 Hole Filling Algorithm

After applying the pixel shifts, the algorithm performs hole
filling to address any gaps or holes that may have been cre-

ated during the shifting process. The hole filling step en-
sures a smooth and continuous appearance of the stereo im-
ages [39].

The hole filling algorithm does the following: [39, 20]:
(1) Identify the pixels that have become ”holes” or gaps af-
ter the pixel shifting process, and holes are identified by 0
pixel values.
(2) For each identified hole pixel, search for the nearest non-
hole pixel in a horizontal direction (left and right) within a
specified range or offset.
(3) If a non-hole pixel is found within the specified range,
fill the hole pixel with the value of the nearest non-hole
pixel, and then we repeat the process for all neighboring
holes

This hole filling algorithm effectively fills the gaps cre-
ated during the pixel shifting process, ensuring a much
smoother and more coherent pair of stereo images [20].

Figure 4. Final Stereo Images created after complete implementa-
tion of Bokeh, Parallax, Bokeh, and Hole Filling)

3.2.6 Unity Stereoscopic Rendering

In this part of the project, we utilized Unity to render dis-
tinct images to the left and right eyes, to finally create a
stereoscopic effect essential for the 3D immersion we are
looking for.

We began by creating custom layers LeftEye and
RightEye to manage which objects each camera
would render. Two cameras, LeftEyeCamera and
RightEyeCamera, were set up within a VR rig, with
their Culling Masks adjusted to render only objects as-
signed to their respective layers. We created quads to dis-
play the images for each eye, assigned the images to mate-
rials (LeftEyeMaterial and RightEyeMaterial),
and applied these materials to the quads (LeftEyeQuad
and RightEyeQuad). The quads were scaled and posi-
tioned directly in front of their respective cameras, to main-
tain the aspect ratio. The VR scene was then tested using a
VR headset to ensure each eye correctly saw its designated
image, creating the desired stereoscopic effect. We discuss
results in section 5.
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4. Dataset and Latent Encoding

We trained our Latent Diffusion Model (LDM) on the
Virtual KITTI 2 dataset [4], a synthetic dataset specifically
designed for autonomous driving research. The dataset con-
sists of 5 sequence clones from the KITTI tracking bench-
mark, with each sequence providing multiple variants such
as modified weather conditions (e.g., fog, rain) and camera
configurations (e.g., rotated by 15 degrees). In total, there
are 42,520 RGB-D image pairs, each of an outdoor scene
featuring a street and in various weather conditions.

To prepare the data for training, we applied the following
preprocessing transformations:

1. Resized the images and depth maps to a consistent res-
olution of 1216 × 320 pixels using bilinear interpola-
tion [7].

2. Normalized each depth map according to the method
described in 3.2.2.

As for the dataset split, we split the dataset into training,
validation, and test sets using a random shuffled 80-10-10
split. The training set contains 34,016 image-depth pairs,
while the validation and test sets each have 4,252 pairs.
Figure 5 shows examples of RGB images from the Virtual
KITTI 2 dataset along with its depth map representation.

Figure 5. Top: An RGB image from Virtual Kitti 2. Middle: The
corresponding ground truth depth map. Bottom: The generated
depth map from our LDM.

We extract features from the images and depth maps by
embedding them in a latent space as described in 3.1.1.
Given the initial resolution of our images, this results in la-
tents of size 155× 46.

5. Results: Latent Diffusion Depth Map Gen-
eration

5.1. Implementation

We implemented the network architecture2 described in
3.1.2 using PyTorch and Huggingface’s Diffusion library.
We used a learning rate of 3 × 10−5, and a learning rate
scheduler that reduced the learning rate by a factor of 10
whenever the validation loss did not reduce significantly
over the course of 3 epochs. The optimizer we utilized
was Adam with β1 = 0.9 and β2 = 0.999. Furthermore,
we applied noise using the DDPM noise scheduler from
Stable Diffusion V2 [31], with 1,000 denoising steps dur-
ing training and 40 denoising steps during inference. We
used a batch size of 8, and trained for 2 epochs, for a total
of approximately 9,000 iterations. Hyperparameter choices
such as inference denoise steps and batch size were decided
based on compute limitations. Initially, the learning rate
was higher, but we reduced it after experiencing sudden
spikes in loss.

