
HilAIt: Automatic Video Highlighting System Leveraging Audio, Text, Facial,
and Semantic AI

Danica Xiong
Stanford University

daxiong@stanford.edu

Tony Xia
Stanford university

tonyx717@stanford.edu

Abstract

We have developed an Automatic Highlighting System
that leverages multiple AI technologies to process stream
videos and generate highlights. The system takes in vari-
ous types of input, including video, audio, facial data, chat
logs, and game APIs, each processed through separate, par-
allelized pipelines. By utilizing state-of-the-art Language
Models (LLMs), Optical Character Recognition (OCR), and
facial classification algorithms, the system evaluates and
classifies moments to determine their highlight-worthiness.
We evaluate the necessity of multiple data inputs and the
feasibility of generating quality clips with multiple data in-
puts.

1. Introduction
In recent years, the popularity of live streaming plat-

forms for gaming, such as Twitch, YouTube Gaming, and
Facebook Gaming, has surged exponentially, establishing
a burgeoning industry around live video game content.
Within this landscape, the ability to effectively curate and
highlight compelling moments from extensive streams has
become increasingly valuable for tournament holders, con-
tent creators, and fans. However, manual curation of high-
lights is time-consuming and often subjective, relying heav-
ily on human judgment digging through hundreds of hours
of content. The sheer volume of content generated during
live streams poses a daunting task for streamers seeking to
distill key moments for their audience. Without automated
tools to assist in this process, streamers are burdened with
the arduous task of sifting through hours of footage, di-
minishing their productivity and detracting from the overall
quality of their content. Furthermore, video content con-
tains a lot of nuances in which traditional AI pipelines miss
out on. Excluding video, there is also facial emotion, tex-
tual. and audio clues, that we would like to leverage in our
pipeline.

Our application automates the generation of start and end
timestamps for video highlights, significantly reducing the
time content creators need to find quality clips. The primary

objective was to build a comprehensive, end-to-end pipeline
that produces high-quality video highlights with minimal
manual intervention. We aimed to answer key questions re-
garding the feasibility of generating quality clips using this
diverse array of data inputs and whether all these data types
are necessary for optimal performance. Additionally, a cru-
cial aspect of our project was ensuring that the fully inte-
grated system operates efficiently within a reasonable time-
frame, leading to our parallelized combination framework.

Our key contributions are the following:

1. We devised a parallelized system that seamlessly inte-
grates multiple data modalities, including video, emo-
tion, APIs, audio, and chat sentiment. This holistic ap-
proach allows for a comprehensive analysis of stream
content, facilitating the identification of highlight-
worthy segments.

2. Introducing a trainable scoring system, we empower
users to customize and refine highlight selection cri-
teria according to their preferences and objectives,
thereby enhancing the adaptability and utility of our
system.

3. Through soliciting feedback from streamers, we con-
ducted a thorough evaluation of our system’s perfor-
mance in terms of highlight quality and time-saving
efficiency. This feedback-driven iterative process en-
sured the practical relevance and effectiveness of our
solution.

4. Our analysis delves into the necessity and impact of
each data type on the overall performance of the sys-
tem. By elucidating the role and significance of these
data modalities, we provide valuable insights into the
underlying mechanisms driving highlight generation.

5. We examine 4 architectures trained on the FER2013
dataset and analyse the strengths and weaknesses of
each model.

1



Figure 1. The following is our data processing pipeline. From the video Id, we get 3 inputs: Stream Video, Chat Video, and Game API.
Eachis split into their raw data, ie. Face Cam, Screen Video, Audio, Chat video, be processed by their corresponding models, and then
used as input to timestamp the video.

2. Related Works

2.1. Facial Emotion Recognition: State of the Art
Performance on FER2013

Facial Emotion Recognition (FER) [3] has witnessed
significant advancements in recent years, with state-of-the-
art performance demonstrated on benchmark datasets such
as FER2013. FER2013, a widely used dataset in the field,
comprises over 35,000 labeled facial images categorized
into seven emotion classes. Researchers have achieved
remarkable accuracy in emotion classification tasks on
this dataset, leveraging deep learning architectures such
as CNNs and RNNs. Integrating FER capabilities into
our facial recognition pipeline enables us to capture nu-
anced emotional responses displayed by streamers during
live gameplay sessions.

