
Generating Synthetic Chest X-Rays with generative modeling

Abhishek Kumar
Department of Computer Science

Stanford University
a6kme@stanford.edu

Juan Pablo Triana Martinez
Department of Computer Science

Stanford University
juan3112@stanford.edu

Abstract

In the field of medical imaging, accurate classification of Chest X-rays (CXRs) is vital for timely and
effective diagnosis. The advances of Deep Learning in Computer Vision has enabled the possibility to
build CAD (Computer Aided Diagnosis) systems, which can assist the radiologists with CXR diagnosis.
However, medical imaging datasets like CXR images are limited in size and availability due to privacy
concerns. Due to the diversity of health conditions, anatomical structures, and different angles of the
X-rays (posterior-anterior, anterior-posterior, lateral) [1] simple image augmentation methods, such as
rotation, flipping, varying lighting etc. would not capture the biological variance, resulting in genera-
tion of unrealistic images [6]. Recently, using generative models to augment datasets using synthetic
X-rays, have shown to improve classification in multiple studies. [1] [12].

In this study, we explore three generative algorithms, Variational Autoencoders (VAE) [5], Gaussian
Mixture Variational Autoencoders (GMVAE) [2], and Generative Adversarial Networks (GAN) [3], for
generating synthetic chest X-ray images. Section 1 contains introduction and motivation of this study.
Next, Section 2 contains related work which motivates the study. Section 3 and 4 contains description
of the algorithms, their formulations, and the dataset used to train the models, CXR-14 [13]. Finally,
Section 5 and 6 contains the details about our experiments and results, conclusion, and future work.

1. Introduction
Chest X-ray (CXR) imaging is one of the most relevant, non-invasive diagnostic tools in medical

imaging. They are primary diagnostic tool for various conditions like pneumonia, lung cancer, tubercu-
losis and heart failure. They are often the first imaging technique when patient presents with symptoms
like chest pain, persistent cough or shortness of breath. With the development of deep learning in Com-
puter Vision, the possibility to build CAD (Computer Aided Diagnosis) systems which can assist in
diagnosis of CXRs has become a reality. However, due to patient privacy laws and high cost of annota-
tions, like other medical imaging datasets, CXR imaging datasets are limited. The need to have reliable
generative augmentation methods to create synthetic CXR images for creating and improving CAD tools
has become imperative, and also been shown empirically. For instance, during the 2019 COVID pan-
demic, there has been trials using GAN networks to generate synthetic COVID-19 X-rays for supervised

1

classification [9] [11]. The inputs to our different generative architectures (VAE, GMVAE, and GAN);
are public CXR images - CXR14 dataset and our outputs are generated synthethic CXR images.

2. Related Work
We motivate our study by listing some studies, which have used generative models to generate syn-

thetic images as an augmentation mechanism. Madani et al. [6] compared traditional augmentation
technique with generated images from GAN and observed over 1% improvement over traditional aug-
mentation and around 2.25% improvement over no augmentation in detecting cardiovascular abnormal-
ity. In another study [12], the authors observed around 3% improvement in detection of pneumonia when
they augmented a VGG16 classifier with images generated from a GAN. During Covid-19 pandemic,
Menon et al. used (Mean Teacher + Transfer GAN) MTT-GAN [9] to augment data for a classifier built
for binary detection of Covid-19 using very limited Covid-19 CXR images. In another study, Shams et
al. [11] presented a case study of using GAN networks for augmenting Covid-19 CXR images. A no-
ticeable theme among researches is the common use of GAN networks to illustrate their capabilities to
augment underrepresented classes, and capture coarse anatomical structures (lung, heart, and clavicles);
however, their methodologies of assessment are purely based on qualitative analysis of the generated
images.

Around 2020, latent difussion models came to the picture [10] to generate synthetic chest X-rays
images. These showcased an improvement of 3.5% when used as a data augmentation technique for
classification tasks. This study does have quantitative classification metrics, but the fact they didn’t
compare the difference of performance between a GAN network and the latent diffusion model; and
focused solely on image generation, makes it a bit difficult to assess if its the best method.

