
GIMME: 3D Gaussian Inverse Rendering for
Mobile Mesh Extraction

Neil Nie
neilnie@stanford.edu

Hannah Norman
hnorman@stanford.edu

Abstract

We present a method to enhance the practicality of ra-
diance fields for real-time mesh-extraction applications on
mobile platforms. While Neural Radiance Fields (NeRF) of-
fer photorealistic scene rendering, their computational in-
tensity hampers real-time execution in environments lacking
compute resources, such as mobile devices. By leveraging
3D Gaussian Splatting (3DGS), we address the computa-
tional challenges associated with NeRF, enabling photore-
alistic scene rendering on resource-constrained platforms.
Our approach involves an iOS application for data capture,
a pipeline for training 3DGS models, and a mesh extrac-
tion system for obtaining textured meshes ready to render.
We demonstrate real-time rendering speeds and high visual
quality on established datasets and newly collected data.

1. Introduction
In recent years, the intersection of neural rendering and

real-time graphics has advanced digital asset creation and
usage across various domains, notably in gaming and im-
mersive augmented reality (AR) and virtual reality (VR)
environments [14]. Neural Radiance Fields (NeRF) [7]
have emerged as a technique for photorealistic scene render-
ing. However, the computational intensity of NeRF models
makes them impractical for real-time applications, particu-
larly on mobile platforms. This paper introduces a novel ap-
proach that leverages 3D Gaussian Splatting (3DGS) [6]—a
technique for efficiently approximating the volumetric ren-
dering equation—to enhance the viability of NeRF-derived
assets in real-time, resource-constrained environments.

Historically, the creation of 3D models relied heavily on
methods such as implicit representations with signed dis-
tance functions (SDF) and voxel-based models [3]. These
techniques, while effective, often required sophisticated and
costly multi-view capture systems that limited their accessi-
bility and practicality, especially for dynamic and complex
scenes. Moreover, the computational overhead and the lack
of scalability in these methods presented substantial barriers
to real-time application in gaming and interactive media.

Neural rendering introduces a paradigm shift by utiliz-
ing deep neural networks to synthesize photorealistic im-
ages from novel viewpoints [14]. Among the most notable
techniques, NeRF offers a compelling approach by model-
ing the volumetric scene as a continuous function that maps
3D coordinates to color and density [7]. This technique has
shown remarkable success in producing high-fidelity results
from sparse inputs but can be computationally intensive.

3D Gaussian Splatting (3DGS) addresses these compu-
tational challenges by providing an efficient way to approxi-
mate the volumetric rendering equation [6]. By reducing the
computational load, 3DGS makes it feasible to use NeRF-
derived assets in real-time applications, especially on mo-
bile platforms. This technique is integral to our approach,
which aims to combine the strengths of neural rendering
with the efficiency of 3DGS.

The core of our methodology has three components:
• A light-weight iOS application to capture data for neu-

ral rendering using ARKit
• A pipeline to train 3DGS models for real-time render
• A mesh extraction system to retrieve textured meshes

from the 3DGS models for downstream applications,
such as AR/VR gaming

This work is motivated by the growing demand for high-
quality digital assets that can be dynamically generated and
deployed in interactive media. Neural rendering stands at
the forefront of this demand, offering unprecedented lev-
els of realism and immersion. By introducing a method
that integrates scene retrieval with mesh generation, our ap-
proach extends the benefits of neural rendering to mobile
and AR/VR platforms, making it both a technically inter-
esting and viable solution. In sum, our contributions are:

• Fast and accurate asset capture: Creating photo-
realistic 3D models for use in AR/VR environments
can be hindered by high computational demands and
a need for sophisticated capture systems. We address
this problem by building a smartphone capture system.

• Efficient mesh extraction: Traditional 3D modeling
techniques are cumbersome for real-time applications.
We address this problem by integrating the SuGaR
mesh reconstruction system [4] into our pipeline.

1

Our project proposes a solution that reduces computa-
tional demands while maintaining the high quality of NeRF-
derived assets, making it viable for mobile and real-time
applications. We call our approach GIMME. Our GIMME
system significantly enhances photorealistic rendering of
novel scenes using 3D Gaussian Splatting and SuGaR mesh
extraction, delivering detailed, textured meshes that inte-
grate seamlessly into AR and VR environments. For details
on our qualitative results, see Figure 2.