2.2. Robust Speech Recognition via Large-Scale
Weak Supervision

Large-scale weak supervision [10] capitalizes on the
abundance of unlabeled speech data available on the inter-
net and other sources, leveraging weak supervision signals
such as automatic speech recognition (ASR) outputs, text
transcripts, and keyword spotting to train speech recogni-
tion models. By harnessing the power of weakly annotated
data at scale, researchers aim to alleviate the burden of man-
ual annotation and enhance the robustness and adaptability
of speech recognition systems. We use this to transcribe the
streamer’s speech to text.

2.3. Unsupervised Extraction of Video Highlights
Via Robust Recurrent Auto-encoders

In Unsupervised Extraction of Video Highlights Via Ro-
bust Recurrent Auto-encoders [13], the authors tackle the

challenge of unsupervised highlight extraction by leverag-
ing recurrent auto-encoders, a type of neural network capa-
ble of capturing temporal dependencies in sequential data.
The authors conduct experiments on diverse video datasets
spanning various domains, including sports, entertainment,
and gaming. The primary limitation of their paper is the ab-
sence of a comprehensive evaluation concerning the quality
of their extracted highlights.

2.4. Video Highlight Prediction Using Audience
Chat Reactions

This paper [2] takes the opposite approach as the prior
one. The authors address the challenge of highlight predic-
tion by harnessing the interaction data present in chat logs
during live video streams. They construct a dataset and train
V-CNNs on it; however, their study lacks a comprehensive
evaluation of their approach similar to the paper above.

2.5. Video Highlight Prediction Using Audience
Chat Reactions

The key contribution of Ping et al.’s [9] approach lies in
the integration of lag-calibrated time-sync comments with
concept-emotion mapping techniques. By aligning com-
ment timestamps with corresponding video timestamps and
mapping concept and emotion attributes to each comment,
the authors construct a rich dataset for highlight detec-
tion and summarization. The authors integrate both video
and chat data, employing sentiment analysis—a unique
approach not previously observed in the above literature.
However, again, the authors do not provide much on evalu-
ation.

2



3. Methods
3.1. Video and Chat Collection

We aimed to simplify the input process for stream-
ers, requiring only the video ID of a Twitch VOD
as input. However, due to Twitch regulations, di-
rect downloading of video or chat data is restricted.
To circumvent this limitation, we utilized the Twitch-
Downloader tool developed by Lewis Pardo (available at
https://github.com/lay295/TwitchDownloader). This pre-
built CLI tool facilitates the downloading of VODs in 1-
hour segments, which are subsequently concatenated to
form the full-length VOD. Additionally, the tool performs
OCR on the chat, transcribing messages into a JSON file
with corresponding timestamps aligned to the beginning of
the video.

3.2. Audio Transcription Pipeline

Automatic Speech Recognition (ASR) transcribes the
streamer’s speech for subsequent sentiment analysis using
GPT. After evaluating various options, we chose to utilize
OpenAI’s open-source ASR model, Whisper [11].

We first convert the MP4 stream video into an MP3
audio file. A challenge with Whisper is that it does not
record timestamps with the transcriptions, making it dif-
ficult to align audio transcriptions with other components
in downstream tasks. To address this, we segment the au-
dio input into 30-second clips and run the pipeline on each
clip independently. This segmentation offers several advan-
tage of parallel processing. The transcription for a 14 hour
vod takes 3 hours without parallelization. The transcribed
messages in 30 second intervals is fed into the sentiment
prompting pipeline below.

3.3. Sentiment Prompting

The transcribed chat and audio data undergo segmenta-
tion into variable-length intervals, with our chosen interval
duration set to 1 minute. Utilizing OpenAI’s GPT API, we
prompt the model to provide a rating on a scale from 1 to
10, indicating the level of excitement exhibited by the chat,
along with a single emotion chosen from a predefined set of
options: [”angry”, ”disgust”, ”fear”, ”happy”, ”sad”, ”sur-
prise”, ”neutral”].

