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Abstract

Recent advancements in augmented reality (AR), virtual
reality (VR), and mixed reality (MR) have enabled applica-
tions like remote surgery, where surgeons can practice com-
plex procedures in virtual environments. This project aims
to address the hand tracking problem essential to such ap-
plications by focusing on two main tasks: 2D segmentation
and depth estimation from monocular videos. We propose
an encoder-decoder architecture with a shared encoder be-
tween both tasks and separate decoders for each task. This
approach aims to efficiently solve both the 2D segmenta-
tion task and the depth estimation task, enhancing the VR
experience for surgical training. We employ a fully convo-
lutional network as baseline and explore a deconvolution
network for improved performance.

1. Introduction
With recent advancements in augmented reality (AR),

virtual reality (VR), and mixed reality (MR), new oppor-
tunities are emerging for various applications. One exciting
possibility is remote surgery using MR technology. Imagine
surgeons practicing complex procedures in a virtual setting,
allowing them to improve their skills without any risk to
patients.

However, realizing such an application is not easy. For
an immersive experience, surgeons need to interact with the
virtual environment in real-time with precision. This re-
quires the VR system to track the positions of the surgeons’
hands accurately, ensuring the virtual environment does not
interfere with their ability to see and place their hands cor-
rectly.

Tracking the position of a surgeon’s hands is a challeng-
ing task. To tackle this, we begin by assuming that the VR
system’s visual perspective is fixed within the virtual envi-
ronment. This means the global coordinate system remains
static.

Next, we consider a VR system that uses only a single
monocular camera. The goal of this system is to find the 3D

coordinates of the surgeon’s hands within the fixed coordi-
nate system. To do this, the system first locates the hands on
a 2D plane parallel to the camera lens using a 2D segmenta-
tion task. Then, it reconstructs the depth information using
RGB videos, determining the radial distance from the hands
to the camera. This approach breaks down the complicated
task of hand tracking into two well-investigated subtasks:
2D segmentation and depth estimation.

The first subtask, 2D segmentation, has been extensively
studied in the field of computer vision. Although this
project uses video inputs, we can still approach this prob-
lem as a dense image classification problem and perform
semantic segmentation on each video frame. A fully convo-
lutional network (FCN) serves as a robust baseline for this
purpose. An FCN employs a convolutional neural network
(CNN) to process image features, which are then interpo-
lated into pixel labels [1]. However, traditional FCNs of-
ten rely on basic non-learnable decoders, which leads to a
significant loss of detailed information during the upsam-
pling process and results in limited output resolutions [2].
To address this issue, a modified architecture incorporating
a deep deconvolution network has been proposed to gener-
ate high-resolution segmentation results [2]. The model we
proposed for this project is thus built on this work.

Similarly, much prior work has been conducted on depth
estimation from images or videos, with both supervised and
unsupervised methods proposed to tackle this challenge.
Like the 2D segmentation task, many of these solutions are
also based on CNNs, just incorporating some additional fea-
tures such as optical flow to enhance performance. This
similarity indicates that the depth estimation problem might
share common aspects with the 2D segmentation problem,
suggesting that we could potentially reuse parts of the seg-
mentation architecture for depth estimation.

In summary, our project focuses on addressing two main
tasks: 2D segmentation and depth estimation based on RGB
images. We aim to provide an efficient solution that tackles
both problems using a single unified model. Utilizing an
encoder-decoder architecture, we employ a shared encoder
for both tasks, with distinct decoders attached for each spe-
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cific task. Our baseline model is an FCN network based
on [1], while we propose an additional model featuring a
deconvolution network for enhanced performance.

2. Related Work
The first of the two subtasks in this project is 2D seg-

mentation on video inputs. As mentioned in the introduc-
tion, this can be approached as a standard semantic segmen-
tation problem on images. For this purpose, FCNs are a
strong baseline. FCNs first obtain coarse labels using CNNs
[2]. Then, upsampling is implemented with simple methods
such as bilinear interpolation for pixel-wise labeling [1].