2. Related Work
In describing our pipeline, we first discuss foundational

work on Neural Radiance Fields (NeRF) [7]. Then, we fo-
cus on state-of-the-art (SOTA) real-time radiance field ren-
dering methods—most significantly, 3D Gaussian Splatting
(3DGS) [6]. Finally, we explore approaches for inverse ren-
dering and mesh extraction for scene factorization, which
have direct applications to digital asset creation.

Neural Radiance Fields for View Synthesis Milden-
hall et al. present NeRF [7], a seminal work in the field of
novel view synthesis. Given a series of images with known
camera positions, the NeRF architecture leverages multi-
layered perceptron (MLP) networks to render photorealistic
continuous scenes at high resolution. This method preceded
and motivated an explosion in the field of neural rendering
[14], and it serves as a baseline for our implementation.

Soon after publication, the creators of NeRF addressed
shortcomings of the original method—specifically aliasing
artifacts and loss of fine-grained detail—with mip-NeRF
[1]. This updated approach produces higher quality results,
executes at a 7% faster rate, and is half of NeRF’s origi-
nal size [1]. Mip-NeRF became the new SOTA for neural
radiance fields, and it is frequently utilized as a baseline
comparison with proposed methods in the field.

One shortfall of NeRF is its portability to other plat-
forms, particularly those with weaker computing resources.
MobileNeRF offers a solution [2]. By adapting NeRF’s
framework to a more traditional rendering pipeline with
polygon rasterization, MobileNeRF presents a paralleliza-
tion scheme for NeRF that allows the method to run at
competent frame rates on mobile devices [2]. Although
our proposed approach does not render scenes on a mo-
bile platform—focusing only on data capture with our iOS
app—MobileNeRF suggests potential future work where
we could integrate the data capture app with a full scene
rendering pipeline optimized for mobile devices.

Real-Time Radiance Field Rendering NeRF cata-
pulted neural rendering to the forefront of computer vision
tasks, and though it offers high visual fidelity of generated
scenes, it lacks real-time efficiency. Instant-NGP provides
a solution to this train- and render-time problem [8]. Lever-
aging hash and occupancy grids as well as a smaller MLP
network, Instant-NGP achieves significant speedup in the

training of neural radiance fields, producing comparable re-
sults in up to five minutes when compared to the hours nec-
essary for the SOTA Mip-NeRF method [8]. Even so, this
speedup comes at the expense of photorealism, creating a
tradeoff between quality and efficiency.

3D Gaussian Splatting (3DGS) [6] closes this gap. The
3D volumetric representation of 3DGS utilizes 3D Gaus-
sians, and the method relies on anisotropic splatting to ren-
der scenes [6]. With this approach, 3DGS achieves real-
time rendering alongside higher visual fidelity to the ground
truth than NeRF and related methods. 3DGS represents the
current SOTA, and we build our pipeline atop it.

Inverse Rendering and Mesh Extraction The abil-
ity to synthesize novel views of continuous 3D scenes given
only a series of 2D images suggests a myriad of applica-
tions. We turn specifically to the sub-field of inverse ren-
dering and mesh extraction, with a target use-case of gen-
erating 3D models and assets for use in game development
and animation. A number of papers have explored exten-
sions to NeRF and 3DGS to reach this end.

Following NeRF’s release, its creators presented NeRV:
Neural Reflectance and Visibility Fields [11], which allows
complex illumination unseen during training. This is crit-
ical for 3D asset generation since models must offer high
visual fidelity in new environments with unique lighting.
Similarly, NeRFactor [16] addresses the challenge of fac-
torizing scenes into shape and reflectance, enabling realistic
rendering under novel lighting conditions by decomposing
the visual input into these intrinsic components.

Yariv et al. offer another solution to the meshing prob-
lem with BakedSDF [15]. This method leverages spheri-
cal Gaussians and targets the polygon rasterization pipeline
[15], similar to MobileNeRF [2]. It achieves real-time ren-
dering speeds and produces meshes of high quality by bak-
ing neural scene representations into triangle meshes [2].

SuGaR, proposed by Guédon et al. [4], and 2DGS, pro-
posed by Huang et al. [5], take the mesh extraction pipeline
one step further by leveraging Gaussians. The former uti-
lizes 3DGS [4], while the latter introduces a novel approach
called 2D Gaussian Splatting (2DGS) [5]. Both methods
generate high-quality meshes in real time and represent the
SOTA of mesh extraction for inverse rendering.

3. Methodology

Here, we present our GIMME system. See Figure 1.
• First, we describe our data capture approach, encapsu-

lated within a lightweight app targeting iOS devices.
• Then, we describe our method for training high-fidelity

3D Gaussian scene representations in real-time.
• Finally, we describe our mesh extraction strategy that

leverages the SuGaR method [4] to retrieve precise, de-
tailed meshes from the 3DGS scenes.