Its only until 2022, where Chambon and et. al. developed RoentGen [1] using a latent diffusion
model; composed of three main components: a VAE that compresses images to a pixel space, a con-
ditional U-net for random Gaussian noise generation, and a conditional text encoder. Using this multi
modal model, which leverages the radiologists natural language and the VAE for CXR images, is able to
create visually convincing CXR images; based on a specific text prompt. They measure a 5% improve-
ment of a classifier trained jointly on real and synthetic image, and a 3% improvement when trained on
a larger but purely synthetic training images. This is the most complete actual work when comparing it
to previous attempts; since they compare three main tasks performances: classification with a pretrained
classifier, radiology and report generation, and image-image text image retrieval.

Lastly, in 2023, chest X-ray classification using Dirichlet VAEs [4] have proven to be superior than
using GMVAEs, since its able to disentangle latent factors into class-specific visual features for multi
classification settings. Because of this, research using GANs, VAEs, and latent diffusion models have
proven to be promising in the development of CXR datasets.

3. Methods
In this section, we describe the algorithms that we used with their mathematical formulations.

2

3.1. Variational Autoencoders

VAE is a type of autoencoder that uses principles of probabilistic inference and Bayesian statistics
to learn a latent representation of data and then reconstruct the data. Intuition behind latent vari-
ables is to learn high level features in the lower dimensional space that can make it easy to determine
p(data|latent variables) - Example: image of a human face can be approximated better, if the high level
features are given like Gender, Ethnicity (Eye Color, Hair Color), Expression (Smiling/ Angry) etc. Un-
like traditional autoencoders, which merely aim to compress data into a latent space and then reconstruct
it, VAEs model the data distribution of the source data through a latent space and explicitly calculate the
probability density of the data by integrating over this latent space.

V AE = P (x) =
∑
z

P (x, z) =
∑
z

P (z)P (x|z)

The major components of the VAE are

1. Encoder: It helps extract the features from higher dimension image to a lower dimension latent
space.

2. Latent Space: The mean and variance parameters of the latent distribution of the data is learnt
using a neural network. We then sample from this latent distribution and feed the sample into
decoder to reconstruct the image. In case of GM-VAE, we have K mixture of means and variances
while in case of VAE, we just have one.

3. Decoder: It takes those sampled point and reconstructs the input data from them.

An example is when z ∼ N(0, 1) and P (x|z) = N(µθ(z),Σθ(z)). where the prior distribution is a
Gaussian N and the class likelihood is defined by a Gaussian N or multivariate Gaussian Nk, defined by
neural networks µθ and Σθ

The primary objective of the VAE is MLE (Maximum Likelihood Estimation) of the observed data.
This is done via importance sampling; Monte Carlo, as well as application of a higher and lower bound
using Jensen inequality:

log(Πx∈DPθ(x)) =
∑
x∈D

LogPθ(x) =
∑
x∈D

log
∑
z

Pθ(x, z)

The reason comes from above,
∑

z Pθ(x, z) would become intractable; meaning we need to sample
our z in an intelligent way using q(z).

Pθ(x) =
∑
z

Pθ(x, z) =
∑
z∈Z

q(z)

q(z)
Pθ(x, z) = Ez∼q(z)[

Pθ(x, z)

q(z)
]

With this expectation, we can use Monte Carlo sampling across a set (the batch size); and find the log
likelihood. There is a little caveat; lets assume the case where k = 1.

Ez∼q(z)[
Pθ(x, z)

q(z)
] ≈ 1

K

k∑
j=1

Pθ(x, z
(j))

q(z(j))

3

logPθ(x) ≈ log(
Pθ(x, z

(1))

q(z(1))
)

We know that by Jensen Inequality, for a concave function; fE[x] ≥ E[f(x)]. Meaning that our upper
bound is logPθ(x) and lower bound is

∑
z q(z)log

Pθ(x,z)
q(z)

logPθ(x) ≥
∑
z

q(z)logPθ(x, z) +
∑
z

q(z)log(z)

logPθ(x) ≥
∑
z

q(z)logPθ(x, z) +H(q)

This formulation for variation inference, the lower bound would be equal to the upper bound when
q(z) = Pθ(z|x). Interestignly, this formulation does also come when we calculate KL(q(z)||pθ(z|x)).