5.2. Evaluation

We ran the inference procedure using the trained model
over a random subset of 150 depth/image pairs from Virtual
Kitti 2, generating predicted depth maps that we then used
to evaluate. Specifically, we evaluated the outputs using
Absolute Relative Error, defined as | d̂−d

d |, and δt. These
metrics give us the following quantitative evalution:

Table 1. Comparison of Different Methods
δ1 δ2 δ3 Abs Rel Error

Marigold [18] 0.916 – – 9.9
MiDaS [29] 0.630 – – 23.9
Eigen et al. [10] 0.556 0.752 0.870 –
DiverseDepth [45] 0.631 0.694 – 19.0
Our LDM 0.632 0.640 0.642 5.4

We see that our model was unable to outperform the
benchmark models (including the state of the art LDM-
based depth estimation Marigold [18]) in any of the δt met-
rics. However, the δt scores are somwhat comparable to
the benchmarks. For example, our LDM achieved a slightly
higher δ1 score than DiverseDepth [45]. Surprisingly, the
absolute relative error of our LDM was lower than that of
the benchmark models.

Examining 5, we seet that the generated depth maps are
little more than noise. They vaguely reflect the ground truth
depth maps, but overall struggle to generate an accurate de-
piction of the ground truth.

2See https://huggingface.co/docs/diffusers/en/api/models/unet2d
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6. Results: Stereo Image Pair Generation
6.1. Quantitative

Using our sample image across all the evaluation met-
rics, we get the following in our quantitative evaluations.

6.1.1 Laplacian Variance (Blur Metric)

The Laplacian variance is computed to measure the amount
of blur in the Bokeh Effect image. It provides an indication
of the effectiveness of the Bokeh Effect in simulating the
depth-of-field blur [39]. By applying the OpenCV Lapla-
cian operator to the bokeh effect image and calculating the
variance of the resulting Laplacian image, we were able to
qualify the level of blur [32].

Laplacian Variance Ranges


100− 300 : Low/Average Sharpness
300− 800 : Good Sharpness
1000+ : Excellent Sharpness

(6)
A higher Laplacian variance indicates a sharper image

with less blur, while a lower variance suggests a more
blurred image. In the context of our project, a lower
Laplacian variance was more desirable since it indicated a
stronger and more pronounced bokeh effect [39]. The ob-
tained Laplacian variance value of 140.436 suggested a low
to moderate level of blur in the bokeh effect image, indi-
cating that the bokeh effect is successfully simulating the
depth-of-field blur in the majority of the background of the
image. [32].

6.1.2 Peak Signal-to-Noise Ratio (PSNR)

Our evaluation metrics involved using PSNR to assess the
quality of the final generated left and right stereo pair image
compared to the original image. In our project, we calculate
the PSNR for both the left and right stereo images to eval-
uate the quality and similarity of the generated stereo pair
[9, 8].

The PSNR is calculated using the following formula:

PSNR = 20 · log10
(

MAXI√
MSE

)
(7)

Where:

• MAX I is the maximum possible pixel value of the im-
age (typically 255 for 8-bit images).

• MSE is the MSE between the original image and the
processed image.

A higher PSNR value indicates better image quality and
less distortion or noise in the processed image compared to
the original image.

Figure 6. Result from Edge Detection Consistency

PSNR Ranges


40− 50 : Excellent
30− 40 : Good
20− 30 : Average/Reasonable

(8)

In our project, we obtained average PSNR values of
29.526 for the left image and 29.507 for the right image
in the pairs generated. These values suggest a reasonable
level of similarity between the original image and the gen-
erated stereo pair, so the quality and fidelity of the generated
stereo images [9] are good, and the left and right images are
consistent with each other.