However, FCN-based methods have intrinsic limitations
due to the absence of a complex upsampling strategy. The
bilinear interpolation layer used for pixel-wise labeling is
not learnable, meaning that upsampling is learned indirectly
through the convolutional network. This approach makes
it difficult to accurately reconstruct highly nonlinear struc-
tures, such as object boundaries[2].

To tackle this problem, a modified architecture incorpo-
rating a deep deconvolution network has been suggested to
generate high-resolution segmentation results [2]. The de-
convolution network includes unpooling layers that corre-
spond to the pooling layers in the convolutional network,
as well as deconvolution layers, which function as trans-
posed convolution operations. The unpooling layers per-
form sparse upsampling to reconstruct the structure of an
input object, while the deconvolution layers transform these
sparse activations into a denser form to reconstruct the ob-
ject’s shape [2].

For the depth estimation subtask, on the other hand, we
had to do a lot more investigation to clearly define our ob-
jective. We began by reviewing several papers [3, 4, 5, 6, 7]
that analyzed different model architectures, training strate-
gies, and evaluation metrics for depth estimation from im-
ages or videos. However, not all studies were relevant to
our project. For instance, due to the challenges in collect-
ing training data with depth labels, many works focused
on depth estimation from monocular videos using unsuper-
vised learning methods [8]. However, since the EgoGesture
dataset we are using contains depth information, we decided
that it is better for us to leverage this valuable data using a
supervised learning approach.

Moreover, we found that a lot of the proposed solutions
for depth estimation are based on convolutional networks,
just like for the 2D segmentation task, with some additional
features such as temporal information and optical flow to
take into account [3, 6, 4, 5]. This similarity between the
approaches for both tasks inspired us to develop a unified
framework to address both problems simultaneously.

To evaluate the feasibility of this approach, we delved
into the concept of joint multi-task learning. This tech-
nique projects features extracted from different tasks onto

each other to enhance the final outputs [3]. Our goal is to
combine the depth estimation task with semantic segmenta-
tion. Given that these tasks share similar contextual infor-
mation, a common strategy is to use a single neural network
with a shared encoder to capture scene structure features,
while employing separate decoders for semantic segmenta-
tion and depth regression [9, 10, 11]. Since the deconvo-
lution network proposed by [2] also employs an encoder-
decoder architecture, we can readily adapt this architecture
for multi-task learning using this strategy.

3. Methods
3.1. Fully Convolutional Network

Our baseline architecture is an FCN inspired by the de-
sign proposed by Simonyan et al. [1]. In their work, Si-
monyan et al. adapted classic image classification models,
such as AlexNet [12], VGG nets [13], and GoogLeNet [14],
for the task of semantic segmentation. By treating semantic
segmentation as a dense classification problem, they em-
ployed transfer learning on these pre-trained models for the
new task. Specifically, they replaced the final layers of the
original models with a 1 × 1 convolution layer to obtain
scores for dense classification.

Following their approach, we designed our FCN block
based on the VGG-16 network. We replaced the fourth
max-pooling layer and all subsequent layers with a 1 × 1
convolution layer with a single output channel, as illustrated
in Figure 1. To generate outputs that match the original im-
age size, the scores are then upsampled using a simple near-
est neighbor method for the final predictions.

Figure 1. Diagram of an FCN block. Red represents 2 × 2 max-
pooling layers. Yellow represents a 1 × 1 convolution layer. Blue
represents an upsampling layer. All other unmarked layers are
convolutional layers with a kernel size of 3 and padding of 1, fol-
lowed by batch normalization and ReLU activation. Text labels
denote the output size of the convolutional layers.

Our baseline model features two parallel FCN blocks, as
illustrated in Figure 2. Each block is dedicated to either
mask or depth prediction. We treated the 2D segmentation
task as a dense binary classification problem, applying a sig-
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moid activation function to the classification scores. This al-
lowed us to utilize Binary Cross-Entropy Loss (BCELoss)
for training. For depth estimation, treated as a regression
problem, we employed Mean Squared Error (MSE) loss to
measure the discrepancy between the predicted and ground-
truth depth maps.