Then, let there be a qϕ(z) ≈ Pθ(z|x). The reason we do this is because Pθ(z|x) can also be intractable
in practice. So we optimize a known distribution with parameters ϕ

logPθ(x) ≥
∑
z

qϕ(z)logPθ(x, z) +H(qϕ(z)) ≈ L(θ, ϕ;x)

After applying reparametrization trick for continuous probability distributions, and amortization tech-
nique to obtain the sets of ϕ1, ϕ2, coming from a neural network fλ(x). We get the following:

L(θ, ϕ;x) =
∑
z

qϕ(z|x)logPθ(z, x) +H(qϕ(z|x)) = Eqϕ(z|x)[logPθ(z, x)− log qϕ(z|x)]

Eqϕ(z|x)[logPθ(z, x)− log(P (z)) + log(P (z))− log qϕ(z|x)]

Eqϕ(z|x)[log
Pθ(z, x)

log(P (z))
− log

P (z)

qϕ(z|x)
]

Giving us the final loss, which accounting for a β gradient; it is:

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]− β ∗KL(qϕ(z|x) ∥ p(z))

The loss function involves two key components.

1. Reconstruction Loss: This component encourages the decoder to reconstruct the data as accurately
as possible from the sampled latent variables.

2. KL Divergence: This regularisation term ensures that latent space does not overfit to the training
data and can generalise well. It does so by keeping the learned mean and standard deviations close
to a prior distribution, typically a standard normal distribution.

4

If we consider the prior p(z) to be the standard normal distribution from a multivariate gaussian
, KL divergence has a closed form solution as given below. 1 2

KL(qϕ(zi|xi) ∥ p(zi)) = −1

2

D∑
j=1

(
1 + log((σ

(j)
ϕ (xi))

2)− (µ
(j)
ϕ (xi))

2 − (σ
(j)
ϕ (xi))

2
)

Here µ
(j)
ϕ (xi) and σ

(j)
ϕ (xi) are the mean and standard deviation respectively of the jth dimension of ith

training sample. The reconstruction loss is taken to be MSE (Mean Squared Loss) between tensors of
the original and generated image.

3.2. Generative Adversarial Network

GANs are generative model which learn to generate data by sampling from a learned distribution of
the dataset without explicitly defining the distribution’s density function. These models do not do an
explicit maximum likelihood computation of the data distribution. GANs are composed of two main
components, which can be considered as two agents trying to compete in a game.

1. Generator: The generator’s role is to create data that is indistinguishable from real data. In a way,
this agent tries to fool the discriminator into labeling the generated images as real images.

2. Discriminator: The discriminator’s role is to be able to classify between real data and generated
data. Its objective is to be able to classify real images from generated images.

We are using the Least Squares GAN [8] which adopt the least squares loss function for the model.
This is different to the sigmoid cross entropy loss function in the original GAN paper. LSGans were
empirically shown to be more stable during gradient backpropagation. The loss formulation for the
generator and discriminator is given below.

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− 1)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z)))2

]
min
G

VLSGAN(G) =
1

2
Ez∼pz(z)

[
(D(G(z))− 1)2

]
Intuitively, when D(G(z)), i.e the prediction from the discriminator of the generated image is 1, the
generator’s loss is 0 (the generator was successfully able to fool the discriminator into believing the
generated image is real). Similariy, if D(x) is 1, i.e discriminator labels real image as 1 and D(G(z)) is
0, i.e the discriminator labels generated images as 0, the Discrimator loss is 0.

4. Dataset
The sample images are given in Figure in the appendix. 10. The data comes from the CXR14 Dataset

link. The following table illustrates the distribution of images found per chest x-ray condition.