6.2. Qualitative

We also qualitatively assessed the bokeh effect images,
and stereo images to determine the effectiveness of the
depth perception.

6.2.1 Edge Detection Consistency

We used the Edge Detection consistency to visually assess
the alignment between the edges in the bokeh effect im-
age and the depth map. As seen in Figure 6, the Canny
edge detection algorithm was applied to both the bokeh ef-
fect image and the depth map [9, 19]. The edges are then
separated into foreground and background regions based on
a depth threshold, which allows us to clearly see the con-
sistency of the bokeh effect with respect to the depth in-
formation. The effect works well because it maintains the
sharpness of the foreground edges while effectively blurring
the background. This consistency between the bokeh effect
and the depth map ensures that the depth-of-field simulation
is aligned with the scene’s depth structure [19].

We can see that the foreground edges are well-
maintained and sharp. This tells us that the bokeh effect
has effectively preserved the details of objects closer to the
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camera, as we expected. On the other hand, the background
edges are minimally present, which shows us that the bokeh
effect has effectively blurred the background regions, and
this aligns well with the depth-of-field simulation [19].

7. Conclusion Future Work
In this paper, we have presented a novel approach for

generating spatial images using monocular depth estima-
tion. Our method leverages latent diffusion models and
3D stereo image techniques to transform standard 2D pho-
tos into immersive 3D experiences. Through a combina-
tion of depth map generation with an LDM consisting of a
pre-trained VAE and our we trained U-Net, Bokeh depth of
field effect, parallax shifting, and hole filling algorithms, we
have demonstrated an effective pipeline for the simulation
of depth perception in 3D spatial images, especially when
viewing 2D images through VR or MR devices. The eval-
uation of our method showed promising results, with our
Latent Diffusion Model outperforming other methods such
as MiDaS and DiverseDepth in terms of absolute relative
error. Among the algorithms we evaluated, while Marigold
exhibited the best performance, our model seemed to out-
perform the others in terms of the absolute relative error.
This was the result of our chosen U-net architecture’s abil-
ity to capture high-level features and spatial structure of the
images through the latent space representation when com-
bined with VAE. The resulting depth maps were then used
to create stereo image pairs with enhanced depth perception
by incorporating the Parallax Effect, Bokeh Effect, and a
nearest-neighbor hole-filling algorithm. Given our compu-
tational limitations and noise generating depth maps gen-
erated by our diffusion model, we used a sample image to
show the effectiveness of our stereo rendering algorithm,
results of which are seen in Figure 4. The generated stereo
image pairs exhibited good quality and consistency, as seen
by the PSNR, Laplacian Variance values and our qualitative
assessment of edge detection consistency in the foreground
and background.

While our proposed approach demonstrates promising
results in generating spatial images using monocular depth
estimation, there are several avenues for promising future
research and improvements. With more compute, and more
time to train better models, future work could focus on fine-
tuning the LDM parameters further, specifically for depth
estimation tasks, and maybe even leveraging larger and
more diverse datasets with indoor datasets like NYU Depth
V2, and exploring advanced architectures like transformer-
based models [36] or multi-task learning approaches. Fur-
ther, our current hole filling algorithm, based on nearest-
neighbor interpolation, works well for small gaps but may
not be sufficient for larger gaps or more complex scenes,
and would cause the image to appear inconsistent and con-
fusing towards the edges. As a result, filled-in regions near

the edges of the image may appear slightly stretched or
noisy. To address this limitation, future work could explore
more advanced hole filling techniques, such as generative
models for this second part as well through Generative Ad-
versarial Networks (GANs). These models could learn to
synthesize plausible content for the missing regions based
on the surrounding context and depth information, result-
ing in more natural and coherent stereo images. With our
proposed methods and the mentioned ongoing work, it is
clear that the field of immersive spatial photo generation is
an ever-growing field which continues to yield some inno-
vative solutions to allow people to truly capture a moment
in their life, and relive it.
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