
Hybrid Neural Network-Monte Carlo Approach for Efficient PDE Solvers

Hong Meng Yam
Department of Computer Science

Stanford University
hongmeng@stanford.edu

Ethan Hsu
Department of Computer Science

Stanford University
ethanhsu@stanford.edu

Ivan Ge
Department of Physics

Stanford University
ivange@stanford.edu

Abstract

Herein, we present a novel method that utilizes neural
networks to improve solution generation from Monte Carlo
Partial Differential Equation solvers. Current Monte Carlo
PDE solvers, such as the Walk-On-Spheres algorithm, suf-
fer from high variance and long computational times. To
address this issue, we implement a hybrid neural network
model that takes in a small set of early iterations from the
Monte Carlo PDE solver for various elliptic PDEs and ap-
proximates the solution to the PDE at a much later iteration.
We analyze the results from three different methods: fine-
tuning the VGG-16 model, utilizing a SUNet model, and
implementing a GAN. We show that the GAN performs the
best and allows for the solution of any elliptic PDE and its
associated forcing function to be generated on a 2D slice of
an object for computer graphics applications.

1. Introduction
Solving elliptic PDEs is incredibly useful for computer

graphics applications ranging from 3D reconstruction to
animation techniques [6]. However, various traditional
methods for geometry processing, such as finite element
methods (FEM), are slow and require excessive memory
and long execution times [16]. Monte Carlo methods to
solve PDEs represent a new avenue of research to improve
geometric modeling with PDE algorithms. While current
state-of-the-art Monte Carlo PDE solvers are unbiased and
discretization-free [18], they are still often computationally
expensive due to high variance and result in noisy images
when run at a low number of iterations.

To address the computationally expensive Monte Carlo
PDE solvers, progress has been made toward utilizing neu-
ral networks to decrease the computational time to generate
solutions to elliptic PDEs. Numerous works utilize vari-
ous deep neural networks for fast approximation of PDE
solutions [2, 9, 7], Recent advances in Physics-Informed
Neural Networks (PINNs) [3] have shown great promise in
solving PDEs through the incorporation of prior informa-

tion, thereby reducing the likelihood of results that deviate
greatly from ground truth. These networks are often fast,
but can be unstable and return highly biased solutions due
to the use of self-supervised loses.

There has been recent interest in exploring the possibili-
ties of utilizing Monte Carlo methods with neural solvers
to predict solutions to certain PDEs and their boundary
conditions [21]. However, they are mostly using Monte
Carlo methods for self-supervised training on individual
PDE functions [10].

Drawing on this, we instead investigate the possibility of
generalizing the approach of a hybrid Monte Carlo method
and neural network solver. Our solution seeks to broadly
address the computational inefficiencies of Monte Carlo
PDE solvers by implementing a neural network trained on a
dataset consisting of variable-coefficient elliptic PDEs and
boundaries, such that at test time it is much faster than ex-
isting neural network methods.

We generate a dataset consisting of different forcing
functions for the PDEs and then use a Monte Carlo Walk-
On-Spheres method to generate solution instances for early
iterations as well as one much later iteration. These are uti-
lized to train the neural network to predict the later itera-
tion based on the early iterations for each PDE. This model
can then be applied to any elliptic PDE with early iterations
of the unbiased, noisy solution from a Monte Carlo PDE
solver to generate a final solution estimate. We hypothesize
that the use of a more complex neural network architecture
will allow us to generalize to all variable-coefficient ellip-
tic PDEs without having a train a neural network for each
individual PDE, resulting in a much more efficient solver.

In essence, our main contribution in this paper is a hy-
brid Monte Carlo-Neural Network PDE solver that is gives
us a more accurate result in the same amount of computa-
tion time as compared to current Monte Carlo and Neural
Network solutions, as well as achxieving a low-error solu-
tion in a much shorter time.

1

2. Related Work
This paper draws from and seeks to improve on exist-

ing work in Monte Carlo PDE Solvers and Neural network-
based PDE solvers.