2

Figure 1. GIMME system pipeline. First, the GIMME Data iOS app is used to capture data for training neural radiance fields. Then, a 3D
Gaussian inverse renderer trains on this data and produces a 3D scene. Mesh extraction and editing takes place next, after which a refined
mesh can be rendered in real-time on any mobile or AR/VR application.

3.1. Data Capture

The GIMME system begins with a data capture app. This
iOS app, called GIMME Data, is integrated with ARKit to
capture data for training neural radiance fields (NeRF) and
3D Gaussian Splatting (3DGS) 1. Leveraging ARKit, the
system captures depth information and estimates camera ex-
trinsics essential for NeRF, while simultaneously collecting
images suitable for 3DGS processing.

After data collection, the system transitions to a robust
processing pipeline designed to convert the data into the
standard COLMAP format [10, 9]. COLMAP is widely rec-
ognized in the field for its utility in 3D reconstruction and
photogrammetry. By converting to this format, our system
facilitates a seamless integration into existing workflows,
allowing for efficient model training, testing, and evalua-
tion. This comprehensive approach not only maximizes the
utility of the captured data but also streamlines the develop-
ment process for applications involving advanced 3D ren-
dering and visualization technologies.

3.2. 3D Gaussian Splatting

3D Gaussian Splatting [6] renders scattered data points
into a continuous volume. This method is particularly ef-
fective for visualizing spatial data in three dimensions by
interpolating the values onto a structured grid. It represents
each data point as a Gaussian function, smoothly distribut-
ing the point’s influence over a localized region in space [6].

Mathematically, for a given data point located at xi with
an associated scalar value si, the contribution of this point to
the grid volume is modeled as a Gaussian function centered
at xi [6]. The value contribution V (x) at any point x in the
space is given by the equation:

1The data capture system is enabled by resources from the open-source
iOS developers community and Apple’s ARKit documentation and ex-
ample projects. For details, see https://developer.apple.com/
documentation/arkit/.

V (x) =
∑
i

si · exp
(
−∥x− xi∥2

2σ2

)

where σ is the standard deviation of the Gaussian kernel,
which controls the spread of the data point’s influence [6].
This parameter determines how much each data point con-
tributes to its surrounding region in the grid, affecting both
smoothness and resolution of the resulting visualization.

The integration of contributions from multiple data
points is computationally managed by summing their Gaus-
sian functions over the grid [6]. Each point effectively
“splats” its value onto the grid according to the Gaussian
distribution, blending with contributions from other points
to produce a smooth, continuous field. An important aspect
of Gaussian splatting is the choice of σ, which must be op-
timized based on the density of data points and the desired
smoothness of the visualization [6]. This optimization is
essential to balance detail and smooth interpolation without
excessive blurring or aliasing effects, maintaining a faithful
representation of the underlying data:

G(x) =
∑
i

Vi(x)

where G(x) represents the final interpolated value at any
given point x in the output volume, accumulating the in-
fluences of all data points appropriately weighted by their
Gaussian splats [6].

After retrieving visual scene data with our GIMME Data
app, we train a 3D Gaussian inverse renderer on it, inspired
by the original 3DGS framework [6]. With the relevant im-
ages and the camera intrinsics values, we convert the data
into the COLMAP format, and use the 3DGS open-source
repo to train one model for each scene.

3

https://developer.apple.com/documentation/arkit/
https://developer.apple.com/documentation/arkit/

3.3. Mesh Extraction

The use of Gaussian splatting to render scenes in real-
time presents opportunities and challenges, as discussed
extensively in the literature [3]. While the method ex-
cels in smooth data interpolation and visualization, integrat-
ing it directly into real-time rendering engines like Blender
or ARKit introduces complexity. A significant limita-
tion is the difficulty of implementation within these frame-
works. These systems are primarily designed for poly-
gon meshes and traditional rendering pipelines rather than
volume-based data representation. As a result, adapting
them to support the different data handling and rendering
processes required by Gaussian splatting requires extensive
modifications to the core rendering algorithms.

Moreover, another challenge with Gaussian splatting in
real-time scenarios is the lack of straightforward mecha-
nisms to compose separate Gaussian-splatted entities with
other scene elements [3]. Gaussian splats inherently blend
into each other, making it challenging to maintain dis-
tinct boundaries between different objects or layers within
a scene. This blending can obscure details and complicate
the task of scene composition where clear demarcation and
interaction between objects are necessary.