Figure 2. Block Diagram showing the architecture of the baseline
model, adapted from the FCN architecture.

3.2. Deconvolution Network

The model we propose builds on the design from Long et
al. [2]. The original model is an encoder-decoder network
designed for pixel-level segmentation tasks. The encoder,
based on the VGG-16 architecture, transforms each image
into a 4096-dimensional feature vector, as shown in Figure
3. The decoder, which mirrors the encoder, uses decon-
volution and unpooling layers to progressively reconstruct
coarse-to-fine object structures, as shown in Figure 4.

Figure 3. Architecture of the encoder network. Adapted from [2].

We modified this model by adding a second decoder net-
work, which enables our model to perform concurrent 2D
segmentation and depth estimation. Given that the VGG-16
network in the encoder is very good at capturing intricate
object details, we expect that the same set of object features
would be sufficient for the depth estimation task. Conse-
quently, with the encoder-decoder structure, we can conve-
niently use a single shared encoder to extract features for
both segmentation and depth estimation tasks.

Moreover, the learnable decoder’s large receptive field,
achieved through a sequence of down-sampling and up-
sampling operations, accommodates objects of various
scales. Since the same property is also desired for depth

Figure 4. Architecture of the decoder network. Adapted from [2].

estimation, we expect that another decoder with an identi-
cal architecture will work well for the depth estimation task.
A block diagram of our proposed model is shown in Figure
5.

Figure 5. Block Diagram showing the architecture of the deconvo-
lution model.

3.3. Evaluation Metrics

To assess the model’s performance, we introduced two
metrics: the depth score and the mask score. The depth
score measures the accuracy of depth estimation, allowing
for a maximum error margin of 5%. On the other hand,
for the mask estimation task, we used the F1 score instead
of accuracy. This is because the hands are relatively small
compared to the video frame size, so a model can achieve
seemingly ”good” accuracies without providing genuinely
valuable predictions. Intuitively, consider a model that al-
ways produces an all-zero depth map and an all-negative
segmentation map. If the hands occupy only 10% of the
frame, such a model can still achieve 90% accuracy on
both tasks. An example prediction embodying this issue
is shown in Figure 6. Therefore, to alleviate the undesired
effects from the significant class imbalance between hand
pixels (≈ 10%) and background pixels, we opted to utilize
the F1 score to evaluate the model’s segmentation perfor-
mance.

The F1 score, a harmonic mean of precision and recall,
can be computed as follows:

Precision =
TP

TP + FP

where TP represents True Positives and FP represents False

3



Figure 6. Without considering the F1 score, most pixels in the
model’s outputs tend to be close to zero.

Positives; and

Recall =
TP

TP + FN

where FN represents False Negatives.
The formula for calculating the F1 score is:

F1 score = 2 · Precision · Recall
Precision + Recall

From this formula, we can see that the F1 score achieves
its highest value when both precision and recall are equally
high. This is especially useful in situations with class im-
balance, where one class occurs much more frequently than
the other.

4. Dataset
We used a subset of the EgoGesture dataset [15] for this

project. This dataset contains egocentric gesture data featur-
ing 83 gestures from 50 subjects across 6 different scenes.
It includes RGB-D videos collected with an Intel RealSense
SR300 camera, providing both RGB and depth videos of the
gestures. Additionally, the dataset offers a version with the
videos separated into individual JPEG image frames avail-
able for download. Examples of RGB frames and their cor-
responding depth frames are shown in Figure 7.

Figure 7. Example frames of RGB video and corresponding depth
map images.

One issue with the EgoGesture dataset is that many
videos contain numerous ”idle” frames where the subjects’
hands are completely out of frame. Therefore, we decided
to remove all frames where the depth map is entirely zero,
reducing the dataset size to enable more efficient model
training.

Another challenge is that the EgoGesture dataset does
not provide masks for supervised training in the segmenta-
tion task, and the image size of 320 × 240 does not match
the input size of the baseline model, which is 224 × 224.
Therefore, we needed to resize all images and generate the
masks ourselves. Upon examining the depth images, we
determined that they were close enough to serve as masks
for the subjects’ hands. Thus, we decided to generate hand
masks from the depth images using classic signal process-
ing techniques.