2.1. Monte Carlo PDE Solvers

Many different algorithms for implementing Monte
Carlo methods to solve PDEs have been proposed in the
past few decades. The Walk on Spheres (WoS) algorithm
remains the most widely used [13], consisting of taking
random walks on a grid by using a sphere as the bound-
ary at which the next step would be taken. In other words,
if we were to start at a point x0 on the grid, the next step
x1 would be any point randomly taking from a sphere cen-
tered at x0 with a radius r. Then, as we continue this ran-
dom walk, when the distance between xk and the defined
boundary is smaller than some ϵ, the walk is terminated and
the value of the closest boundary value stored. By taking
many walks, the expected value of this process is equal to
the value of u(x0). Additional algorithms include the Walk
on Stars method, Walk on Boundary method, and Monte
Carlo Finite Element Method [18] [20] [8]. These all pro-
vide viable avenues for developing faster PDE solvers for
computer graphics.

2.2. Geometric Applications

The past few years has seen an increasing need to the de-
velopment of faster geometric processing algorithms. The
WoS algorithm was recently applied to geometry processing
tasks for elliptic PDEs [16], that was soon adapted to work
with Neumann and Dirichlet boundary conditions, and other
applications [17]. These algorithms could solve PDEs on
various solid regions in 2D and 3D, allowing for flexibility
with various geometric shapes and avoiding comment chal-
lenges such as mesh generation with conventional methods
[16]. However, many of these methods still operate only on
a subset of PDEs with high variance and expensive compu-
tation.

2.3. Neural Networks

Previous work has explored the use of Physics-
informed neural networks to approximate the solution to
a PDE. PINNs work by utilizing a physics-informed self-
supervised loss function with the given forcing function and
boundary conditions to generate accurate solutions. These
models have been applied to solve material systems and
power systems [14] [15]. It has also been proposed that
combining Monte Carlo PDE solvers using WoS with infor-
mation retrieval techniques may allow for faster computa-
tional times, more robust models, and lower variance [16].
We draw inspiration from previous models utilizing neural
fields to cache previous results from Monte Carlo solvers to
generate solutions [10].

Specifically, Li et al. [2023] developed a neural caching
solution that employed a hybrid Monte Carlo PDE solver
with a neural field. By training the neural field to approx-
imate the solution to a PDE using the Monte Carlo WoS
PDE solver, the neural field was then used during test time
to reduce variance in the actual Monte Carlo PDE solver
by querying from the neural field after a certain number of
steps.

3. Dataset

To generate our dataset, we generated a random set
of 1000 elliptic PDEs with Dirichlet boundary conditions.
This is done through generating a random forcing and
boundary function for each equation, with each function be-
ing a random composition of up to 5 exponential, polyno-
mial or trigonometric functions, dictating the behavior of
the PDE. We used a 1 x 1 square as the boundary shape for
these PDEs.

Figures 1 and 2 show a random sample visualization of
these PDEs.

Figure 1: Dataset of PDEs Run on Baseline Neural
Network Model

Figure 2: Dataset of PDEs Run on WoS Solver for 10
Iterations

Our dataset was split into 80-20 train and test dataset,
with the same test dataset only used for evaluating the final
evaluations for all methods.

4. Methods

4.1. Monte Carlo PDE Solvers

In this paper, the elliptic PDEs that we are focusing on
are in the following form, as referenced from [10]

For x ∈ Ω:

∇ · (α(x)∇u(x)) + ω(x)∇u(x)− σ(x)u(x) = −f(x)

For x ∈ ∂Ω

u(x) = g(x)

where α, ω, and σ are spatially varying coefficients, f is
the forcing function, g is our boundary function, and Ω is
defined by the signed distance function., In our model, we
focus on solving 2D PDEs.