During our experimentation phase, we initially tested
with a scale of 1 to 5 and various prompts. However, we ob-
served that this limited scale resulted in an overabundance
of maximum ratings (5s) being assigned by the model. To
address this issue, we settled on expanding the scale to 1
to 10, providing the model with a broader range for assign-
ing ratings. Additionally, we enhanced the model’s contex-
tual understanding by specifying that the chat messages per-
tained to gameplay within the popular video game ’League
of Legends’. This context proved essential for interpreting

gamer-specific phrases such as ’poggers’, which may con-
vey excitement or enthusiasm synonymous with ’wow’.

For time, it takes 0.5 hours to run sentiment analysis on
a 14 hour VOD

3.4. Game API Pipeline

Navigating the intricacies of the game API pipeline
posed several challenges, primarily due to the disparity
in data alignment between video and real-time API data
streams. Due Twitch’s lack of transparency for exact video
start times, aligning game matches with video timestamps
proved particularly complex.

To align the API to the video, we took several steps: For
each match, we record a single timestamp ”GameTimeS-
tamp” displayed in the video’s top right corner, along with
the corresponding video time ”VideoTimeStamp”. Addi-
tionally, we manually save the Streamer’s username and
the characters in the current game. We had to do this be-
cause usernames contained hidden tags which couldn’t be
transcribed with OCR. Furthermore, live game APIs could
not be accessed unless our app was running locally on the
player’s computer. We also could not perform OCR on the
character names because many of the streamers had ”over-
lays” which is art that covers portions of their stream, in-
cluding the character names. Thus, manual transcription
was the most reliable option.

We then queried and cached data from the Riot API for
the 200 most recent games played by the Streamer. We per-
form a search for matching character sets in every game.
Upon identifying matches, we queried the Riot API for
match timestep data, which returns player positions, states,
and events occurring throughout the game. Events include
monster kills, character kills, deaths, and assists.

We aligned the real-time API Event with video times-
tamps with the following equation:

AlignedEvent = V ideoT imeStamp

−GameTimeStamp+APIEventT ime

This formula facilitated the synchronization of event data
from the API with the corresponding moments in the video.
The event and relative timestamp to the video are used for
further processing. Due to API query limitations, it takes
2-4 minutes to generate all API calls for a 14 hour VOD.

3.5. Face Data Pipeline

The face data in our system is detected using Deep-
Face [1]. This tool provides the center x,y point of the
face along with the dimensions of the bounding box h,w.
We use this to crop the image accordingly and convert it to
grayscale. The cropped grayscale image is then resized to
48x48 pixels to match the FER2013 dataset specifications.

3



One challenge we encountered was the detection of mul-
tiple faces when the streamer watched videos or browsed
websites containing faces. This caused our face detection
algorithm to recognize and process an excessive number
of faces simultaneously. Fortunately, DeepFace includes
a feature that allows for the detection of a specific face.
To leverage this, at the beginning of each stream, we pro-
vide DeepFace with a reference screenshot of the streamer’s
face, enabling it to focus solely on detecting this particular
face throughout the stream.

The video is split into frames and every 20 frames is fed
into our model. This step is fully parallelizable and is the
bottleneck of our system. It takes 3 hours to finish perform-
ing Audio transcription and sentiment analysis on a 14 hour
VOD. However, if frame processing were parallelized, this
time would be reduced significantly.

3.6. Facial Emotion Models

We built a custom CNN, resnet, and then fine tuned on a
resnet made by imagenet trained a resnet v50 but it overfit
way too fast. We opted for a ResNet-18 model because it
performed slightly better due to it having fewer layers. By
incorporating a 0.4-0.6 dropout and increased the weight
decay to from 0.001 to 0.1, and it improved the validation
accuracy from 0.53 to 0.56. However, the model still overfit
too fast.

For the fine-tuned ResNet-50 pre-trained on Image Net,
we achieved a validationaccuracy of 0.58 but it also suffered
from rapid overfitting.

Our CNN architecture actually performed the best be-
cause it wasn’t able to overfit so quickly, achieving a vali-
dation accuracy of 0.6

3.7. Combination Step

The combination step is designed to compute a new
score for each specified interval, which in our case is 1
minute.

For each minute, we analyze the video frames and their
corresponding FER emotions. The scoring mechanism for
emotions is as follows:

• If the emotion is not neutral, the total score is increased
by the confidence of the emotion.