After resizing the depth images, we smoothed the edges
to ensure that the masks covered the entire area of the hands.
This required passing the depth images through a low-pass
filter. For this, we chose a simple median pool with a kernel
size of 7. We then applied a hard threshold of 0.5 to identify
all the pixels corresponding to the hand masks. Examples of
the results from these transformations are shown in Figure
8.

Figure 8. Examples of depth image and mask generated from a
resized version of the original image.

Due to time and memory limitations, we focused on pro-
cessing data from four subjects: subjects 1, 2, 3, and 10. We
divided the derived dataset into three subsets. The training
set comprised up to 512 frames from each video for sub-
jects 1 and 10. Similarly, the validation set included up to
512 frames from each video for subject 2. The test set con-
tained up to 512 frames from each video for subject 3. The
total number of videos and frames in each dataset are shown
in Table 1.
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Number of videos Number of frames

Training set 96 39,484
Validation set 48 19,402
Test set 32 11,597

Table 1. Summary of the datasets.

5. Experiments
In our experiment, we trained and evaluated three mod-

els: the FCN-based model, the deconvolution model, and
an LSTM network modified from the deconvolution model
using Pytorch [16]. The primary focus of the project was on
the first two models, while the LSTM network was an ex-
ploratory effort to incorporate temporal information in ad-
dition to spatial features.

5.1. Training

To perform end-to-end training of the entire network, we
combined the depth loss and the mask loss by introducing a
weight parameter, α. This parameter, along with the learn-
ing rate and weight decay, are the hyperparameters that need
to be specified for the model.

Before training, we initialized all corresponding layers
with pretrained weights from the VGG-16 network. This
transfer learning strategy is beneficial, especially consider-
ing our limited data and computational resources. Addi-
tionally, we initialized other layers using the Kaiming ini-
tialization method [17]. To train the model, we employed
the Nesterov Stochastic Gradient Descent optimizer with a
momentum of 0.95. Due to the limitation of CUDA mem-
ory, we adjusted the batch sizes accordingly. For the FCN-
based model, we utilized a batch size of 128, while for the
deconvolution network, we set the batch size to 64.

For each model, we conducted a random parameter
search for 20 parameter sets. These models were trained on
a subset of the training set and evaluated on a subset of the
validation set. Each parameter set underwent training for
5 epochs, and the model achieving the best average depth
and mask scores on the validation set was selected. Finally,
we trained the model for 50 epochs using the identified hy-
perparameters shown in Table 2 and saved the model that
achieved the highest average scores on the validation set.
Figure 9 illustrates the convergence of loss functions during
training of both models.

5.2. FCN & Deconvolution Network

The performance of both models on all three datasets are
shown in Table 3 and Table 4. Although both models ex-
hibited slight overfitting, the results on the test set remained
reasonable, likely due to the utilization of weight decay and
batch normalization. While the two models showed simi-

FCN Deconvolution

Learning Rate 5.84× 10−4 8.05× 10−4

Weight Decay 1.67× 10−8 1.45× 10−9

α 8.47 23.0

Table 2. Hyperparameters.

Figure 9. Top: Learning curves of the FCN-based model. Bottom:
Learning curves of the deconvolution network.

lar performance on the mask prediction task, our proposed
model outperformed the FCN on the depth estimation task.
This outcome is intuitive, as the regression problem is inher-
ently more complex than the binary classification problem
and thus requires greater representational power and a more
sophisticated model. The local information extracted by the
FCN may be sufficient for the segmentation task, but depth
estimation demands information beyond the local context.
Consequently, the large receptive fields provided by the de-
convolution model capture information beyond the 8-by-8
window of the FCN block, resulting in better performance
for the depth estimation task.

Depth score Mask score

Training set 0.7329 0.9317
Validation set 0.6680 0.8667
Test set 0.6686 0.9087

Table 3. Performance of the FCN-based model.