Monte Carlo PDE solvers expresses the numerical solu-
tion of a PDE using an integral equation. The solution to
this type of PDE is as follows

u(x) = S(x)+

∫
Br(x)

u(y)Gx(y)dy+

∫
∂Br(x)

u(z)KX(z)dz

where one integral is evaluated over a ball centered at x with
radius r and the other is evaluated over the boundary of the
ball. The other terms S(x), GX(y), and KX(z) are de-
pendent on Green’s function and the Poisson kernel. More
detailed definitions are provided in [10] and [16]. The
Monte Carlo PDE solver method then steps through each
point x within the domain space and numerically runs a
certain number of iterations at each x to approximate the
solution u(x).

4.2. Physics-informed Neural Networks

As universal function approximators, neural networks
have been shown to be useful in approximating the solu-
tion to a PDE u(x). In particular, PINNs have been shown
to acheive very good albiet biased results [7]. In our paper,
we implemented a PINN for the poisson equation in a do-
main Ω with Dirichlet boundary conditions can be written
as: {

∆u(x) = f(x) for x ∈ Ω,

u(x) = g(x) for x ∈ ∂Ω,
(1)

With this formulation, we can approximate the solution u(x)
with a PINN û(x) trained on the loss function which com-
bines the residual of the Poisson equation in the domain
and the boundary conditions. The total loss L(θ) can be
expressed as:

L(θ) = LPDE(θ) + LBC(θ), (2)

where

LPDE(θ) =
1

NΩ

NΩ∑
i=1

|∆û(xi; θ)− f(xi)|2 , (3)

and

LBC(θ) =
1

N∂Ω

N∂Ω∑
i=1

|û(xi; θ)− g(xi)|2 . (4)

Here, NΩ and N∂Ω are the number of collocation points
in the domain and on the boundary, respectively. The opti-
mization objective is then shown to be θ∗ = argminθ L(θ).

Through this method, neural networks can be trained to
approximate the solution to vairous types of PDEs with ini-
tial and boundary conditions. In our project, we employ a
deep learning library DeepXDE recently developed to allow
for efficient development of PINNs [11].

Figure 3: VGG-16 Model Diagram

4.3. Fine-tuning VGG-16

While much of previous literature focuses on utilizing
multi-layer perceptrons (MLP) with sinusoidal activations
or neural fields to achieve desired results within computa-
tional limits [10] , we decided to explore the possibilities of
utilizing convolutional neural networks to make predictions
of the ground truth solution given an early Monte Carlo iter-
ation. We first utilized the VGG-16 model [19] pre-trained
on the ImageNet dataset provided by PyTorch. To recast
the properties of the VGG-16 model to suit our needs of
image generation, we fine-tuned the fully connected layers
of the model. The model was loaded using models.vgg16
and the parameters of the convolutional layer and first two
fully connect layers were frozen. The last two linear layers
were unfrozen and trained using 80 percent of the data that
was generated as part of the dataset. The second to the last
layer consisted of a linear layer of size 4096 × 2048 fol-
lowed by a ReLu and dropout layer. The last linear layer
was of size 2048 × (128 ∗ 128) since the image sizes were
128× 128. The model is shown in Figure 3.

Figure 4: Generator Network Architecture

Figure 5: Discriminator Network Architecture

For our model, we utilized the mean square error (MSE)
loss function to train our model. We used this because this
is how our baseline errors was measured and provided a
suitable loss function to penalize larger pixel errors. We
then experimented with various optimizers including Adam,
AdamW, and RMSProp. These were individually trained
and the metric were compared against each other.

4.4. Generative Adversarial Networks

To further explore possibilities of image generation, we
sought to explore the use of generative adversarial net-
works, recently popularized to generate ”fake” images from
input. GANs operate by training two neural networks, a
generator and a discriminator, to compete with each other.
The generate seeks to generate more and more realistic im-
ages, while the discriminator seeks to discriminate between
the generated image and the ground truth.

To explore possibilities of implementing GANs, we
adopted the methodology used on Github [1]. The GAN
was then appropriately modified to take in inputs of the
shape 128 x 128 and output results of the shape 128 x 128.
The generator primarily contains a few convolutional lay-
ers, followed another convolutional block, and finally fol-
lowed by deconvolutional layers. The residual blocks ini-
tially present in the developed GAN were removed to re-
duce the complexity of the overall structure of the GAN
and stabilize loss during training. The discriminator was
additionally modified to only consist of two convolutional
layers. The model structure is shown in Figures 4 and 5.