1Taken from Variational Autoencoder post by Matthew N. Bernstein https://mbernste.github.io/posts/vae/
2Taken from CS 236, Homework 2 for VAEs, GMVAEs, and FSSVAEs Fall 2023; instructors: Stefano Ermon; er-

mon@cs.stanford.edu

5

https://nihcc.app.box.com/v/ChestXray-NIHCC

Condition Count
No Finding 59406
Infiltration 19894
Effusion 13317
Atelectasis 11559
Nodule 6331
Mass 5782
Pneumothorax 5302
Consolidation 4667
Pleural Thickening 3385
Cardiomegaly 2776
Emphysema 2516
Edema 2303
Subcutaneous Emphysema 1991
Fibrosis 1686
Pneumonia 1431
Tortuous Aorta 742
Calcification of the Aorta 455
Pneumoperitoneum 316
Pneumomediastinum 253
Hernia 227

Table 1. Frequency of Different Conditions in CXR-14 dataset

We used the publicly available CXR14 dataset released by Wang et al. [13] in 2017, from NIHCC
(National Institutes of Health Clinical Center). The dataset includes chest X-rays in posterior-anterior
(PA), anterior-posterior (AP), and lateral (LAT) projections. Due to time constraints, we did not perform
augmentation for underrepresented classes or differentiate between CXR types. Future research can ad-
dress these aspects to enhance model performance.

To use VGG16 and DenseNet121 as encoders, we transformed the images to the appropriate inputs.
For VAEs, GANs, and GMVAEs V7 and V8, we resized images to 224, centered to crop, converted to
grey channels (1 output for GAN and VAE, 3 channels for GMVAE), and applied histogram equalization.
For GMVAEs V3 to V6, we also added a normalization block using mean values [0.485, 0.456, 0.406]
and standard deviations [0.229, 0.224, 0.225].

Based on using generative models for classifiers on the CXR14 dataset [7], we created a transitional
layer with a 1x1 convolution layer (feature size * 300 channels), BatchNormalization (300 channels),
ReLU activation, Max Pool 2D (kernel size 7), and a linear layer (input 300, output desired z dimension).
We developed various combinations of GMVAEs and FS-GMVAEs, with the latter concatenating the
label y = [1, 0, 1, ...] as a positional token in the Z space.

6

5. Experiments and Results
We used a batch size of 64 for all the algorithms. We found that batch size of 64 gave us optimum

running time per epoch after experimenting with batch size of 32 and 128. We used Adam optimiser
with default values of βs for VAE and with β1 = 0.5 for GAN3. We used learning rate of 1e-4 for VAEs
and 2e-4 for GAN (both discriminator and generator). To help the generator converge faster, we let the
generator run 3 times for every run of discriminator. If we didn’t do that, the discriminator loss came
down rapidly and generator was not able to learn effectively. We provide further experimentations and
results for our various algorithms below.

5.1. GM-VAE

For GM-VAE, we used VGG-16 with ImageNet weights to extract the features from which we learnt
the latent space distribution. We experimented with various dimensions of the latent space (Z space) and
various possibilities of Z as Categorical with parameter K. For more information about which decoders
and types used, follow the appendinx link 7.

Figure 1. Samples from FS-GMVAE V1 to V3

Figure 2. Samples from GMVAE V3 to V5

3β1 = 0.5 was the value that was used in Assignment3 GAN of CS231. Also, further research revealed that we need more
component of recent gradients during optimisation in case of GANs than historical momentum. Hence, the value of β1 was
chosen as 0.5

7

Figure 3. Samples from GMVAE V6 to V8

5.2. VAE

We then experimented with VAE. Since we did not have much success with a pre-trained encoder
while training GM-VAE, we decided to create our own encoder and decoder architecture. We took
inspiration from VGG-16 architecture in creating the encoder. The architecture of the encoder and
decoders, as well as results are given in the following figures. As seen in the Figure 5, the training loss
became flat after around 1 epoch and we stopped the training when we observed no further reduction in
loss and no further improvement in quality of generated image.