• If the emotion is happy, it is increased by 0.5*con-
fidence resulting in 1.5*confidence contribution from
the emotions.

• If it is surprised, it is increased by the confidence, re-
sulting in 2*confidence. The confidence is between 0
and 1 so. All frames within the minute are summed.

API events are recorded per second, and all events within
the minute are aggregated to contribute to the score:

Figure 2. The following is our combination step where the results
of all of our components are put into the final score. All compo-
nents are parallelized and combined at the end

• A death event contributes 0 points.

• A kill event contributes 2 points each.

• All other events contribute 1 point each.

Chat sentiment and audio transcription are already split
into intervals previously, and the score in that interval is
given by GPT. If the sentiment interval is smaller than the
highlight interval, all chat and audio scores within the inter-
val is added to the current score.

This resulting in the following formula:

Score = 0.3 ∗ chat+ 0.3 ∗ audio+ 0.3 ∗ 2∗
1[API == KILL] + 0.3 ∗ 1[API! = KILL]+

0.5 ∗ 0.1 ∗ 1[FER == Happy] + 0.1∗
1[API == Surprised] + 0.1 ∗ 1[API! = Neutral]

(1)

We tuned this based off of generating highlights, evaluat-
ing them ourselves, and then tuning the weights again. All
streamers used the above scoring mechanism. Obviously
we want to learn the score later on, however due to data
constraints, we settled on this.

4. Dataset and Features
4.1. FER Dataset

We utilized the FER 2013 [3] dataset for training and
evaluation. This dataset comprises 28,709 training exam-
ples and 3,589 test examples, each represented as a 48x48
grayscale image.

4



One significant issue with the FER 2013 dataset is its
lack of diversity. The dataset predominantly features adult
male and female faces of Caucasian descent, which results
in suboptimal performance when recognizing emotions in
children, elderly individuals, and non-Caucasian faces. This
limitation highlights the need for more diverse datasets to
improve the generalizability of facial emotion recognition
systems.

We considered other datasets, but they had their own lim-
itations. For instance, the JAFFE [4] dataset contains only
213 images of Japanese women and is not publicly acces-
sible for use. The CKPlus [7] dataset only includes 981
images. On the other hand, the CelebA [6] dataset offers a
substantial 202,599 images and Affectnet [8] had 0.4 mil-
lion images, but were not publicly available, and PyTorch
didn’t have a pre-trained model for them.

Ultimately, we chose the FER 2013 dataset despite its
limitations. To enhance the robustness of our model, we
preprocessed the images by introducing occlusions and bars
on the sides, simulating the cropping that occurs in video
streams and increasing our training data size.

4.2. Video and Audio Dataset

With the consent of five streamers, we were able to use
their stream VODs as our video data. Each streamer pro-
vided one VOD, with durations ranging from a minimum of
2.5 hours to a maximum of 14.2 hours. In addition to the
video data, we saved the corresponding chat data for all five
videos in JSON format. The audio was extracted from the
video files and saved as MP3 files for separate processing.
For the video data, the MP4 files were read in as frames
at specified intervals, typically every 10 or 20 frames. We
didn’t process every single frame as it would take too much
compute power and time.

5. Results

We evaluated our results using both quantitative and
qualitative metrics. To align with our goal of reducing the
workload for streamers and their editors, we measured the
amount of time saved in the editing process. Additionally,
we asked streamers and their editors to rate the generated
clips on a scale from 1 to 10, and compared these ratings
with our system-generated scores to assess likeness.

To ensure the robustness of our system, we performed
a component-wise analysis, verifying the functionality and
performance of each individual component.

Lastly, we gathered qualitative feedback from the
streamers and their editors to gain insights into the usability
and practical effectiveness of our system.

The results of our evaluation are as follows:

Method Time (s) Correctness
opencv 1.499 1/4
mtcnn 3.435 4/4
fastmtcnn 2.911 4/4
retinaface 3.268 4/4
yolov8 0.964 4/4

Table 1. Performance comparison of different face detection meth-
ods

5.1. Component Analysis

For our facial expression classification tasks, we rely on
DeepFace’s prebuilt face detector to accurately identify the
streamer’s face. [12]. These methods include traditional
facial detectors, RetinaFace, YOLOv8, and MTCNN.