4.4.1 Model Evaluation

To evaluate our trained models, we utilized 20 percent of
our generated dataset to test the behavior of our model. We
measured the metrics of mean squared error (MSE), root
mean squared error (RMSE), signal-to-noise ratio (SNR)
and peak signal-to-noise ratio (PSNR). To measure time
taken for the various PDE solvers, we evaluated them on
Google Colab, running a T4 GPU with 16Gb of GPU RAM
and 16Gb of CPU RAM.

4.5. SUNet

SUNet, or Swin-UNet, is a neural network architec-
ture designed for image restoration tasks [4]. It begins
with a 3x3 convolutional layer to generate shallow feature
maps, followed by 5 layers of Swin Transformer Blocks,
Patch Merging, and Dual Upsampling. The Swin Trans-
former employs a hierarchical structure and a shifted win-
dow mechanism to capture both local and global contextual
information efficiently. This combination with the UNet
architecture enables effective feature extraction and recon-
struction of noisy images. In other words, while VGG-16 is
typically used for image classification, SUNet was designed
for image restoration. Leveraging this, we apply a SUNet
pre-trained on denoising tasks in order to ”denoise” the 50th
iteration Monte Carlo solution.

Figure 6: SUNet Architecture from [4]

Figure 7: Example Solution of WoS Baseline Solver

5. Baseline Results

5.1. WoS Baseline

For our Monte Carlo PDE solver baseline, we utilized
the Walk-on-Spheres method implementation based on Li
et al. [2023] and Sawhney and Crane [2020] to generate
solutions at various interactions using the dataset of forc-
ing functions and boundary conditions. The signed distance
function used was in the shape of a 1 by 1 square centered at
(0.5, 0.5). We first used PDE equations with known analyt-
ical solutions and compared it with WoS results at 10000th
iteration. Noticing that MSE < 10−5, we used 10000th iter-
ation results as ground truth for general PDEs. An example
of a set of results generated by the WoS baseline solution
is shown in Figure 6, displaying the Monte Carlo generated
solutions after 10 iterations, 100 iterations, 1000 iterations,
and 10,000 iterations. To quantify the accuracy of our re-
sults, we calculated the element-wise mean squared error
(MSE), root mean squared error (RMSE), signal-to-noise
ratio (SNR), and peak signal-to-noise-ratio (PSNR) for each
forcing function. These results are shown in Table 1. We
also analyzed the behavior of these quantities as a function
of the number of iterations that the Monte Carlo PDE solver
runs. These are shown in Figure 7.

Metric 10 Iterations 100 Iterations 1000 Iterations

MSE 0.01084 0.00117 0.00010
RMSE 0.08849 0.02818 0.00883
SNR 16.76034 26.77800 36.58800
PSNR 21.98031 31.99797 41.80797

Table 1: Metrics for Walk-On-Spheres (WoS)

5.2. PINN Baseline Model

For our neural network baseline model, we utilized a pre-
trained Physics-informed neural network (PINN) to solve
the same dataset of forcing functions and boundary condi-
tions. The PINNs were trained for 10000 steps using the
DeepXDE model and the results of the model are shown in
Table 2.

Figure 8: Metrics for WoS Baseline Solver

MSE RMSE SNR PSNR

0.31441 0.54956 −0.16089 2.17732

Table 2: Metrics for PINN

6. Experiments

In the following section, we detailed the specific train-
ing procedures utilized to train each of our models and the
results that we obtained.

6.1. VGG-16

The model was initially trained using the Adam opti-
mizer with a mean squared error loss function. The learn-
ing rate was intitially set at 0.001. After sampling various
learning rates, we found that using 0.0001 was optimal for
loss convergence. The batch sized used was 64, although
this could be experimented with in the future to better fine-
tune the hyperparameters of our model. To further explore
potential ways to optimize this model, we explored other
optimizers such as AdamW and RMSProp. Experimenting
with the three different optimizers, we trained each opti-
mizer for 200 epochs. The resulting loss function is shown
in Figure 8. We observe a much faster initial decrease using
the Adam optimizer, but all three losses eventually end up
converging to around the same value.