Figure 4. Architecture for VAE Encoder (left) and VAE Decoder (right)

8

Figure 5. Training loss of VAE with β = 1, β = 0.1 and β = 0.002

Figure 6. Samples from VAE with β = 0.1 at iteration 0, iteration 100 and iteration 250

5.3. GAN

We experimented with GAN after VAE. The architecture used is showcased in the next figure. We
saw an equilibrium in the loss of generator and discriminator after around 3 epochs. We did not see
any significant improvement in quality of image after 4 epochs and we also did not see the training loss
coming down for generator and discriminator, so we stopped the training at around 5 epochs.

9

Figure 7. Architecture for GAN discriminator (left) and GAN generator (right)

Figure 8. Samples from GAN at iteration 0, iteration 400 and final iteration after 5 epochs

Figure 9. Discriminator and Generator loss for the GAN Network

We compare the parameter counts of our architectures and average training time per epoch on table 2.

10

6. Conclusions and Future Work
We found that GANs produced qualitatively better results than VAE and GMVAE. We think that our

VAEs did not perform well because of the Gaussian Prior assumption on the distribution of latent space.
We experimented with various encoder architectures, with and without pre-trained ImageNet weights,
but our results did not improve significantly. GANs used fewer parameters, compute and were able to
produce qualitatively better results. As future work, we can explore other architectures that try to do
explicit modeling of data distribution, like Diffusion Models and try to dig deeper on why our VAEs
were not able to model the distribution well. We can also try with other priors like Dirichlet prior or
Cauchy prior and see how it impacts the modeling of the latent space. We can also use these generated
images as augmentation in classification models and report the effect that they have on such models.

7. Appendices

Figure 10. Sample images from the dataset after applying the transformations

Formula for calculating convolution transpose 2D: Oh = sh(Ih − 1) + kh − 2p and Ow = sw(Iw −
1) +Kw − 2p

N ∗ Cin ∗H ∗W− > Cout ∗ Cin ∗Kh ∗Kw− > N ∗ Cout ∗Ow ∗Oh

For instance, assuming a padding = 1, and stride = 2.

1 ∗ 14 ∗ 14 ∗ 14− > 6 ∗ 14 ∗ 4 ∗ 4− > 1 ∗ 6 ∗ 28 ∗ 28

Layer Activation Volumes Weights Biases
Input 1*14*14*14 N/A N/A

CONVT2D (14,6,4,2,1) 1*6*28*28 4*4*14*6 6
CONVT2D (6,3,4,2,1) 1*3*56*56 4*4*6*3 3
CONVT2D (3,3,4,2,1) 1*3*112*112 4*4*3*3 3
CONVT2D (3,3,4,2,1) 1*3*224*224 4*4*3*3 3

Table 2. Decoder 1 using convolutional transpose 2d layers

11

Layer Activation Volumes Weights Biases
Input 1*128*14*14 N/A N/A

CONVT2D (128,64,4,2,1) 1*64*28*28 4*4*128*64 64
CONVT2D (64,32,4,2,1) 1*32*56*56 4*4*64*32 32
CONVT2D (32,16,4,2,1) 1*16*112*112 4*4*32*16 16
CONVT2D (16,3,4,2,1) 1*3*224*224 4*4*16*3 3

Table 3. Decoder 2 using convolutional transpose 2d layers

Version Z K Transition Net Normalize Blue Encoder Decoder
FS-GMVAE V1 1000 50 True True VGG16 Linear Layers
FS-GMVAE V2 1000 50 True False VGG16 Linear Layers
FS-GMVAE V3 1000 50 True True VGG16 Decoder 1

GMVAE V3 1000 50 False True VGG16 Decoder 1
GMVAE V4 1000 50 True True VGG16 Decoder 1
GMVAE V5 1000 50 False True VGG16 Decoder 2
GMVAE V6 2000 300 True True DenseNet121 Decoder 2
GMVAE V7 2000 300 False False VGG16 Decoder 2
GMVAE V8 2000 300 True True VGG16 Decoder 2