We evaluated these face detection methods on four ran-
dom screenshots of Twitch streams. Our observations indi-
cate that YOLOv8 significantly outperforms the other meth-
ods in terms of speed while maintaining high accuracy.
Consequently, YOLOv8 emerges as our preferred choice for
face detection in live stream scenarios due to its efficiency
and reliability.

5.1.1 Facial Emotion Classification

The FER2013 dataset comprises of seven emotions: [”an-
gry”, ”disgust”, ”fear”, ”happy”, ”sad”, ”surprise”, ”neu-
tral”]. Our initial approach to classifying images into these
categories involved using a Convolutional Neural Network
(CNN). Given that FER2013’s data is formatted as 48x48
grayscale images, the input to our network had a single
channel of size 48x48. We preprocess our frames to match
this format.

Figure 3. Image preprocessing performed

5.1.2 Face Detector

The architecture of our CNN included the following layers:
Conv2D, Batch Normalization, ReLU, MaxPool, Conv2D,
Batch Norm, ReLU, MaxPool. The fully connected layer
was Dropout(0.5), Linear, Batch Norm, Dropout, ReLU,
Linear, Batch Norm, Dropout (0.5), ReLU, Linear. This
fully connected layer was used in our resnet and pretrained

5



resnet as well. We realized we needed a lot of regulariza-
tion, hence the dropout. Our ResNet18 architecture consists
of 18 convolutional layers. Each convolutional layer is fol-
lowed by a batch normalization layer and a downsample.
Finally, our ResNet18 on pretrained ImageNet just overrode
the fully connected layer in the pretrained model with the
linear layer specified above.
Upon testing, we observed that ResNet50 and its pre-trained
variant overfit the data rapidly due to their higher capac-
ity. Consequently, ResNet18 and the pre-trained ResNet18
emerged as our preferred models for this task, striking a
better balance between performance and generalization.

Figure 4. Confusion matrices for all architectures. Many of them
misclassified fear and sadness, and happiness and neutral. This
makes sense because these emotions are similar.

The final accuracy’s compared to SOTA [5] architectures
are as follows: Keep in mind, many of these models used
much larger datasets to train on, not just FER2013’s training
set. It makes sense that ResNet performs better with larger
datasets compared to CNNs.

Model Accuracy(percent)

Our CNN 61
Our ResNet18 58

Our Pretrained ResNet18 63.3
Human 65
CNN 62.2

GoogleNet 65.2
VGG+SVM 66.40

Attention CNN 70.02
ARM(ResNet) 71.38

VGG 73.28

Figure 5. Loss graphs confirm that our ResNets are overfitting.

Figure 6. Saliency Maps for pretrained ResNet(left), CNN (right).
ResNet shows more interest around the Eyes and Mouth

5.2. Clip Quality Feedback

The feedback on the quality of our generated clips was
varied. The most notable success was from the 14-hour
VOD, where 9 out of 10 clips were used in a highlight video
by a streamer with 2 million followers. The only misstep
occurred when GPT mistakenly identified the chat spam-
ming ”hello” at the start of the stream as a highly exciting
moment. This feedback underscores the potential of our
system but also highlights areas for improvement.

High Follower Streamers: The two streamers with the
highest follower counts (2 million and 400k followers each)
were very satisfied with our clips. They appreciated how
our system effectively highlighted the exciting moments of
the game, aligning well with the type of content they aimed
to share with their large audiences.

We analyzed the difference between the streamers’ rat-
ings and our system’s ratings for the clips. Here are some

6



key insights: One streamer gave our overall highlight qual-
ity a 9/10. The other filled out our form with the following
ratings:

Our Score Streamer Rating

6 6
6 5
5 8
5 5
5 7.5
4 5
4 5.5
4 7
4 5
4 4

This streamer gave an overall rating of highlight quality a
9/10 as well, and the difference in their rating vs our rat-
ing as 1.3 per clip, with a minimum difference of 0 and a
maximum difference of 3.