After running this fine-tuned model on our dataset for
200 epochs, we achieved these final results. Unfortunately,
the final results we achieved using a fine-tuned VGG-16
were suboptimal and performed worse than the input im-
age. Due to the fact that VGG-16 is primarily used as an
image classifier, it may not be the best candidate for image
denoising and generation tasks. However, we do show that
possibly with further fine-tuning, it is possible for VGG-16
to be implemented for denoising tasks, as shown in [12]
and [5].

Figure 9: Loss Function of Different Optimizers

MSE RMSE SNR PSNR Inference Time

0.0263 0.1384 13.5362 18.7537 0.00052 s

Table 3: Metrics for Fine-Tuned VGG-16

Figure 10: SUNet Image Denoising Results

6.2. SUNet

For implementation, modifications were made to adapt
SUNet for grayscale inputs by converting single-channel
images to three channels. We then (a) directly applied
inference without fine tuning and (b) fine-tuned on 1000
50th-iteration monte-carlo solutions and their correspond-
ing 1000th-iteration solution, with an 80-20 split for train-
ing and validation. We found, however, that the fine-tuned
model had a tendency to ”blur” the whole image such that
the variance of the pixel values were so low as to eliminate
detail almost entirely. Therefore, we present the results with
pure inference.

MSE RMSE SNR PSNR Inference Time

0.00722 0.05964 21.31592 26.53588 0.157 s

Table 4: Metrics for SUNet

6.3. GAN

To train the GAN, the hyperparameters were tuned to
optimize the rate at which the generator and discriminator

Figure 11: SUNet Image Denoising Results, 3 Data Points

loss decreased. Initially, the generator loss was decreasing
at a much slower rate than the discriminator loss, causing
the generator’s parameters to stop updating and for the loss
to stall very early on. To fix this and improve model per-
formance, a few updates were made. The learning rate on
the optimizer for the generator was increased to be 0.0006,
while the optimizer for the discriminator used a learning
rate of 0.00002. Furthermore, a cosine annealing learn-
ing rate scheduler was used for the generator to improve
loss performance. We used 200 epochs to train the GAN,
although potentially more could be used to achieve even
higher performance in the future. The loss function used
in this model as a mean squared error loss with an LSGAN
model. The generator and discriminator loss over epochs is
presented in Figure 10.

Metric Average Standard Deviation

Generator Loss 0.2898 0.0101
Discriminator Loss 0.2565 0.0035
MSE 0.0015 0.0005
RMSE 0.0332 0.0092
SNR 25.6638 2.3795
PSNR 29.9596 2.2977
Inference Time 0.000716 s 0.000121 s

Table 5: GAN Results over 10 Training Sessions with
Random Initialization

For a more detailed analysis of the results, we present
some of the sample images that were generated by the GAN
in comparison to the input image (10th iteration of MC PDE
solver) and the ground truth in Figure 11 on the next page.
We see from observation that the GAN provides a smoother
and more accurate solution compared to the 10th iteration.

6.4. Discussion

We tried out several hybrid WoS and neural network
methods, and found that our hybrid WoS-GAN method per-
forms very well. Inference times are much lower than the

Method MC Iterations MSE RMSE SNR PSNR

WoS 1000 0.00010 0.00883 36.58800 41.80797

WoS 10 0.01084 0.08849 16.76034 21.98031
WoS 100 0.00117 0.02818 26.77800 31.99797
PINN N/A 1.51897 0.91412 −0.16089 2.17732

Hybrid WoS-VGG 10 0.0263 0.1384 13.5362 18.7537
Hybrid WoS-SUNet 10 0.00722 0.05964 21.31592 26.53588
Hybrid WoS-GAN 10 0.0015 0.0332 25.6638 29.9596

Table 6: Comparison of Model Performance Metrics

Figure 12: GAN Generator and Discriminator Loss

Figure 13: GAN Generated Images (Random Sample of 2
PDEs)

other neural networks that we have tried. In particular, our
hybrid WoS-GAN solver was able to achieve similar perfor-
mance to the 100th iteration of WoS despite taking in only

the 10th iteration as an input. With an inference time that is
negligible (0.000716s per PDE) compared to the time taken
for WoS (1.211s per PDE for 100 iterations), we are able
to achieve an almost tenfold increase in speed for the same
performance. With a more complex GAN model, a larger
training dataset, it is possible to achieve even better results
using a GAN for image denoising.