Table 4. Experiments with GM-VAE Hyperparameters Z: Dimension of Latent Space, K: Number of Gaussian
Mixture

Architecture Parameter Count Average Train
Time per Epoch

GAN
Discriminator: 2,795,904, Generator:
3,606,976 (Total: 6,402,880)

24 minutes

VAE
Encoder: 4,711,648, Decoder: 11,184,033,
Mean and Logvar: 8,389,632 (Total:
32,674,945)

48 minutes

GM-VAE (En-
coder in Eval)

Decoder1: 1920; Decoder2: 172800
30 min (Image
generation)

GM-VAE (En-
coder in Train)

VGG16 Features Encoder: 14,714,688; De-
coder1: 1920; Decoder2: 172,800 (Total:
14,716,608 - 14,887,488)

65 min

Table 5. Parameter counts and train time for reported architectures. The training time is average training time per
epoch on 1 Nvidia T4 GPU on Google Cloud Compute

8. Contributions
Abhishek worked on experiments with VAE and GAN and helped write the report. Juan worked on

experiments with GM-VAE and helped write the report. We wrote the training code ourselves taking
inspirations from the CS231 and CS236 assignments.

12

References
[1] P. Chambon, C. Bluethgen, J.-B. Delbrouck, R. V. der Sluijs, M. Połacin, J. M. Z. Chaves, T. M. Abraham,

S. Purohit, C. P. Langlotz, and A. Chaudhari. Roentgen: Vision-language foundation model for chest x-ray
generation, 2022.

[2] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulkumaran, and M. Shana-
han. Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint
arXiv:1611.02648, 2016.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in Neural Information Processing Systems (NeurIPS), volume 27,
2014.

[4] R. Harkness, A. F. Frangi, K. Zucker, and N. Ravikumar. Learning disentangled representations for explain-
able chest x-ray classification using dirichlet vaes, 2023.

[5] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of the 2nd International
Conference on Learning Representations (ICLR), 2014.

[6] A. Madani, M. Moradi, A. Karargyris, and T. Syeda-Mahmood. Chest x-ray generation and data augmen-
tation for cardiovascular abnormality classification. In Medical Imaging 2018: Image Processing, volume
10574, pages 415–420. SPIE, 2018.

[7] C. Mao, Y. Pan, Z. Zeng, L. Yao, and Y. Luo. Deep generative classifiers for thoracic disease diagnosis with
chest x-ray images, 2018.

[8] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, and Z. Wang. Multi-class generative adversarial networks with the L2
loss function. CoRR, abs/1611.04076, 2016.

[9] S. Menon, J. Galita, D. Chapman, A. Gangopadhyay, J. Mangalagiri, P. Nguyen, Y. Yesha, Y. Yesha,
B. Saboury, and M. Morris. Generating realistic covid19 x-rays with a mean teacher + transfer learning
gan, 2020.

[10] K. Packhäuser, L. Folle, F. Thamm, and A. Maier. Generation of anonymous chest radiographs using latent
diffusion models for training thoracic abnormality classification systems, 2022.

[11] M. Y. Shams, O. M. Elzeki, M. A. Elfattah, T. Medhat, and A. E. Hassanien. Why are generative adversarial
networks vital for deep neural networks? a case study on covid-19 chest x-ray images. Studies in Big Data,
pages 147–162, 2020.

[12] D. Srivastav, A. Bajpai, and P. Srivastava. Improved classification for pneumonia detection using transfer
learning with gan based synthetic image augmentation. In 2021 11th International Conference on Cloud
Computing, Data Science Engineering (Confluence), pages 433–437. IEEE, 2021.

[13] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. Chestx-ray8: Hospital-scale chest x-ray
database and benchmarks on weakly-supervised classification and localization of common thorax diseases.
National Institutes of Health Clinical Center, 2017.

13