High-Ranking Streamers: Conversely, the two streamers
with the highest rankings (both top 200 players in North
America, with 100k and 200k followers each) were less
satisfied. One mentioned that while the clips were exciting,
they did not match the educational content he typically pro-
duced, which focused on in-depth gameplay strategies. He
insisted that there was a very important clip that we missed
out on, where he played a strategy for a full minute, and it
resulting in a single kill. This could be an issue with our
interval system not taking into account clip contexts longer
than a minute. Also it may place an overemphasis on mul-
tiple kills and chat.

The other streamer felt that our system overemphasized
moments where he ”got loud,” suggesting that the combina-
tion of API and chat excitement indicators was too sensitive.
Interestingly, we did not factor in how loud the audio was,
only the transcribed audio.

One streamer gave our clips a 3/10 on overall clip qual-
ity, whereas the other one gave a 5/10 with the following
ratings:

Our Score Streamer Rating

10 10
8 0
8 2
7 2
7 5

6.5 3
6 0
6 0
6 7
6 5

This table shows an average difference of 3.25 with a mini-
mum difference of 0 and a maximum difference of 8.

This feedback indicates that our system might have over-
valued certain moments due to the convergence of multi-
ple excitement signals, especially playing too much value
on APIs and Chat reactions. In fact, it’s likely that the 0.3
weight on chat and 0.3 weight on the APIs were too high,
especially for nuanced educational content.

These mixed results reveal important areas for improve-
ment. Different streamers have different content prefer-
ences, which suggests a need for more customizable and
nuanced models. To better cater to diverse needs, we should
consider developing separate models tailored to different
types of content. This customization would enhance the
relevance and quality of the highlights generated for each
individual streamer.

5.3. Time Reduction Feedback

To calculate the amount of time saved in finding clips, we
initially asked streamers and editors to estimate their usual
time spent on this task and the time saved using our system.
While we hoped for specific numbers, the consistent feed-
back we received from all five streamers was that the system
”saved a lot of time.” but did not follow up on exactly how
much time they spent.

To obtain better quantitative metrics, we used google
doc’s history to check how long it took for streamers to rate
every generated clip. Out of the two streamers who rated all
10 clips:

One streamer took 53 minutes to rate clips from a 2.5-
hour VOD. Another streamer took 30 minutes to rate clips
from a set of 8-hour VODs. The primary complaint was that
it took too long to copy and paste the timestamps from the
CSV we generated into the Twitch player. In response, we
developed a website to automatically play these clips, fur-
ther streamlining the process and addressing the feedback
effectively.

The overall time reduction was from variable hour vods
(2.5-14 hours) to 0.5-1 hour, with most of the time used on
pasting timestamps into the video player. Overall, the feed-
back highlights the significant time savings our system pro-
vides, while also pointing out areas for further improvement
to enhance the user experience.

5.4. Emergent Results

One of the most surprising and exciting was that our
system was its ability to empower small streamers to en-
ter the Short Form Content domain. Many small stream-
ers, who lack the resources to hire editors and the time to
sift through hours of their own VOD data, found our clip
highlighting system to be a game-changer. By using our
system, these streamers were able to automatically generate
engaging highlights from their streams and upload them to

7



platforms like TikTok and YouTube Shorts.
The feedback from one small streamer (100k followers)

has been overwhelmingly positive. He reported that our
system not only saved them a significant amount of time
but he was excited to use it to help him grow his audience
by consistently producing high-quality short-form content.
For many, this meant the difference between sporadic con-
tent updates and a steady stream of engaging clips, which in
turn boosted their visibility and engagement on social me-
dia.

6. Discussion

A philosophical question arising from our system is:
How much data are we losing when we solely process video
data? Do non-video forms of data provide essential mean-
ing, or do they merely add irrelevant information at a high
cost?

Our analysis suggests that integrating multiple data
sources enhances the richness and accuracy of the generated
highlights. For instance, although facial recognition can be
pre-trained and parallelized per video frame with minimal
additional cost, it also brings minimal benefit to sentiment
analysis, especially when APIs and Chat overshadow it. For
large streamers with bustling chat activity and comprehen-
sive API data, this is the case. The reactions and events are
easily captured in our system and often leads to the exciting
clips that people often expect for video highlighting.