An alternative approach to address these issues is to
convert the volume data generated by Gaussian splatting
into polygonal meshes, though this largely unexplored [13].
This conversion would enable the use of Gaussian-splatted
data within traditional rendering pipelines and simplify
composition with other scene elements. However, extract-
ing accurate, detailed meshes from 3D Gaussian volume
data is challenging. The process typically requires addi-
tional computational steps to define surface boundaries, ex-
tract meshes, and assign material properties. These steps
are essential for ensuring that the meshes can be effectively
used in downstream tasks such as animation, collision de-
tection, and more. The complexity of this conversion pro-
cess thus represents a substantial barrier to the practical use
of Gaussian splatting in real-time rendering applications.

In this section, we describe our mesh extraction approach
from 3DGS, which is based on “SuGaR: Surface-Aligned
Gaussian Splatting for Efficient 3D Mesh Reconstruction
and High-Quality Mesh Rendering,” by Guédon et al. [4].
The SuGaR method creates accurate, editable meshes from
3D Gaussian splatting representations by optimizing the
properties of tiny 3D Gaussians based on training images
[4]. This technique is noted for its rapid performance com-
pared to Neural Radiance Fields (NeRF).

To address the disorganized nature of Gaussians post-
optimization, the authors introduce a regularization term
that encourages the Gaussians to align more closely with the
surface of the scene [4]. This regularization is essential for
improving the distribution and alignment of the Gaussians,
thereby facilitating the subsequent mesh extraction process.

For mesh extraction from Gaussians, the paper describes
an efficient method to sample points on the visible part of
a level set of the density function defined by the Gaussians
[4]. These sampled points are then used in the Poisson re-
construction algorithm, which results in a detailed triangle
mesh within minutes on a single GPU [4]. Following the
initial mesh extraction, an optional refinement strategy is
employed where the mesh and a subset of 3D Gaussians are
optimized jointly through 3DGS rendering [4]. This opti-
mization not only enhances the quality of the mesh render-
ing but also enables the effective use of traditional mesh
editing tools, such as Blender or MeshLab.

The approach ingeniously combines the speed of Gaus-
sian splatting for quick scene capture with the advantages of
mesh-based representations for editable, high-quality ren-
dering, marking it as a significant contribution to the field
of computer graphics. Mathematically, the key equations
involved include the definition of the density function d(p)
for a point p in space:

d(p) =
∑
g

αg exp

(
−1

2
(p− µg)

TΣ−1
g (p− µg)

)
where µg , Σg , and αg represent the mean, covariance, and
blending coefficient of each Gaussian, respectively [4]. The
regularization term R is formulated as:

R =
1

|P |
∑
p∈P

|f(p)− f̂(p)|

where f(p) and f̂(p) are the ideal and estimated signed dis-
tance functions (SDFs) derived from the density function
d [4]. This mathematical framework ensures that the 3D
Gaussians align accurately with the scene’s surface, facili-
tating effective mesh extraction and refinement.

After training a 3D Gaussian inverse renderer on our cap-
tured data, we feed the resulting scene representation into
the SuGaR framework to extract an editable mesh. This in-
tegration leverages the strengths of our capture system and
the SuGaR methodology to produce high-quality, editable
3D models suitable for various downstream applications.

3.4. Implementation Details

Experimental Datasets To evaluate the practical ap-
plications of our system, we utilize a combination of stan-
dard datasets from the field of neural rendering and our
own generated data. Specifically, the original datasets for
NeRF are employed to benchmark our rendering techniques
against established norms within the community. As for
the data itself, we curate a dataset comprising two scenes
from the NeRF Synthetic 360° dataset [7] (“Hotdog” and
“Chair”), two scenes from the Mip-NeRF Unbounded 360°
dataset [1] (“Bonsai” and “Stump”), and two scenes ob-
tained with our GIMME Data app (“Sink” and “Orchid”).

4

3D Gaussian SplattingGT RGB Image Extracted Mesh

Op
en

 So
urc

e D
ata

se
ts

Sy
nth

eti
c D

ata
se

ts

Refined Mesh

Re
al-

Wo
rld

 G
IM

ME
 Sc

en
es

Figure 2. GIMME pipeline. The stages of the GIMME system’s processing pipeline on synthetic, real-world, and self-generated datasets.
Note the visual fidelity our system achieves in the final meshes across various datasets. Undesired artifacts, such as discrepancies in texture
and geometry, are highlighted with red dashed circles, indicating areas for potential improvement in our pipeline.