Notably, during experimentation and testing a wide va-
riety of applicable neural network models as well as image
denoising model, a common characteristic was the need for
three channel images. This means that we had to reshape
and extrapolate our WoS solutions to fit this criteria, result-
ing in us converting back and forth between image dimen-
sions. This likely degrades the perfomrance of the models
that we trained. However, specifically for our GAN, we kept
our images in grayscale, which may have been beneficial for
its better performance.

Additionally, with more time, it would have definitely
been beneficial to train and tune our models further. Dur-
ing training, using the T4 GPU from Google Colab, we ob-
served relatively fast training times for the GAN and VGG-
16 models, meaning that there is potential to expand to
larger datasets with more training epochs to further boost
our model performance.

7. Conclusion

Herein, we have demonstrated how a hybrid method of
Monte Carlo and Neural networks allows us to solve PDEs
in a much faster manner as compared to current Monte
Carlo methods, while greatly increasing accuracy as com-
pared to PINNs, the current state-of-the-art for neural net-
work PDE solvers. In particular, our hybrid WoS-GAN
solver was able to achieve similar performance to 100 iter-
ations of WoS, despite only running WoS for 10 iterations,
and thus giving an almost tenfold increase in speed.

A key limitation of our study, however, is that we lim-
ited our dataset to 2D PDEs, with a fixed square bound-
ary, which limits the current applicability of this study. A
good area for future work would thus be extending the result

found here to a 3D space, and possible methods for doing
so, including either slicing it into 2D slices or considering a
hybrid WoS-3D Convolutional Neural Network design.

We also limited ourselves to elliptic PDEs and Dirich-
let boundary conditions, and it will be useful to see if the
same property holds for other boundary conditions, includ-
ing Newmann boundaries which are also common in graph-
ics applications.

Another potential area for future research is to further
develop the SUNet model for image denoising tasks and
fine-tuning it to denoise earlier iterations of the WoS PDE
solver. Additionally, during model exploration, we no-
ticed that many models require RGB images to train and
test, meaning that the inputs must be 3 channels. More re-
search into the development of more robust models to han-
dle grayscale images may be beneficial toward faster PDE
solvers and help computer graphics applications.

Nonetheless, we have shown conclusively that a hybrid
Monte Carlo and Neural Network approach to PDE solv-
ing can reap both the benefits of unbiasedness and accuracy
from Monte Carlo solutions, and efficiency from Neural
Network solutions, and believe that this work would serve
as a good foundation for future PDE solvers.

8. Contributions

• Hong Meng Yam: Reviewed literature, helped imple-
ment WoS solver, generated datasets, worked on var-
ious methods including CNNs, MAXIM, and VGG.
Worked on milestone and final report.

• Ethan Hsu: Reviewed literature, implemented PINN,
implemented and fine tuned SUNnet, worked on other
image restoration neuronetworks such as MAXIM and
CGNet, helped draft and implement final report.

• Ivan Ge: Reviewed relevant literature and pre-existing
models, helped build Monte Carlo WoS solver, worked
on coding VGG fine-tuning model and GAN approach.
Benchmarked models for relevant characteristics to
compare to baseline methods. Helped draft and edit
final report.

9. Acknowledgements

We received help from Guandao Yang, and met with him
for advice twice for this project. We also received help from
Bohan Wu, CS231N TA, and met with him for advice once
for this project.