Some prediction results from both models are illustrated
in Figure 10 and Figure 11. Each model produced reason-
able outcomes. As anticipated, the deconvolution network
generated more intricate and detailed spatial features, while
the FCN-based model delivered structured, coarse-grained
results due to its interpolation approach.
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Depth score Mask score

Training set 0.8509 0.9785
Validation set 0.7999 0.8537
Test set 0.8153 0.9093

Table 4. Performance of our proposed model.

Figure 10. Prediction outputs of the FCN-based model.

Figure 11. Prediction outputs of the deconvolution network.

5.3. LSTM Network

We also investigated the use of recurrent networks in this
project. The rationale was that convolutional network-based
architectures like FCN and the deconvolution network are
designed to process single images, thus neglecting the tem-
poral relationships between video frames. We hypothesized
that incorporating a time-aware network could potentially
enhance performance by capturing these temporal dynam-
ics.

Specifically, we modified our deconvolution network by
appending two LSTM layers with a hidden size of 4096 be-
tween the encoder and the decoder. Although LSTMs are
computationally expensive and slower to train due to their
sequential nature, they excel at capturing long-term depen-
dencies in sequential data.

However, during our experiments, we observed that
training the LSTM network was considerably more chal-
lenging compared to the other two CNN-based networks.
It exhibited higher sensitivity to hyperparameters, subjects,
and scenes, requiring significantly more time for tuning and
training. As presented in Table 5, after 160 epochs of train-
ing, the best-performing model attained an average score of
0.5335 on the training set and 0.6199 on the test set. This
discrepancy might be attributed to the varying performance
of the model across different subjects.

Depth score Mask score

Training 0.4856 0.5814
Validation 0.4745 0.4672
Test 0.4670 0.7728

Table 5. Performance of the LSTM network.

Due to time constraints, we were unable to conduct fur-
ther exploration with this recurrent network. One potential
solution to the optimization issue could be to decrease the
size of the hidden layer to facilitate training. Another idea
would be to decrease the complexity of the encoder net-
work, possibly by removing a few layers from the VGG-
16 network. By simplifying the encoder, we may be able
to balance the computational resources allocated to spatial
features with the temporal dynamics captured by the LSTM.

6. Conclusion
This project tackled the problem of determining the 3D

coordinates of the user’s hands. Assuming a fixed global
coordinate system, we based our approach on data sourced
from a single monocular camera. By dividing the hand-
tracking task into 2 subtasks: 2D segmentation and depth
estimation, we leveraged well-studied techniques in com-
puter vision. We created a unified model for these tasks, us-
ing an encoder-decoder architecture with a shared encoder
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and separate decoders for each task. We employed fully
convolutional networks (FCNs) as a robust baseline for 2D
segmentation and developed a deconvolution network for
enhanced performance. Finally, we briefly explored the use
of an LSTM network to incorporate temporal information,
but encountered significant challenges in the training pro-
cess.

In the end, our deconvolution model achieved an impres-
sive average score of 0.8623 on the test set. As anticipated,
the baseline FCN model’s performance was limited by its
overly simple upsampling structure. However, we were
somewhat surprised by the poor performance of the LSTM
model, which was likely due to optimization difficulties.

In general, we found depth estimation to be a signif-
icantly more challenging problem compared to 2D seg-
mentation across all methods. Another issue we encoun-
tered is that the performance of all three models is subject-
dependent. This is intuitive, as different subjects may have
hands of varying sizes. With a monocular RGB video, it is
difficult to determine if hands appear small because they are
farther from the camera (indicating greater depth) or simply
because they are physically smaller. To address this limita-
tion and enhance the model’s generalizability, implement-
ing a calibration mechanism is essential. Therefore, future
work should focus on improving depth estimation results
and incorporating subject-specific calibration.

7. Contributions
M.Q. processed the data and prepared the dataset. Y.W.

implemented and trained the models. Both authors con-
tributed to the design of the models, conducted the exper-
iments, interpreted the results, and finalized the manuscript.
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