However, for smaller streamers with minimal chat inter-
action and games with no API support (such as those play-
ing indie games), facial data becomes an invaluable asset. In
these contexts, the streamer’s facial expressions can convey
emotions and reactions that are otherwise would’ve been ex-
pressed with chat and API calls, providing crucial context
that would be lost.

We also stand by the importance of audio transcription
and sentiment analysis. While the literature on audio tran-
scription is less extensive compared to video, it remains
a critical component of our system. Many streamers ex-
pressed a preference for meaningful and educational con-
tent conveyed through their own speech rather than merely
capturing exciting moments and reactions. This under-
scores the need for accurate audio transcription and senti-
ment analysis to capture and highlight these significant ver-
bal interactions.

7. Future Works

7.1. Educational Content Detection

We plan to modify the scoring algorithm and prompting
techniques to better capture educational content desired by
certain streamers. By increasing the weight of audio tran-
scription and enabling GPT to classify whether the content

is educational, we will try to cater to streamers who focus
on in-depth explanations and strategies.

7.2. Learning the Scoring Function

Instead of relying on manual tuning, we eventually want
to train a model to learn the optimal scoring function. This
would give us a learned contribution of each datapoint
(video, audio, chat, etc.) to the overall score which would
give us insights into what data is actually important. We are
currently collecting ratings through our website and plan to
outsource clip rating to friends and other gamers online to
gather more data for this purpose. We are very excited about
this if we are able to collect enough data.

7.3. Generating Variable Length Clips

We intend to support the generation of variable length
clips, maintaining continuity for clips longer than one
minute.

7.4. Improving Game API Integration

Currently, we manually transcribe the characters in each
game and the streamer’s username. This cant be done with
OCR because usernames are hidden and character names
are blocked by streamer overlays. This process can be
streamlined by developing a C++ application that accesses
game memory in real-time. Since these APIs are not avail-
able remotely, local access on the game client is necessary.

8. Conclusion
In this project, we developed an Automatic Highlighting

System that leverages multiple AI technologies to process
various inputs, including video, audio, facial expressions,
chat data, and game API events. Each input follows a dis-
tinct, parallelized pipeline, using AI tools like LLMs, OCR,
and custom facial classification to identify highlight-worthy
moments in stream videos. Our system effectively gener-
ates start and end timestamps for these highlights, aiming
to reduce the workload for content creators by automating
the clip selection process.

Our project highlights the potential of AI-driven tools in
transforming content creation workflows, making it acces-
sible for streamers of all sizes to produce high-quality, en-
gaging content with minimal manual effort. We hope future
works with this project will help us understand what people
find ”interesting” and ”entertaining” across different types
of data. We are excited about the future possibilities and the
continuous improvement of our system to better serve the
streaming community.

9. Contributions & Acknowledgements
We’d like to thank all authors mentioned in this paper for

their contributions to the field of AI, vision, and systems.

8



We’d like to thank Chengsu Deng, our mentor in CS231N
for his ideas on video alignment and advice on Visual NN
architectures and tuning. We’d like to thank Kayvon Fata-
halian, our CS348K professor for his emphasis and wisdom
on strong evaluation metrics, goal setting, and constraint
identification for systems.
Note: Code contains API keys, file uploaded instead of
GitHub.

9.1. Danica’s contributions

• Built pipeline for API. Used Riot’s API documentation
to perform data collection, data aggregation and align-
ment with video.

• Built pipeline for Chat collection and sentiment anal-
ysis. Used prebuilt OCR tool (Twitch Downloader
https://github.com/lay295/TwitchDownloader) to read
Twitch chat and transcribe text into CSV files. Pro-
cessed data for sentiment analysis.

• Built sentiment analysis portion of project. Sent chat
data and transcription data to GPT and prompted it for
score.

• Built and tuned custom ResNet50 ResNet18 (not
torch’s ResNet50) architecture for facial recognition.

• Built and tuned pretrained ResNet50 ResNet18 on Im-
ageNet for facial recognition.

• Preprocessed image data to have occlusions and differ-
ent crops.

• Built website frontend & backend to crowdsource
ranking data. Backend data stored in SupaBase.

• Built combination pipeline, taking in facial data, chat
sentiment, audio transcription sentiment, face analysis,
and generating highlighted clip timestamps.