References
[1] R. R. Abeer Alsaiari, Manu Mathew Thomas. Image denois-

ing using a generative adversarial network. 4

[2] J. Berg and K. Nyström. A unified deep artificial neural net-
work approach to partial differential equations in complex
geometries. Neurocomputing, 317:28–41, 2018. 1

[3] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi,
and F. Piccialli. Scientific machine learning through physics–
informed neural networks: Where we are and what’s next.
Journal of Scientific Computing, 92(3):88, 2022. 1

[4] C.-M. Fan, T.-J. Liu, and K.-H. Liu. Sunet: Swin transformer
unet for image denoising. In 2022 IEEE International Sym-
posium on Circuits and Systems (ISCAS). IEEE, May 2022.
4

[5] M. Hami and M. JameBozorg. Assessing the impact of cnn
auto encoder-based image denoising on image classification
tasks, 2024. 5

[6] M. Horie and N. MITSUME. Physics-embedded neural net-
works: Graph neural pde solvers with mixed boundary con-
ditions. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems, volume 35, pages 23218–23229. Curran
Associates, Inc., 2022. 1

[7] Z. Jiang, J. Jiang, Q. Yao, and G. Yang. A neural network-
based pde solving algorithm with high precision. Scientific
Reports, 13(1):4479, 2023. 1, 3

[8] C. L. D. J. Jin, Guoliang. Monte carlo finite element method
of structure reliability analysis. Reliability Engineering Sys-
tem Safety, 40(1), 1993. 2

[9] Y. Khoo, J. Lu, and L. Ying. Solving parametric pde prob-
lems with artificial neural networks. European Journal of
Applied Mathematics, 32(3):421–435, 2021. 1

[10] Z. Li, G. Yang, X. Deng, C. De Sa, B. Hariharan, and
S. Marschner. Neural caches for monte carlo partial differen-
tial equation solvers. In SIGGRAPH Asia 2023 Conference
Papers, SA ’23, New York, NY, USA, 2023. Association for
Computing Machinery. 1, 2, 3

[11] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. Deepxde:
A deep learning library for solving differential equations.
CoRR, abs/1907.04502, 2019. 3

[12] M. Mehdizadeh, C. MacNish, D. Xiao, D. Alonso-Caneiro,
J. Kugelman, and M. Bennamoun. Deep feature loss to de-
noise oct images using deep neural networks. Journal of
Biomedical Optics, 26(4):046003, 2021. 5

[13] M. Muller. Some continuous monte carlo methods for the
dirichlet problem. Ann. Math. Statist., 27(3), 1956. 2

[14] S. A. Niaki, E. Haghighat, X. Li, T. Campbell, and R. Vaziri.
Physics-informed neural network for modelling the thermo-
chemical curing process of composite-tool systems during
manufacture. CoRR, abs/2011.13511, 2020. 2

[15] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics in-
formed deep learning (part i): Data-driven solutions of non-
linear partial differential equations, 2017. 2

[16] R. Sawhney and K. Crane. Monte carlo geometry processing:
A grid-free approach to pde-based methods on volumetric
domains. ACM Trans. Graph., 39(4), 2020. 1, 2, 3

[17] R. Sawhney, D. Seyb, W. Jarosz, and K. Crane. Grid-
free monte carlo for pdes with spatially varying coefficients.
ACM Trans. Graph., 41(4), jul 2022. 2

[18] R. Sawhney, D. Seyb, W. Jarosz, and K. Crane. Walk on
stars: A grid-free monte carlo method for pdes with neumann
boundary conditions. ACM Trans. Graph., 2023. 1, 2

[19] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015. 3

[20] R. Sugimoto, T. Chen, Y. Jiang, C. Batty, and T. Hachisuka.
A practical walk-on-boundary method for boundary value
problems. ACM Transactions on Graphics, 42(4):1–16, July
2023. 2

[21] R. Zhang, Q. Meng, R. Zhu, Y. Wang, W. Shi, S. Zhang,
Z.-M. Ma, and T.-Y. Liu. Monte carlo neural pde solver for
learning pdes via probabilistic representation, 2023. 1