Figure 2 visualizes scenes from our curated dataset and
their renders as they progress through the GIMME pipeline,
from original data to scene renders to meshes. Each scene
is generated from 50 to 200 images captured from various
angles. Resolutions range from 500 × 500 pixels to 2K,

with a default resolution of 1920 × 1440. When using the
GIMME Data app, we aimed to mimic real-world condi-
tions and challenges typical in mobile and AR/VR environ-
ments, including reflective surfaces that can cause aliasing.2

2See Figure 3 in the Appendix for an image of GIMME Data’s UI.

5

Metric Synthetic Real World Our Data
Hotdog Chair Bonsai Stump Sink Orchid

PSNR ↑ 32.03 28.34 28.50 24.70 19.21 21.10
LPIPS ↑ 0.0561 0.0669 0.1770 0.3320 0.4264 0.3805
SSIM ↓ 0.9698 0.9451 0.9237 0.7231 0.6079 0.7627

Table 1. Evaluation metrics for different scenes.

Evaluation Metrics In evaluating our rendering
pipeline, we use the Peak Signal-to-Noise Ratio (PSNR),
Learned Perceptual Image Patch Similarity (LPIPS), and
Structural Similarity Index Measure (SSIM) metrics [17].
These standard metrics quantify the quality of reconstructed
images compared to their original high-resolution counter-
parts, providing clear measures of accuracy and visual fi-
delity. For evidence of high-fidelity rendering, we seek high
PSNR and LPIPS scores and low SSIM scores.

4. Results

We consider the high-fidelity results produced by
GIMME Data’s generated scenes as evidence of the practi-
cality of our lightweight iOS application in capturing high-
quality data across various real-world settings, emphasizing
the accessibility and usability of our approach for develop-
ers and content creators in the AR/VR space. These insights
not only validate our technical contributions but also affirm
the potential of GIMME to revolutionize asset creation in
immersive media applications.

Furthermore, we offer analyses of our results across all
scenes using the GIMME system below.

4.1. Quantitative Analysis

The numerical results shown in Table 1 show excellent
performance across all data types, though different metrics
lead to various conclusions. The synthetic data, specifically
the “Hotdog” scene, scored highest on PSNR, followed
closely by the real-world data, and finally by our GIMME
data. Although the GIMME data has the lowest PSNR
scores, it still achieves high numbers overall, illustrating
the high fidelity of the resultant meshes. The SSIM scores
follow a similar trend. Interestingly, the LPIPS scores are
lower than expected when compared against scores for simi-
lar scenes in the literature [7, 6, 4]. Furthermore, we can see
that the ranking is reversed: the GIMME data achieves the
highest LPIPS scores, followed by the real world data, and
the synthetic data—specifically the “Hotdog” scene which
had scored the best for both PSNR and SSIM—achieves the
lowest LPIPS rating. Taken together, the quantitative results
suggest resultant scenes with strong visual fidelity overall
across each scene in the curated dataset. We take these re-
sults to affirm the practical utility of the GIMME pipeline
under varied conditions.

4.2. Qualitative Analysis

The qualitative results of the GIMME system more
so underscore the efficacy of the 3D Gaussian Splatting
(3DGS) [6] technique and SuGaR [4] system in enhanc-
ing real-time, photorealistic rendering and mesh extraction
from novel scenes. Figure 2 illustrates this, where the high
visual fidelity and smoothness of the rendered scenes are on
full display. Notably, the integration of the SuGaR mesh ex-
traction method proves efficient in generating detailed, tex-
tured meshes that can seamlessly integrate into any AR and
VR environment.

We see that the extracted meshes are highly similar to the
training images. The pipeline can capture fine details such
as leaves on the bonsai tree, arms of the chair, and utensils
in the toy sink. With some manual editing and mesh refine-
ment using a standard application like Blender or MeshLab,
the highly accurate refined meshes prove largely suitable for
downstream applications.

That being said, there remain undesired artifacts in the
rendered scenes. In particular, the 3DGS model struggles
to capture the reflective plastic surfaces of the LEGO pieces
in the “Bonsai” scene as well as the window in the “Or-
chid” scene. The model also struggles with the background
of these large and complex scenes. The extracted meshes
sometimes have holes near surfaces that are not observed
during training. Even so, we note the high visual fidelity of
the meshes overall.