• Communicated with streamers and editors to gather
their evaluations and feedback.

• Generated loss/accuracy graphs

• Generated Saliency Maps and Network Visualizations

• Debugged each others code!

9.2. Tony’s contributions

• Built Audio transcription pipeline utilizing Whisper,
tuned Whisper to better process our video data

• Built Facial Detection pipeline utilizing Deep Face.
Finetuned facial data to recognize streamer’s face.

• Built and tuned CNN architecture for facial recogni-
tion

• Built data loader for Facial Recognition

• Generated loss/accuracy graphs

• Generated confusion matrix

• Labeled 200 datapoints on streamer data

• Debugged each others code!

9.3. Specifications

The data pipeline for facial classification and facial clas-
sification was written for CS231N. This includes the CNN,
ResNet, pretrained ResNet on ImageNet, Saliency Maps,
Network Visualizations, Data Loading, Video to frame
pipeline, Data Preprocessing, Loss Curves, Deep Face used
for face location, and Deep Face vs ResNet vs CNN analy-
sis of the FER2013 dataset.

References
[1] H. Cate, F. Dalvi, and Z. Hussain. Deepface: Face generation

using deep learning. CoRR, abs/1701.01876, 2017.
[2] C.-Y. Fu, J. Lee, M. Bansal, and A. C. Berg. Video highlight

prediction using audience chat reactions, 2017.
[3] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville,

M. Mirza, B. Hamner, W. Cukierski, Y. Tang, D. Thaler,
D.-H. Lee, Y. Zhou, C. Ramaiah, F. Feng, R. Li, X. Wang,
D. Athanasakis, J. Shawe-Taylor, M. Milakov, J. Park,
R. Ionescu, M. Popescu, C. Grozea, J. Bergstra, J. Xie,
L. Romaszko, B. Xu, Z. Chuang, and Y. Bengio. Challenges
in representation learning: A report on three machine learn-
ing contests, 2013.

[4] M. Kamachi, M. Lyons, and J. Gyoba. The japanese fe-
male facial expression (jaffe) database. Availble: http://www.
kasrl. org/jaffe. html, 01 1997.

[5] Y. Khaireddin and Z. Chen. Facial emotion recognition:
State of the art performance on fer2013, 2021.

[6] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face
attributes in the wild. In Proceedings of International Con-
ference on Computer Vision (ICCV), December 2015.

[7] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar,
and I. Matthews. The extended cohn-kanade dataset (ck+):
A complete dataset for action unit and emotion-specified
expression. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Workshops,
pages 94–101, 2010.

[8] A. Mollahosseini, B. Hasani, and M. H. Mahoor. Affectnet:
A database for facial expression, valence, and arousal com-
puting in the wild. IEEE Transactions on Affective Comput-
ing, 10(1):18–31, Jan. 2019.

[9] Q. Ping and C. Chen. Video highlights detection and summa-
rization with lag-calibration based on concept-emotion map-
ping of crowdsourced time-sync comments. In L. Wang,
J. C. K. Cheung, G. Carenini, and F. Liu, editors, Proceed-
ings of the Workshop on New Frontiers in Summarization,
pages 1–11, Copenhagen, Denmark, Sept. 2017. Association
for Computational Linguistics.

9



[10] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey,
and I. Sutskever. Robust speech recognition via large-scale
weak supervision, 2022.

[11] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey,
and I. Sutskever. Robust speech recognition via large-scale
weak supervision, 2022.

[12] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verifi-
cation. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1701–1708, 2014.

[13] H. Yang, B. Wang, S. Lin, D. Wipf, M. Guo, and B. Guo. Un-
supervised extraction of video highlights via robust recurrent
auto-encoders, 2015.

10. Supplemental Pictures

Figure 7. Exciting Streamer feedback. Highlights used for Mizkif,
streamer with 2 million followers

Figure 8. Streamer opens ”hairline” google search and bugs out
our facial detection (fixed by specifying face)

Figure 9. Hilait.com! Coming soon, our automatic clip rating (data
collecting) website!

Figure 10. FER results

10



Figure 11. API Data with relative timestamp per match

Figure 12. Transcribed Chat at minute 32

Figure 13. Transcribed audio data in 10 seconds

11