5. Conclusion

The project successfully achieves its goal of construct-
ing a pipeline for 3D Gaussian-enabled mesh extraction us-
ing data captured on a mobile device. We developed an
iOS app, GIMME Data, which streamlines the data collec-
tion process and enhances user accessibility. Utilizing the
3D Gaussian Splatting (3DGS) framework, we effectively
render 3D scenes from the captured data and integrate this
output with the SuGaR mesh extraction system. The result-
ing meshes exhibit high visual fidelity, demonstrating the
potential of our approach for practical applications. This
work lays a solid foundation for future advancements in
inverse rendering, paving the way for more sophisticated
and efficient 3D model generation techniques in various
domains such as game development, animation, and aug-
mented/virtual reality.

6

5.1. Future Work

Future work includes accelerating the pipeline for full
deployment on mobile devices, enabling the GIMME Data
app to handle both data capture and transformation into
renderable 3D meshes. We plan to extend our pipeline
to include an automated mesh refinement stage, enhancing
the SuGaR-generated meshes to a more user-friendly state.
Currently, we manually refine the generated meshes using
applications like Blender and MeshLab. Automating this
stage presents opportunities to streamline the process and
enable the extraction of specific objects from each scene
mesh. Ongoing efforts focus on these enhancements.

6. Acknowledgements

We wish to thank Tiange Xiang, our CS 231N project
mentor, for his feedback and support during this project. We
would also like to thank the authors of these open source
research projects: NeRFStudio [12], InstantNGP [8], 3D
Gaussian Splatting [6], and SuGaR [4].

References
[1] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman,

R. Martin-Brualla, and P. P. Srinivasan. Mip-nerf: A mul-
tiscale representation for anti-aliasing neural radiance fields.
CoRR, 2021.

[2] Z. Chen, T. Funkhouser, P. Hedman, and A. Tagliasacchi.
Mobilenerf: Exploiting the polygon rasterization pipeline
for efficient neural field rendering on mobile architectures.
CVPR, 2023.

[3] A. Dalal, D. Hagen, K. G. Robbersmyr, and K. M.
Knausgård. Gaussian splatting: 3d reconstruction and novel
view synthesis, a review. IEEE, 11, 2024.

[4] A. Guédon and V. Lepetit. Sugar: Surface-aligned gaus-
sian splatting for efficient 3d mesh reconstruction and high-
quality mesh rendering. arXiv, 2023.

[5] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao. 2d gaus-
sian splatting for geometrically accurate radiance fields. SIG-
GRAPH, 2024.

[6] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis.
3d gaussian splatting for real-time radiance field rendering.
ACM Trans. Graph, 42(4), 2023.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis. ECCV, 2020.

[8] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neu-
ral graphics primitives with a multiresolution hash encoding.
ACM Trans. Graph, 41(4), 2022.

[9] J. L. Schönberger and J.-M. Frahm. Structure-from-motion
revisited. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[10] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm.
Pixelwise view selection for unstructured multi-view stereo.
In European Conference on Computer Vision (ECCV), 2016.

[11] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Milden-
hall, and J. T. Barron. Nerv: Neural reflectance and visibility
fields for relighting and view synthesis. CVPR, 2021.

[12] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang,
A. Kristoffersen, J. Austin, K. Salahi, A. Ahuja, D. McAl-
lister, and A. Kanazawa. Nerfstudio: A modular framework
for neural radiance field development. In ACM SIGGRAPH
2023 Conference Proceedings, SIGGRAPH ’23, 2023.

[13] J. Tang, J. Ren, H. Zhou, Z. Liu, and G. Zeng. Dreamgaus-
sian: Generative gaussian splatting for efficient 3d content
creation, 2024.

[14] A. Tewari, J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk,
Y. Wang, C. Lassner, V. Sitzmann, R. Martin-Brualla,
S. Lombardi, T. Simon, C. Theobalt, M. Niessner, J. T. Bar-
ron, G. Wetzstein, M. Zollhoefer, and V. Golyanik. Advances
in neural rendering. CoRR, 2021.

[15] L. Yariv, P. Hedman, C. Reiser, D. Verbin, P. P. Srinivasan,
R. Szeliski, J. T. Barron, and B. Mildenhall. Bakedsdf:
Meshing neural sdfs for real-time view synthesis. CoRR,
2023.

[16] R. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Free-
man, and J. T. Barron. Nerfactor: Neural factorization of
shape and reflectance under an unknown illumination. ACM
Trans. Graph, 2021.

[17] X. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. IEEE, 2018.

Appendix

7. GIMME Data Application UI

Figure 3. User interface for GIMME Data app.

7

